Chapter 20 : Chemosensory Signal Transduction Pathway of

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in

Chemosensory Signal Transduction Pathway of , Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555815554/9781555814373_Chap20-1.gif /docserver/preview/fulltext/10.1128/9781555815554/9781555814373_Chap20-2.gif


This chapter describes the composition of the chemotaxis system in the context of pathways found in other bacterial species and derives models of the mechanism of signal transduction in the chemotaxis pathway. The six chemotaxis signal transduction pathway genes are located in three separate regions of the genome. In two regions, the genes are located with genes of apparently unrelated function, and the distances between open reading frames and the strand-specific grouping of open reading frames suggests an operon arrangement. The gene is located adjacent to the Pgl protein glycosylation gene cluster and possibly at the start of an operon, where no other gene is likely to be involved in chemotaxis. The second region includes the genes , , and , which are located next to one another, and the genes flanking the three genes in the operon do not appear to be associated with chemotaxis. The third region of the chromosome in which genes are located contains the genes and , which are likely to be cistronic and not cotranscribed with the flanking genes, and . There is evidence that methylation- and demethylation- based adaptation of the chemoreceptors also occurs in . Clearly, this model for the most part is speculative, being largely based on the exploitation of genomic sequence data, but ongoing investigation of chemotaxis in is providing experimental support.

Citation: Korolik V, Ketley J. 2008. Chemosensory Signal Transduction Pathway of , p 351-366. In Nachamkin I, Szymanski C, Blaser M (ed), , Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555815554.ch20

Key Concept Ranking

Transcription Start Site
Highlighted Text: Show | Hide
Loading full text...

Full text loading...


Image of Figure 1.
Figure 1.

Diagrammatic overview of the chemotaxis signal transduction pathway. In , the receptor complex consists of MCP, CheW, and CheA. In the absence of chemoattractant, the CheA kinase domain is active, and after auto-phosphorylation of CheA, the phosphate is transferred to CheY. Phospho-CheY then binds to FliM on the flagellum motor. Sufficient binding of phospho-CheY to the flagellum motor leads to reversal from counterclockwise to clockwise rotation (not shown). Signal termination occurs by the action of the phosphatase CheZ on phospo-CheY. System adaptation, which resets the signaling properties of the receptor, occurs by reversible methylation by CheB and CheR; the level of methylation is controlled by phosphorylation of the response regulator domain on CheB. For further details, see text.

Citation: Korolik V, Ketley J. 2008. Chemosensory Signal Transduction Pathway of , p 351-366. In Nachamkin I, Szymanski C, Blaser M (ed), , Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555815554.ch20
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2.
Figure 2.

Model for the control of CheB activity in campylobacters. (1) CheA-mediated kinase activity is inhibited when chemoreceptors bind chemoattractants. In consequence, phosphorylation of the response regulator domain in CheV is reduced (probably involving the phosphatase CheZ; Fig. 3 ). Unphosphorylated CheV inhibits the methylesterase activity of CheB, resulting in increased methylation of receptors due to CheR. (2) In the absence of chemoattractant CheA phosphorylates the response regulator domain present in CheV. Phospho-CheV ceases to inhibit CheB methylesterase activity, leading to increased demethylation of chemoreceptors.

Citation: Korolik V, Ketley J. 2008. Chemosensory Signal Transduction Pathway of , p 351-366. In Nachamkin I, Szymanski C, Blaser M (ed), , Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555815554.ch20
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 3.
Figure 3.

Model for the dephosphorylation of CheY and other chemotaxis-related response regulator domains in campylobacters. Cj0700, the proposed CheZ, dephosphorylates phospho-CheY, terminating the signal transmitted to the motor by CheY. In the absence of attractant, CheA is proposed to phosphorylate CheV, and CheZ will dephosphorylate CheV to terminate continued CheB methylesterase activity. Phosphorylation of the CheA response regulator domain CheA-RR is also proposed to be reversed by CheZ, but the regulatory role of the CheA-RR domain remains to be determined.

Citation: Korolik V, Ketley J. 2008. Chemosensory Signal Transduction Pathway of , p 351-366. In Nachamkin I, Szymanski C, Blaser M (ed), , Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555815554.ch20
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 4.
Figure 4.

Model of chemotaxis signal transduction in campylobacters. Three pathways are proposed to be associated with different chemosensory complexes focused on the structure-based grouping of predicted chemoreceptors. Group A receptors, possibly arranged in large array clusters of mixed receptor specificity and positioned at the cell poles, are predicted to sense periplasmic signals. Binding of ligands to periplasmic domains of group A receptors might involve accessory periplasmic ligand-binding proteins (not shown). The specificity of Tlp1 has been shown to be aspartate. For the group B receptor CetA, a chemotactic response to redox potential changes is mediated by interaction with CetB. The group C receptors might play a role in chemotactic responsesto intracellular signals, possibly by other cytoplasmic ligand-binding proteins (not shown). Some receptors, for example Aer1, might transduce signals into other nonchemotaxis systems. Signal loss, for example decreasing binding of attractant to the receptor, is transduced to CheA in the complex activating the CheA kinase domain. Complexes may contain CheW alone or both CheW and CheV (shown left and right of group A receptors, respectively). After autophosphorylation of CheA, the phosphate is transferred to CheY, and phospho-CheY then binds to FliM on the flagellum motor. Sufficient binding of phospho-CheY to the flagellum motor leads to reversal from counterclockwise to clockwise rotation (not shown). System adaptation, which resets the signaling properties of the receptor, is presumed to occur via reversible methylation by CheB and CheR. The CheA kinase domain might also pass phosphate to CheV that in turn controls CheB activity. Signal termination by dephosphorylation of CheY is mediated by CheZ, which also may dephosphorylate CheV and the response regulator domain on CheA.

Citation: Korolik V, Ketley J. 2008. Chemosensory Signal Transduction Pathway of , p 351-366. In Nachamkin I, Szymanski C, Blaser M (ed), , Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555815554.ch20
Permissions and Reprints Request Permissions
Download as Powerpoint


1. Adler, J. 1965. Chemotaxis in Escherichia coli. Cold Spring Harb. Symp. Quant. Biol. 30:289292.
2. Ames, P.,, C. A. Studdert,, R. H. Reiser, and, J. S. Parkinson. 2002. Collaborative signaling by mixed chemoreceptor teams in Escherichia coli. PNAS 99:70607065.
3. Andermann, T. M.,, Y. T. Chen, and, K. M. Ottemann. 2002. Two predicted chemoreceptors of Helicobacter pylori promote stomach infection. Infect. Immun. 70:58775881.
4. Armitage, J. P. 1999. Bacterial tactic responses. Adv. Microb. Physiol. 41:229289.
5. Armitage, J. P., and, R. Schmitt. 1997. Bacterial chemotaxis: Rhodobacter sphaeroides and Sinorhizobium meliloti—variations on a theme? Microbiology 143(Pt. 12):36713682.
6. Baar, C.,, M. Eppinger,, G. Raddatz,, J. Simon,, C. Lanz,, O. Klimmek,, R. Nandakumar,, R. Gross,, A. Rosinus,, H. Keller,, P. Jagtap,, B. Linke,, F. Meyer,, H. Lederer, and, S. C. Schuster. 2003. Complete genome sequence and analysis of Wolinella succinogenes. PNAS 100:1169011695.
7. Bibikov, S. I.,, R. Biran,, K. E. Rudd, and, J. S. Parkinson. 1997. A signal transducer for aerotaxis in Escherichia coli. J. Bacteriol. 179:40754079.
8. Bren, A., and, M. Eisenbach. 2001. Changing the direction of flagellar rotation in bacteria by modulating the ratio between the rotational states of the switch protein FliM. J. Mol. Biol. 312:699709.
9. Bridle, O.,, R. Sandhu, and, J. Ketley. 2007. Identifying Protein-protein interactions in the chemotaxis system of Campylobacter jejuni. Zoonoses Public Health 54:54.
10. Butler, S. M., and, A. Camilli. 2005. Going against the grain: chemotaxis and infection in Vibrio cholerae. Nat. Rev. Microbiol. 3:611620.
11. Chang, C., and, J. F. Miller. 2006. Campylobacter jejuni colonization of mice with limited enteric flora. Infect. Immun. 74:52615271.
12. Colegio, O. R.,, T. J. T. Griffin,, N. D. Grindley, and, J. E. Galan. 2001. In vitro transposition system for efficient generation of random mutants of Campylobacter jejuni. J. Bacteriol. 183:23842388.
13. Croxen, M. A.,, G. Sisson,, R. Melano, and, P. S. Hoffman. 2006. The Helicobacter pylori chemotaxis receptor TlpB (HP0103) is required for pH taxis and for colonization of the gastric mucosa. J. Bacteriol. 188:26562665.
14. Djordjevic, S., and, A. M. Stock. 1997. Crystal structure of the chemotaxis receptor methyltransferase CheR suggests a conserved structural motif for binding S-adenosylmethionine. Structure 5:545558.
15. Djordjevic, S., and, A. M. Stock. 1998. Structural analysis of bacterial chemotaxis proteins: components of a dynamic signaling system. J. Struct. Biol. 124:189200.
16. Dutta, R.,, L. Qin, and, M. Inouye. 1999. Histidine kinases: diversity of domain organization. Mol. Microbiol. 34:633640.
17. Eisenbach, M. 1996. Control of bacterial chemotaxis. Mol. Microbiol. 20:903910.
18. Falke, J. J.,, R. B. Bass,, S. L. Butler,, S. A. Chervitz, and, M. A. Danielson. 1997. The two-component signaling pathway of bacterial chemotaxis: a molecular view of signal transduction by receptors, kinases, and adaptation enzymes. Annu. Rev. Cell. Dev. Biol. 13:457512.
19. Ferrero, R. L., and, A. Lee. 1988. Motility of Campylobacter jejuni in a viscous environment: comparison with conventional rod shaped bacteria. J. Gen. Microbiol. 134:5359.
20. Foynes, S.,, N. Dorrell,, S. J. Ward,, R. A. Stabler,, A. A. McColm,, A. N. Rycroft, and, B. W. Wren. 2000. Helicobacter pylori possesses two CheY response regulators and a histidine kinase sensor, CheA, which are essential for chemotaxis and colonization of the gastric mucosa. Infect. Immun. 68:20162023.
21. Garrity, L. F., and, G. W. Ordal. 1995. Chemotaxis in Bacillus subtilis: how bacteria monitor environmental signals. Pharmacol. Ther. 68:87104.
22. Golden, N. J., and, D. W. K. Acheson. 2002. Identification of motility and autoagglutination Campylobacter jejuni mutants by random transposon mutagenesis. Infect. Immun. 70:17611771.
23. Grebe, T. W., and, J. Stock. 1998. Bacterial chemotaxis: the five sensors of a bacterium. Curr. Biol. 8:R154157.
24. Guvener, Z. T.,, D. F. Tifrea, and, C. S. Harwood. 2006. Two different Pseudomonas aeruginosa chemosensory signal transduction complexes localize to cell poles and form and remould in stationary phase. Mol. Microbiol. 61:106118.
25. Hartley, L. E.,, J. C. Wilson, and, V. Korolik. 2007. Expression, purification and characterisation of the sensory domain of Tlp1 of C. jejuni. Zoonoses Publ. Health 54:64.
26. Hendrixson, D. R.,, B. J. Akerley, and, V. J. DiRita. 2001. Transposon mutagenesis of Campylobacter jejuni identifies a bipartite energy taxis system required for motility. Mol. Microbiol. 40:214224.
27. Hendrixson, D. R., and, V. J. DiRita. 2004. Identification of Campylobacter jejuni genes involved in commensal colonization of the chick gastrointestinal tract. Mol. Microbiol. 52:471484.
28. Huang, C., and, R. C. Stewart. 1993. CheZ mutants with enhanced ability to dephosphorylate CheY, the response regulator in bacterial chemotaxis. Biochim. Biophys. Acta. 1202:297304.
29. Hugdahl, M. B.,, J. T. Beery, and, M. P. Doyle. 1988. Chemotactic behavior of Campylobacter jejuni. Infect. Immun. 56:15601566.
30. Hyakutake, A.,, M. Homma,, M. J. Austin,, M. A. Boin,, C. C. Hase, and, I. Kawagishi. 2005. Only one of the five CheY homologs in Vibrio cholerae directly switches flagellar rotation. J. Bacteriol. 187:84038410.
31. Josenhans, C., and, S. Suerbaum. 2002. The role of motility as a virulence factor in bacteria. Int. J. Med. Microbiol. 291:605614.
32. Khieongoen, A., and, V. Korolik. 2003. Characterisation of Campylobacter jejuni chemoreceptor protein, MCP. Int. J. Med. Microbiol. 293:69.
33. Kirby, J. R.,, C. J. Kristich,, M. M. Saulmon,, M. A. Zimmer,, L. F. Garrity,, I. B. Zhulin, and, G. W. Ordal. 2001. CheC is related to the family of flagellar switch proteins and acts independently from CheD to control chemotaxis in Bacillus subtilis. Mol. Microbiol. 42:573585.
34. Kristich, C. J., and, G. W. Ordal. 2002. Bacillus subtilis CheD is a chemoreceptor modification enzyme required for chemotaxis. J. Biol. Chem. 277:2535625362.
35. Kristich, C. J., and, G. W. Ordal. 2004. Analysis of chimeric chemoreceptors in Bacillus subtilis reveals a role for CheD in the function of the McpC HAMP domain. J. Bacteriol. 186:59505955.
36. Lane, M. C.,, A. L. Lloyd,, T. A. Markyvech,, E. C. Hagan, and, H. L. Mobley. 2006. Uropathogenic Escherichia coli strains generally lack functional Trg and Tap chemoreceptors found in the majority of E. coli strains strictly residing in the gut. J. Bacteriol. 188:56185625.
37. Lee, A.,, J. L. O’Rourke,, P. J. Barrington, and, T. J. Trust. 1986. Mucus colonization as a determinant of pathogenicity in intestinal infection by Campylobacter jejuni: a mouse cecal model. Infect. Immun. 51:536546.
38. Lee, S. H.,, S. M. Butler, and, A. Camilli. 2001. Selection for in vivo regulators of bacterial virulence. PNAS 98:68896894.
39. Le Moual, H., and, D. E. Koshland, Jr. 1996. Molecular evolution of the C-terminal cytoplasmic domain of a superfamily of bacterial receptors involved in taxis. J. Mol. Biol. 261:568585.
40. Lupas, A., and, J. Stock. 1989. Phosphorylation of an N-terminal regulatory domain activates the CheB methylesterase in bacterial chemotaxis. J. Biol. Chem. 264:1733717342.
41. Lybarger, S. R., and, J. R. Maddock. 2000. Differences in the polar clustering of the high- and low-abundance chemoreceptors of Escherichia coli. PNAS 97:80578062.
42. Marchant, J.,, J. Henderson,, B. Wren, and, J. Ketley. 1998. Role of the cheY gene in the chemotaxis of Campylobacter jejuni, p. 306311. In A. Lastovica,, D. Newell and, E. Lastovica (ed.), Campylobacter, Helicobacter and Related Organisms. University of Cape Town, Cape Town.
43. Marchant, J.,, B. Wren, and, J. Ketley. 2002. Exploiting genome sequence: predictions for mechanisms of Campylobacter chemotaxis. Trends Microbiol. 10:155159.
44. Martin, A. C.,, G. H. Wadhams, and, J. P. Armitage. 2001. The roles of the multiple CheW and CheA homologues in chemotaxis and in chemoreceptor localization in Rhodobacter sphaeroides. Mol. Microbiol. 40:12611272.
45. Mattick, J. S. 2002. Type IV pili and twitching motility. Annu. Rev. Microbiol. 56:289314.
46. Morgan, R.,, S. Kohn,, S. H. Hwang,, D. J. Hassett, and, K. Sauer. 2006. BdlA, a chemotaxis regulator essential for biofilm dispersion in Pseudomonas aeruginosa. J. Bacteriol. 188:73357343.
47. Motaleb, M. A.,, M. R. Miller,, C. Li,, R. G. Bakker,, S. F. Goldstein,, R. E. Silversmith,, R. B. Bourret, and, N. W. Charon. 2005. CheX is a phosphorylated CheY phosphatase essential for Borrelia burgdorferi chemotaxis. J. Bacteriol. 187:79637969.
48. Mowbray, S. L., and, M. O. Sandgren. 1998. Chemotaxis receptors: a progress report on structure and function. J. Struct. Biol. 124:257275.
49. Muff, T. J.,, R. M. Foster,, P. J. Liu, and, G. W. Ordal. 2007. CheX in the three-phosphatase system of bacterial chemotaxis. J. Bacteriol. 189:70077013.
50. O’Toole, G. A., and, R. Kolter. 1998. Flagellar and twitching motility are necessary for Pseudomonas aeruginosa biofilm development. Mol. Microbiol. 30:295304.
51. Ottemann, K. M., and, J. F. Miller. 1997. Roles for motility in bacterial-host interactions. Mol. Microbiol. 24:16271631.
52. Park, S. Y.,, X. Chao,, G. Gonzalez-Bonet,, B. D. Beel,, A. M. Bilwes, and, B. R. Crane. 2004. Structure and function of an unusual family of protein phosphatases: the bacterial chemotaxis proteins CheC and CheX. Mol. Cell 16:563574.
53. Parkhill, J.,, B. W. Wren,, K. Mungall,, J. M. Ketley,, C. Churcher,, D. Basham,, T. Chillingworth,, R. M. Davies,, T. Feltwell,, S. Holroyd,, K. Jagels,, A. V. Karlyshev,, S. Moule,, M. J. Pallen,, C. W. Penn,, M. A. Quail,, M. A. Rajandream,, K. M. Rutherford,, A. H. van Vliet,, S. Whitehead, and, B. G. Barrell. 2000. The genome sequence of the food-borne pathogen Campylobacter jejuni reveals hypervariable sequences. Nature 403:665668.
54. Parrish, J. R.,, J. Yu,, G. Liu,, J. A. Hines,, J. E. Chan,, B. A. Mangiola,, H. Zhang,, S. Pacifico,, F. Fotouhi,, V. J. Dirita,, T. Ideker,, P., Andrews, and, R. L. Finley, Jr. 2007. A proteome-wide protein interaction map for Campylobacter jejuni. Genome Biol. 8:R130.
55. Porter, S. L.,, G. H. Wadhams,, A. C. Martin,, E. D. Byles,, D. E. Lancaster, and, J. P. Armitage. 2006. The CheYs of Rhodobacter sphaeroides. J. Biol. Chem. 281:3269432704.
56. Repik, A.,, A. Rebbapragada,, M. S. Johnson,, J. O. Haznedar,, I. B. Zhulin, and, B. L. Taylor. 2000. PAS domain residues involved in signal transduction by the Aer redox sensor of Escherichia coli. Mol. Microbiol. 36:806816.
57. Rosario, M. M.,, K. L. Fredrick,, G. W. Ordal, and, J. D. Helmann. 1994. Chemotaxis in Bacillus subtilis requires either of two functionally redundant CheW homologs. J. Bacteriol. 176:27362739.
58. Sandhu, R.,, O. Bridle, and, J. Ketley. 2007. Characterisation of the Methyl-Accepting Chemotaxis Protein (MCP) Receptors in Campylobacter jejuni. Zoonoses Public Health 54:92.
59. Saulmon, M. M.,, E. Karatan, and, G. W. Ordal. 2004. Effect of loss of CheC and other adaptational proteins on chemotactic behaviour in Bacillus subtilis. Microbiology 150:581589.
60. Shah, D. S.,, S. L. Porter,, D. C. Harris,, G. H. Wadhams,, P. A. Hamblin, and, J. P. Armitage. 2000. Identification of a fourth cheY gene in Rhodobacter sphaeroides and interspecies interaction within the bacterial chemotaxis signal transduction pathway. Mol. Microbiol. 35:101112.
61. Shelwell, L. K., and, V. Korolik. 2007. Investigation of protein-protein interactions involved in the chemotaxis pathway of Campylobacter jejuni. Zoonoses Publ. Health 54:94.
62. Shitashiro, M.,, H. Tanaka,, C. S. Hong,, A. Kuroda,, N. Takiguchi,, H. Ohtake, and, J. Kato. 2005. Identification of chemosensory proteins for trichloroethylene in Pseudomonas aeruginosa. J. Biosci. Bioeng. 99:396402.
63. Sourjik, V. 2004. Receptor clustering and signal processing in E. coli chemotaxis. Trends Microbiol. 12:569576.
64. Sourjik, V., and, R. Schmitt. 1998. Phosphotransfer between CheA, CheY1, and CheY2 in the chemotaxis signal transduction chain of Rhizobium meliloti. Biochemistry 37:23272335.
65. Stock, J., and, M. Levit. 2000. Signal transduction: hair brains in bacterial chemotaxis. Curr. Biol. 10:R11R14.
66. Stock, J. B., and, D. E. Koshland, Jr. 1981. Changing reactivity of receptor carboxyl groups during bacterial sensing. J. Biol. Chem. 256:1082610833.
67. Suerbaum, S.,, C. Josenhans,, T. Sterzenbach,, B. Drescher,, P. Brandt,, M. Bell,, M. Droge,, B. Fartmann,, H.-P. Fischer,, Z. Ge,, A. Horster,, R. Holland,, K. Klein,, J. Konig,, L. Macko,, G. L. Mendz,, G. Nyakatura,, D. B. Schauer,, Z. Shen,, J. Weber,, M. Frosch, and, J. G. Fox. 2003. The complete genome sequence of the carcinogenic bacterium Helicobacter hepaticus. PNAS 100:79017906.
68. Szurmant, H.,, T. J. Muff, and, G. W. Ordal. 2004. Bacillus subtilis CheC and FliY are members of a novel class of CheY-Phydrolyzing proteins in the chemotactic signal transduction cascade. J. Biol. Chem. 279:2178721792.
69. Szurmant, H., and, G. W. Ordal. 2004. Diversity in chemotaxis mechanisms among the Bacteria and Archaea. Microbiol. Mol. Biol. Rev. 68:301319.
70. Szymanski, C. M.,, M. King,, M. Haardt, and, G. D. Armstrong. 1995. Campylobacter jejuni motility and invasion of Caco-2 cells. Infect. Immun. 63:42954300.
71. Takata, T.,, S. Fujimoto, and, K. Amako. 1992. Isolation of nonchemotactic mutants of Campylobacter jejuni and their colonization of the mouse intestinal tract. Infect. Immun. 60:35963600.
72. Taylor, B. L.,, I. B. Zhulin, and, M. S. Johnson. 1999. Aerotaxis and other energy-sensing behavior in bacteria. Annu. Rev. Microbiol. 53:103128.
73. Terry, K.,, A. C. Go, and, K. M. Ottemann. 2006. Proteomic mapping of a suppressor of non-chemotactic cheW mutants reveals that Helicobacter pylori contains a new chemotaxis protein. Mol. Microbiol. 61:871882.
74. Terry, K.,, S. M. Williams,, L. Connolly, and, K. M. Ottemann. 2005. Chemotaxis plays multiple roles during Helicobacter pylori animal infection. Infect. Immun. 73:803811.
75. Terwilliger, T. C.,, J. Y. Wang, and, D. E. Koshland, Jr. 1986. Surface structure recognized for covalent modification of the aspartate receptor in chemotaxis. PNAS 83:67076710.
76. Tomb, J. F.,, O. White,, A. R. Kerlavage,, R. A. Clayton,, G. G. Sutton,, R. D. Fleischmann,, K. A. Ketchum,, H. P. Klenk,, S. Gill,, B. A. Dougherty,, K. Nelson,, J. Quackenbush,, L. Zhou,, E. F. Kirkness,, S. Peterson,, B. Loftus,, D. Richardson,, R. Dodson,, H. G. Khalak,, A. Glodek,, K. McKenney,, L. M. Fitzegerald,, N. Lee,, M. D. Adams,, E. K. Hickey,, D. E. Berg,, J. D. Gocayne,, T. R. Utterback,, J. D. Peterson,, J. M. Kelley,, M. D. Cotton,, J. M. Weidman,, C. Fujii,, C. Bowman,, L. Watthey,, E. Wallin,, W. S. Hayes,, M. Borodovsky,, P. D. Karp,, H. O. Smith,, C. M. Fraser, and, J. C. Venter. 1997. The complete genome sequence of the gastric pathogen Helicobacter pylori. Nature 388:539547.
77. van Alphen, L. B.,, N. M. C. Bleumink-Pluym,, K. D. Rochat,, B. W. M. van Balkom,, M. M. S. M. Wosten, and, J. P. M. van Putten. 2008. Active migration into the subcellular space precedes Campylobacter jejuni invasion of epithelial cells. Cell. Microbiol. 10:5366.
78. West, A. H.,, E. Martinez-Hackert, and, A. M. Stock. 1995. Crystal structure of the catalytic domain of the chemotaxis receptor methylesterase, CheB. J. Mol. Biol. 250:276290.
79. Williams, S. M.,, Y. T. Chen,, T. M. Andermann,, J. E. Carter,, D. J. McGee, and, K. M. Ottemann. 2007. Helicobacter pylori chemotaxis modulates inflammation and bacterium-gastric epithelium interactions in infected mice. Infect. Immun. 75:37473757.
80. Yao, R.,, D. H. Burr, and, P. Guerry. 1997. CheY-mediated modulation of Campylobacter jejuni virulence. Mol. Microbiol. 23:10211031.
81. Zhang, P.,, C. M. Khursigara,, L. M. Hartnell, and, S. Subramaniam. 2007. Direct visualization of Escherichia coli chemotaxis receptor arrays using cryo-electron microscopy. PNAS 104:37773781.
82. Zhang, W.,, A. Brooun,, J. McCandless,, P. Banda, and, M. Alam. 1996. Signal transduction in the archaeon Halobacterium salinarium is processed through three subfamilies of 13 soluble and membrane-bound transducer proteins. PNAS 93:46494654.
83. Zhulin, I. B. 2001. The superfamily of chemotaxis transducers: from physiology to genomics and back. Adv. Microb. Physiol. 45:157198.


Generic image for table
Table 1.

Content of group A chemoreceptors in strains

Citation: Korolik V, Ketley J. 2008. Chemosensory Signal Transduction Pathway of , p 351-366. In Nachamkin I, Szymanski C, Blaser M (ed), , Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555815554.ch20

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error