1887

Chapter 23 : Pathogenesis of

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in
Zoomout

Pathogenesis of , Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555815554/9781555814373_Chap23-1.gif /docserver/preview/fulltext/10.1128/9781555815554/9781555814373_Chap23-2.gif

Abstract:

has been recognized as a significant pathogen of livestock for nearly a century. The genome sequence of subsp. strain 82-40 has recently been determined. Analysis of this sequence has confirmed and extended previous observations and has also provided new insights into metabolism, physiology, and pathogenesis. The majority of the N-linked general glycosylation pathway genes are also found in , although unlike in , the genes are arranged in multiple clusters. The major pathogenesis-related difference of compared with is the presence of the S-layer. Surface array protein, type A (SapA) lacked an amino-terminal signal sequence that would direct its secretion to the cell surface. Before this, the only surface-layer protein (SLP) that lacked a signal sequence was that of . Observations made during the cloning of the sapA genes were important toward understanding the mechanisms by which the expression and antigenic variation of the encoded proteins are controlled. To investigate the role of the S-layer proteins in ovine abortion, an in vivo model was developed that used pregnant ewes subcutaneously challenged with subsp. strain 23D. The outcome of the infection in terms of effects on the fetus is dependent on the interaction between the pathogen and the host response. This model also provides a context to understand the role of S-layer proteins as virulence factors in human infections.

Citation: Blaser M, Newell D, Thompson S, Zechner E. 2008. Pathogenesis of , p 401-428. In Nachamkin I, Szymanski C, Blaser M (ed), , Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555815554.ch23

Key Concept Ranking

Mobile Genetic Elements
0.43344656
Infection and Immunity
0.4146328
0.43344656
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of Figure 1.
Figure 1.

Model for subsp. disease of humans ( ). subsp. is ingested from contaminated food, followed by colonization of the intestinal tract. Bacteremia can occur but in normal hosts is limited by the immune system. In compromised hosts, the bacteremia may be prolonged due in part to bacterial virulence factors such as its surface layer, which allows secondary infection of additional anatomical sites. These may subsequently serve as a source of bacteria for sustained or renewed sepsis. From .

Citation: Blaser M, Newell D, Thompson S, Zechner E. 2008. Pathogenesis of , p 401-428. In Nachamkin I, Szymanski C, Blaser M (ed), , Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555815554.ch23
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2.
Figure 2.

Inhibition of complement factor C3 binding by . I-labeled C3 was incubated with either 23D (S) or 23B (S), and the amount of bound C3 determined. The S-layer in strain 23D prevents significant C3 binding. From .

Citation: Blaser M, Newell D, Thompson S, Zechner E. 2008. Pathogenesis of , p 401-428. In Nachamkin I, Szymanski C, Blaser M (ed), , Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555815554.ch23
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 3.
Figure 3.

Electron microscopy of the surface layer (S-layer). (A) Shown in ultrathin cross section ( ), the S-layer appears as a ringlike structure external to the outer membrane (arrow). (B) In freeze-etch preparations of the cell surface ( ), the S-layer appears as either regular tetragonal (left) or hexagonal (right) arrays. This micrograph demonstrates the ability of a single cell to express more than one type of S-layer. From (A) and (B)

Citation: Blaser M, Newell D, Thompson S, Zechner E. 2008. Pathogenesis of , p 401-428. In Nachamkin I, Szymanski C, Blaser M (ed), , Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555815554.ch23
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 4.
Figure 4.

Structural features and comparison of DNA sequences of eight complete and one partial homolog. The structure of each homolog is represented schematically by the aligned rectangles. Colored boxes identify shared regions of identity among the homologs. White boxes indicate nonconserved sequences, with no sequences >30 bp shared. The first 553 bp in all eight complete homologs are shared. The Cf0007 ORF shared 752 bp with , but lacks the 5′ conserved region; it is referred to as , as it is a partial homolog. From

Citation: Blaser M, Newell D, Thompson S, Zechner E. 2008. Pathogenesis of , p 401-428. In Nachamkin I, Szymanski C, Blaser M (ed), , Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555815554.ch23
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 5.
Figure 5.

Schematic representation of genes encoding type A and type B SLPs. The conserved 5′ regions of each gene are indicated by black (type A) or green (type B) rectangles. Colors show areas of conservation between homologs; white boxes represent homolog-specific sequences. From ).

Citation: Blaser M, Newell D, Thompson S, Zechner E. 2008. Pathogenesis of , p 401-428. In Nachamkin I, Szymanski C, Blaser M (ed), , Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555815554.ch23
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 6.
Figure 6.

DNA inversion events in a model system using a promoterless (km) cassette inserted into the wild-type locus (top line). When the promoter is positioned in the proper orientation, resistance to kanamycin results in S bacteria, at a frequency of 10 (second line). When kanamycin-resistant cells are removed from kanamycin selection and subjected to serum selection, S (serum resistant), kanamycin-sensitive cells arise at a frequency of 10 (third line). Solid arrows represent expressed genes, and broken arrows represent silent (unexpressed) genes. The stippled boxes represent the 600-bp conserved regions at the 5′ ends of genes, and asterisks show the positions of the embedded inverted repeats that may play a role in the inversion process. The heavy line is the 6.2-kb invertible region. From .

Citation: Blaser M, Newell D, Thompson S, Zechner E. 2008. Pathogenesis of , p 401-428. In Nachamkin I, Szymanski C, Blaser M (ed), , Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555815554.ch23
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 7.
Figure 7.

Model for complex inversion events resulting in the expression of alternate homologs. Simple inversion events ( Fig. 6 ) can occur, as well as more complex events in which the invertible region and one or more adjacent genes invert. Black boxes and other types of shading represent the conserved 5′ regions and divergent 3′ regions of sapA genes, respectively. The bent arrow shows the location of the unique promoter, which is associated with the expression of the adjacent homolog (straight arrow). The asterisks are sequences (χ, inverted repeats) that are potentially involved in the inversion process. From .

Citation: Blaser M, Newell D, Thompson S, Zechner E. 2008. Pathogenesis of , p 401-428. In Nachamkin I, Szymanski C, Blaser M (ed), , Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555815554.ch23
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 8.
Figure 8.

Genetic organization of the 6.2-kb invertible region. Bold arrows indicate genes contained within the invertible region. Bent arrows represent the divergent and promoters. Hatched lines denote the conserved 5′ regions of the flanking homologs, indicated here as and . From .

Citation: Blaser M, Newell D, Thompson S, Zechner E. 2008. Pathogenesis of , p 401-428. In Nachamkin I, Szymanski C, Blaser M (ed), , Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555815554.ch23
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 9.
Figure 9.

Schematic representation and genomic organization of the locus in strain 23D. The adjacent ORFs that are not homologs (including , and Cf0001...Cf0032) are indicated by shaded boxes. The PCR primers used in this study (PF, SF, TR, SR, AF-A7F, and AR-A7R) are designated by the arrows, which also denote the primer orientations. The horizontal line indicates the length of the fragment. From

Citation: Blaser M, Newell D, Thompson S, Zechner E. 2008. Pathogenesis of , p 401-428. In Nachamkin I, Szymanski C, Blaser M (ed), , Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555815554.ch23
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 10.
Figure 10.

Model for secretion and assembly of the S-layer. A hypothetical structure of the SLP transporter is shown, based on similarities to other type I transporters. The putative stoichiometry of the SapE and SapF proteins in the assembled transport apparatus is based on data gathered for the HlyA transporter ( ). Recognition of the SapA carboxy-terminal secretion signal is mediated by the SapD protein. The SapA/SapD complex initiates the sequential assembly of SapE and SapF trimers resulting in a contiguous pore through which SapA is secreted. SapA then may attach to LPS and be added to the growing S-layer.

Citation: Blaser M, Newell D, Thompson S, Zechner E. 2008. Pathogenesis of , p 401-428. In Nachamkin I, Szymanski C, Blaser M (ed), , Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555815554.ch23
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555815554.ch23
1. Allos, B. M.,, A. J. Lastovica, and, M. J. Blaser. 1995. Atypical campylobacters and related microorganisms, p. 849865. In P. D. S. M. J. Blaser,, J. I. Ravdin,, H. B. Greenberg, and, R. L. Guerrant (ed.), Infections of the Gastrointestinal Tract. Raven Press, New York.
2. Alm, R. A.,, P. Guerry,, M. E. Power, and, T. J. Trust. 1992. Variation in antigenicity and molecular weight of Campylobacter coli VC167 flagellin in different genetic backgrounds. J. Bacteriol. 174:42304238.
3. Anstead, G. M.,, J. H. Jorgensen,, F. E. Craig,, M. J. Blaser, and, T. F. Patterson. 2001. Thermophilic multidrug-resistant Campylobacter fetus infection with hypersplenism and histiocytic phagocytosis in a patient with acquired immunodeficiency syndrome. Clin. Infect. Dis. 32:295296.
4. Atabay, H. I., and, J. E. Corry. 1998. The isolation and prevalence of campylobacters from dairy cattle using a variety of methods. J. Appl. Microbiol. 84:733740.
5. Awram, P., and, J. Smit. 1998. The Caulobacter crescentus para-crystalline S-layer protein is secreted by an ABC transporter (type I) secretion apparatus. J. Bacteriol. 180:30623069.
6. Backert, S., and, T. F. Meyer. 2006. Type IV secretion systems and their effectors in bacterial pathogenesis. Curr. Opin. Microbiol. 9:207217.
7. Bawa, E. K.,, J. O. Adekeye,, E. O. Oyedipe, and, J. U. Omoh. 1991. Prevalence of bovine campylobacteriosis in indigenous cattle of three states in Nigeria. Trop. Anim. Health Prod. 23:157160.
8. Berg, R. L.,, J. W. Jutila, and, B. D. Firehammer. 1971. A revised classification of Vibrio fetus. Am. J. Vet. Res. 32:1122.
9. Blaser, M. J. 1998. Campylobacter fetus—emerging infection and model system for bacterial pathogenesis at mucosal surfaces. Clin. Infect. Dis. 27:256258.
10. Blaser, M. J., and, E. C. Gotschlich. 1990. Surface array protein of Campylobacter fetus. Cloning and gene structure. J. Biol. Chem. 265:1452914535.
11. Blaser, M. J., and, Z. Pei. 1993. Pathogenesis of Campylobacter fetus infections: critical role of high-molecular-weight S-layer proteins in virulence. J. Infect. Dis. 167:372377.
12. Blaser, M. J.,, P. F. Smith,, J. A. Hopkins,, I. Heinzer,, J. H. Bryner, and, W. L. Wang. 1987. Pathogenesis of Campylobacter fetus infections: serum resistance associated with high-molecular-weight surface proteins. J. Infect. Dis. 155:696706.
13. Blaser, M. J.,, P. F. Smith, and, P. A. Kohler. 1985. Susceptibility of Campylobacter isolates to the bactericidal activity in human serum. J. Infect. Dis. 151:227235.
14. Blaser, M. J.,, P. F. Smith,, J. E. Repine, and, K. A. Joiner. 1988. Pathogenesis of Campylobacter fetus infections. Failure of encapsulated Campylobacter fetus to bind C3b explains serum and phagocytosis resistance. J. Clin. Invest. 81:14341444.
15. Blaser, M. J.,, E. Wang,, M. K. Tummuru,, R. Washburn,, S. Fuji-moto, and, A. Labigne. 1994. High-frequency S-layer protein variation in Campylobacter fetus revealed by sapA mutagenesis. Mol. Microbiol. 14:453462.
16. Blight, M. A., and, I. B. Holland. 1990. Structure and function of haemolysin B, P-glycoprotein and other members of a novel family of membrane translocators. Mol. Microbiol. 4:873880.
17. Bokkenheuser, V. 1970. Vibrio fetus infection in man. I. Ten new cases and some epidemiologic observations. Am. J. Epidemiol. 91:400409.
18. Boot, H. J., and, P. H. Pouwels. 1996. Expression, secretion and antigenic variation of bacterial S-layer proteins. Mol. Microbiol. 21:11171123.
19. Bryner, J. H.,, A. H. Frank, and, P. A. O’Berry. 1962. Dissociation studies of vibrios from the bovine genital tract. Am. J. Vet. Res. 23:3241.
20. Buckmire, F. L., and, R. G. Murray. 1973. Studies on the cell wall of Spirillum serpens. II. Chemical characterization of the outer structured layer. Can. J. Microbiol. 19:5966.
21. Casadémont, I.,, D. Chevrier, and, J. L. Guesdon. 1998. Cloning of a sapB homologue (sapB2) encoding a putative 112-kDa Campylobacter fetus S-layer protein and its use for identification and molecular genotyping. FEMS Immunol. Med. Microbiol. 21:269281.
22. Christie, P. J. 2004. Type IV secretion: the agrobacterium VirB/D4 and related conjugation systems. Biochim. Biophys. Acta 1694:219234.
23. Christie, P. J.,, K. Atmakuri,, V. Krishnamoorthy,, S. Jakubowski, and, E. Cascales. 2005. Biogenesis, architecture, and function of bacterial type IV secretion systems. Annu. Rev. Microbiol. 59:451485.
24. Connell, T. D.,, W. J. Black,, T. H. Kawula,, D. S. Barritt,, J. A. Dempsey,, K. Kverneland, Jr.,, A. Stephenson,, B. S. Schepart,, G. L. Murphy, and, J. G. Cannon. 1988. Recombination among protein II genes of Neisseria gonorrhoeae generates new coding sequences and increases structural variability in the protein II family. Mol. Microbiol. 2:227236.
25. Corbeil, L. B. 1999. Immunization and diagnosis in bovine reproductive tract infections. Adv. Vet. Med. 41:217239.
26. Corbeil, L. B.,, R. R. Corbeil, and, A. J. Winter. 1975a. Bovine venereal vibriosis: activity of inflammatory cells in protective immunity. Am. J. Vet. Res. 36(4 Pt. 1):403406.
27. Corbeil, L. B.,, G. G. D. Schurig,, P. J. Bier, and, A. J. Winter. 1975b. Bovine venereal vibriosis: antigenic variation of the bacterium during infection. Infect. Immun. 11:240244.
28. Dubreuil, J. D.,, M. Kostrzynska,, J. W. Austin, and, T. J. Trust. 1990. Antigenic differences among Campylobacter fetus S-layer proteins. J. Bacteriol. 172:50355043.
29. Dubreuil, J. D.,, S. M. Logan,, S. Cubbage,, D. N. Eidhin,, W. D. McCubbin,, C. M. Kay,, T. J. Beveridge,, F. G. Ferris, and, T. J. Trust. 1988. Structural and biochemical analyses of a surface array protein of Campylobacter fetus. J. Bacteriol. 170:41654173.
30. Duim, B.,, P. A. R. Vandamme,, A. Rigter,, S. Laevens,, J. R. Dijkstra, and, J. A. Wagenaar. 2001. Differentiation of Campylobacter species by AFLP fingerprinting. Microbiology 147:27292737.
31. Dunn, B. E.,, M. J. Blaser, and, E. L. Snyder. 1987. Two-dimensional gel electrophoresis and immunoblotting of Campylobacter outer membrane proteins. Infect. Immun. 55:15641572.
32. Dworkin, J., and, M. J. Blaser. 1996. Generation of Campylobacter fetus S-layer protein diversity utilizes a single promoter on an invertible DNA segment. Mol. Microbiol. 19:12411253.
33. Dworkin, J., and, M. J. Blaser. 1997a. Molecular mechanisms of Campylobacter fetus surface layer protein expression. Mol. Microbiol. 26:433440.
34. Dworkin, J., and, M. J. Blaser. 1997b. Nested DNA inversion as a paradigm of programmed gene rearrangement. Proc. Natl. Acad. Sci. USA 94:985990.
35. Dworkin, J.,, O. L. Shedd, and, M. J. Blaser. 1997. Nested DNA inversion of Campylobacter fetus S-layer genes is recA dependent. J. Bacteriol. 179:75237529.
36. Dworkin, J.,, M. K. Tummuru, and, M. J. Blaser. 1995a. A lipopolysaccharide-binding domain of the Campylobacter fetus S-layer protein resides within the conserved N terminus of a family of silent and divergent homologs. J. Bacteriol. 177:17341741.
37. Dworkin, J.,, M. K. Tummuru, and, M. J. Blaser. 1995b. Segmental conservation of sapA sequences in type B Campylobacter fetus cells. J. Biol. Chem. 270:1509315101.
38. Eaglesome, M. D., and, M. M. Garcia. 1992. Microbial agents associated with bovine genital tract infections and semen. Part I. Brucella abortus, Leptospira, Campylobacter fetus and Tritrichomonas foetus. Vet. Bull. 62:743775.
39. Eppinger, M.,, C. Baar,, G. Raddatz,, D. H. Huson, and, S. C. Schuster. 2004. Comparative analysis of four campylobacterales. Nat. Rev. Microbiol. 2:872885.
40. Fernandez-Herrero, L. A.,, G. Olabarria, and, J. Berenguer. 1997. Surface proteins and a novel transcription factor regulate the expression of the S-layer gene in Thermus thermophilus HB8. Mol. Microbiol. 24:6172.
41. Fisher, J. A.,, J. Smit, and, N. Agabian. 1988. Transcriptional analysis of the major surface array gene of Caulobacter crescentus. J. Bacteriol. 170:47064713.
42. Fogg, G. C.,, L. Y. Yang,, E. Wang, and, M. J. Blaser. 1990. Surface array proteins of Campylobacter fetus block lectin-mediated binding to type A lipopolysaccharide. Infect. Immun. 58:27382744.
43. Fouts, D. E.,, E. F. Mongodin,, R. E. Mandrell,, W. G. Miller,, D. A. Rasko,, J. Ravel,, L. M. Brinkac,, R. T. DeBoy,, C. T. Parker,, S. C. Daugherty,, R. J. Dodson,, A. S. Durkin,, R. Madupu,, S. A. Sullivan,, J. U. Shetty,, M. A. Ayodeji,, A. Shvartsbeyn,, M. C. Schatz,, J. H. Badger,, C. M. Fraser, and, K. E. Nelson. 2005. Major structural differences and novel potential virulence mechanisms from the genomes of multiple Campylobacter species. PLoS Biol. 3:e15.
44. Fujimoto, S.,, A. Takade,, K. Amako, and, M. J. Blaser. 1991. Correlation between molecular size of the surface array protein and morphology and antigenicity of the Campylobacter fetus S layer. Infect. Immun. 59:20172022.
45. Fujimoto, S.,, A. Umeda,, A. Takade,, K. Murata, and, K. Amako. 1989. Hexagonal surface layer of Campylobacter fetus isolated from humans. Infect. Immun. 57:25632565.
46. Fujita, M., and, K. Amako. 1994. Localization of the sapA gene on a physical map of Campylobacter fetus chromosomal DNA. Arch. Microbiol. 162:375380.
47. Fujita, M.,, T. Moriya,, S. Fujimoto,, N. Hara, and, K. Amako. 1997. A deletion in the sapA homologue cluster is responsible for the loss of the S-layer in Campylobacter fetus strain TK. Arch. Microbiol. 167:196201.
48. Fujita, M.,, T. Morooka,, S. Fujimoto,, T. Moriya, and, K. Amako. 1995. Southern blotting analyses of strains of Campylobacter fetus using the conserved region of sapA. Arch. Microbiol. 164:444447.
49. Garcia, M. M.,, M. D. Eaglesome,, C. F. Hawkins, and, F. C. Alexander. 1980. campylobacteriosis in Jamaican cattle. Vet. Rec. 106:287288.
50. Garcia, M. M.,, C. L. Lutze-Wallace,, A. S. Denes,, M. D. Eagle-some,, E. Holst, and, M. J. Blaser. 1995. Protein shift and antigenic variation in the S-layer of Campylobacter fetus subsp. venerealis during bovine infection accompanied by genomic rearrangement of sapA homologs. J. Bacteriol. 177:19761980.
51. Ginsberg, M. M.,, M. A. Thompson,, C. R. Peter,, D. G. Ramras, and, J. Chin. 1981. Campylobacter sepsis associated with “nutritional therapy”—California. Morb. Mortal. Wkly. Rep. 30:294295.
52. Goossens, H.,, R. van den Abbeele,, J. P. Butzler, and, P. Williams. 1989. Study of iron uptake in Campylobacter fetus and C. jejuni, p. 414415. In G. M. Ruiz-Palacios,, E. Calva, and, B. R. Ruiz-Palacios (ed.), Campylobacter V. Instituto Nacional de la Nutricion, Mexico City.
53. Grogono-Thomas, R.,, M. J. Blaser,, M. Ahmadi, and, D. G. Newell. 2003. The role of S-layer protein antigenic diversity in the immune responses of sheep experimentally challenged with Campylobacter fetus subsp. fetus. Infect. Immun. 71:147154.
54. Grogono-Thomas, R.,, J. Dworkin,, M. J. Blaser, and, D. G. Newell. 2000. The role of the Campylobacter fetus surface-layer protein in ovine abortion. Infect. Immun. 68:16871691.
55. Guerrant, R. L.,, R. G. Lahita,, W. C. Winn, and, R. B. Roberts. 1978. Campylobacteriosis in man: pathogenic mechanisms and review of 91 bloodstream infections. Am. J. Med. 65:584592.
56. Guerry, P. 2007. Campylobacter flagella: not just for motility. Trends Microbiol. 15:456461.
57. Hacker, J.,, U. Hentschel, and, U. Dolbrindt. 2003. Prokaryotic chromosomes and disease. Science 301:790793.
58. Hébert, G. A.,, D. G. Hollis,, R. E. Weaver,, M. A. Lambert,, M. J. Blaser, and, C. W. Moss. 1982. 30 years of campylobacters: biochemical characteristics and a biotyping proposal for Campylobacter jejuni. J. Clin. Microbiol. 15:10651073.
59. Hum, S. 1996. Bovine venereal campylobacteriosis, p. 355358. In D. G. Newell,, J. M. Ketley, and, R. A. Feldman (ed.), Campylobacters, Helicobacters, and Related Organisms. Plenum Press, New York.
60. Ichiyama, S.,, S. Hirai,, T. Minami,, Y. Nishiyama,, S. Shimizu,, K. Shimokata, and, M. Ohta. 1998. Campylobacter fetus subspecies fetus cellulitis associated with bacteremia in debilitated hosts. Clin. Infect. Dis. 27:252255.
61. Jagannathan, A., and, C. W. Penn. 2005. Motility, p. 331347. In J. M. Ketley and, M. E. Konkel (ed.), Campylobacter: Cellular and Molecular Biology. Horizon Bioscience, Norfolk, United Kingdom.
62. Jeon, B., and, Q. Zhang. 2007. Cj0011c, a periplasmic single- and double-stranded DNA binding protein, contributes to natural transformation in Campylobacter jejuni. J. Bacteriol. 189:73997407.
63. Jin, S.,, A. Joe,, J. Lynett,, E. K. Hani,, P. Sherman, and, V. L. Chan. 2001. JlpA, a novel surface-exposed lipoprotein specific to Campylobacter jejuni, mediates adherence to host epithelial cells. Mol. Microbiol. 39:12251236.
64. Karlyshev, A. V.,, J. M. Ketley, and, B. W. Wren. 2005. The Campylobacter jejuni glycome. FEMS Microbiol. Rev. 29:377390.
65. Kawai, E.,, H. Akatsuka,, A. Idei,, T. Shibatani, and, K. Omori. 1998. Serratia marcescens S-layer protein is secreted extracellularly via an ATP-binding cassette exporter, the Lip system. Mol. Microbiol. 27:941952.
66. Kelly, D. J. 2005. Metabolism, electron transport and bioenergetics of Campylobacter jejuni: implications for understanding life in the gut and survival in the environment, p. 275292. In J. M. Ketley and, M. E. Konkel (ed.), Campylobacter: Cellular and Molecular Biology. Horizon Bioscience, Norfolk, United Kingdom.
67. Kelly, D. J., and, N. J. Hughes. 2001. The citric acid cycle and fatty acid biosynthesis, p. 135146. In H. L. T. Mobley,, G. L. Mendz, and, S. L. Hazell (ed.), Helicobacter pylori: Physiology and Genetics. ASM Press, Washington, DC.
68. Kienesberger, S.,, G. Gorkiewicz,, M. M. Joainig,, S. R. Scheicher,, E. Leitner, and, E. L. Zechner. 2007. Development of experimental genetic tools for Campylobacter fetus. Appl. Environ. Microbiol. 73:46194630.
69. Klein, B. S.,, J. M. Vergeront,, M. J. Blaser,, P. Edmonds,, D. J. Brenner,, D. Janssen, and, J. P. Davis. 1986. Campylobacter infection associated with raw milk. An outbreak of gastroenteritis due to Campylobacter jejuni and thermotolerant Campylobacter fetus subsp. fetus. JAMA 255:361364.
70. Konkel, M. E.,, S. G. Garvis,, S. L. Tipton,, D. E. Anderson, Jr., and, W. Cieplak, Jr. 1997. Identification and molecular cloning of a gene encoding a fibronectin-binding protein (CadF) from Campylobacter jejuni. Mol. Microbiol. 24:953963.
71. Konkel, M. E.,, B. J. Kim,, V. Rivera-Amill, and, S. G. Garvis. 1999. Identification of proteins required for the internalization of Campylobacter jejuni into cultured mammalian cells. Adv. Exp. Med. Biol. 473:215224.
72. Kowalczykowski, S. C.,, D. A. Dixon,, A. K. Eggleston,, S. D. Lauder, and, W. M. Rehrauer. 1994. Biochemistry of homologous recombination in Escherichia coli. Microbiol. Rev. 58:401465.
73. Létoffé, S.,, P. Delepelaire, and, C. Wandersman. 1996. Protein secretion in gram-negative bacteria: assembly of the three components of ABC protein-mediated exporters is ordered and promoted by substrate binding. EMBO J. 15:58045811.
74. Marty, A. T.,, T. A. Webb,, K. G. Stubbs, and, R. R. Penkava. 1983. Inflammatory abdominal aortic aneurysm infected by Campylobacter fetus. JAMA 249:11901192.
75. Maurelli, A. T. 2007. Black holes, antivirulence genes, and gene inactivation in the evolution of bacterial pathogens. FEMS Microbiol. Lett. 267:18.
76. McCoy, E. C.,, D. Doyle,, K. Burda,, L. B. Corbeil, and, A. J. Winter. 1975. Superficial antigens of Campylobacter (Vibrio) fetus: characterization of an antiphagocytic component. Infect. Immun. 11:517525.
77. McFaydean, J., and, S. Stockman. 1909. Report of the Department Committee Appointed by the Board of Agriculture and Fisheries to Inquire into Epizootic Abortion. Vol. 3. His Majesty’s Stationery Office, London.
78. Meier, P. A.,, D. P. Dooley,, J. H. Jorgensen,, C. C. Sanders,, W. M. Huang, and, J. E. Patterson. 1998. Development of quinolone-resistant Campylobacter fetus bacteremia in human immunodeficiency virus–infected patients. J. Infect. Dis. 177:951954.
79. Mohanty, S. B.,, G. J. Plumer, and, J. E. Faber. 1962. Biochemical and colonial characteristics of some bovine vibrios. Am J. Vet. Res. 23:554557.
80. Moran, A. P. 1995. Structure-bioreactivity relationships of bacterial endotoxins. J. Toxicol. Toxin Rev. 14:4783.
81. Moran, A. P.,, D. T. O’Malley,, T. U. Kosunen, and, I. M. Helander. 1994. Biochemical characterization of Campylobacter fetus lipopolysaccharides. Infect. Immun. 62:39223929.
82. Moran, A. P.,, D. T. O’Malley,, J. Vuopio-Varkila,, K. Varkila,, L. Pyhala,, H. Saxen, and, I. M. Helander. 1996. Biological characterization of Campylobacter fetus lipopolysaccharides. FEMS Immunol. Med. Microbiol. 15:4350.
83. Morrison, V. A.,, B. K. Lloyd,, J. K. Chia, and, C. U. Tuazon. 1990. Cardiovascular and bacteremic manifestations of Campylobacter fetus infection: case report and review. Rev. Infect. Dis. 12:387392.
84. Myers, J. D., and, D. J. Kelly. 2005. A sulphite respiration system in the chemoheterotrophic human pathogen Campylobacter jejuni. Microbiology 151:233242.
85. Myers, L. L. 1971. Purification and partial characterization of a Vibrio fetus immunogen. Infect. Immun. 3:562566.
86. Naikare, H.,, K. Palyada,, R. Panciera,, D. Marlow, and, A. Stintzi. 2006. Major role for FeoB in Campylobacter jejuni ferrous iron acquisition, gut colonization, and intracellular survival. Infect. Immun. 74:54335444.
87. Neuzil, K. M.,, E. Wang,, D. W. Haas, and, M. J. Blaser. 1994. Persistence of Campylobacter fetus bacteremia associated with absence of opsonizing antibodies. J. Clin. Microbiol. 32:17181720.
88. Ochman, H., and, N. A. Moran. 2001. Genes lost and genes found: evolution of bacterial pathogenesis and symbiosis. Science 292:10961099.
89. Pajaniappan, M.,, J. E. Hall,, S. A. Cawthraw,, D. G. Newell,, E. C. Gaynor,, J. A. Fields,, K. M. Rathbun,, W. A. Agee,, C. M. Burns,, S. J. Hall,, D. J. Kelly, and, S. A. Thompson. A temperature-regulated Campylobacter jejuni gluconate dehydrogenase is involved in respiration-dependent energy conservation and chicken colonization. Mol. Microbiol., in press.
90. Parkhill, J.,, B. W. Wren,, K. Mungall,, J. M. Ketley,, C. Churcher,, D. Basham,, T. Chillingworth,, R. M. Davies,, T. Feltwell,, S. Holroyd,, K. Jagels,, A. V. Karlyshev,, S. Moule,, M. J. Pallen,, C. W. Penn,, M. A. Quail,, M. A. Rajandream,, K. M. Rutherford,, A. H. van Vliet,, S. Whitehead, and, B. G. Barrell. 2000. The genome sequence of the food-borne pathogen Campylobacter jejuni reveals hypervariable sequences. Nature 403:665668.
91. Pefanis, S. M.,, S. Herr,, C. G. Venter,, L. P. Kruger,, C. C. Queiroga, and, L. Amaral. 1988. Trichomoniasis and campylobacteriosis in bulls in the Republic of Transkei. J. S. Afr. Vet. Assoc. 59:139140.
92. Pei, Z., and, M. J. Blaser. 1990. Pathogenesis of Campylobacter fetus infections. Role of surface array proteins in virulence in a mouse model. J. Clin. Invest. 85:10361043.
93. Pei, Z.,, C. Burucoa,, B. Grignon,, S. Baqar,, X. Z. Huang,, D. J. Kopecko,, A. L. Bourgeois,, J. L. Fauchère, and, M. J. Blaser. 1998. Mutation in the peb1A locus of Campylobacter jejuni reduces interactions with epithelial cells and intestinal colonization of mice. Infect. Immun. 66:938943.
94. Pei, Z.,, R. T. D. Ellison,, R. V. Lewis, and, M. J. Blaser. 1988. Purification and characterization of a family of high molecular weight surface-array proteins from Campylobacter fetus. J. Biol. Chem. 263:64166420.
95. Penner, J. L. 1988. The genus Campylobacter: a decade of progress. Clin. Microbiol. Rev. 1:157172.
96. Pérez-Pérez, G. I., and, M. J. Blaser. 1985. Lipopolysaccharide characteristics of pathogenic campylobacters. Infect. Immun. 47:353359.
97. Pérez-Pérez, G. I.,, M. J. Blaser, and, J. H. Bryner. 1986. Lipopolysaccharide structures of Campylobacter fetus are related to heat-stable serogroups. Infect. Immun. 51:209212.
98. Pérez-Pérez, G. I.,, J. A. Hopkins, and, M. J. Blaser. 1985. Antigenic heterogeneity of lipopolysaccharides from Campylobacter jejuni and Campylobacter fetus. Infect. Immun. 48:528533.
99. Pönkä, A.,, R. Tilvis,, J. Helle, and, T. U. Kosunen. 1984. Infection with Campylobacter fetus. Scand. J. Infect. Dis. 16:127128.
100. Pugsley, A. P. 1993. The complete general secretory pathway in gram-negative bacteria. Microbiol. Rev. 57:50108.
101. Raskin, D. M.,, R. Seshadri,, S. U. Pukatzki, and, J. J. Mekalanos. 2006. Bacterial genomics and pathogen evolution. Cell 124:703714.
102. Ray, K. C.,, Z.-C. Tu,, R. Grogono-Thomas,, D. G. Newell,, S. A. Thompson, and, M. J. Blaser. 2000. Campylobacter fetus sap inversion occurs in the absence of RecA function. Infect. Immun. 68:56635667.
103. Rettig, P. J. 1979. Campylobacter infections in human beings. J. Pediatr. 94:855864.
104. Riley, L. W., and, M. J. Finch. 1985. Results of the first year of national surveillance of Campylobacter infections in the United States. J. Infect. Dis. 151:956959.
105. Salama, S. M.,, M. M. Garcia, and, D. E. Taylor. 1992. Differentiation of the subspecies of Campylobacter fetus by genomic sizing. Int. J. Syst. Bacteriol. 42:446450.
106. Salama, S. M.,, E. Newnham,, N. Chang, and, D. E. Taylor. 1995. Genome map of Campylobacter fetus subsp. fetus ATCC 27374. FEMS Microbiol. Lett. 132:239245.
107. Schurig, G. D.,, C. E. Hall,, K. Burda,, L. B. Corbeil,, J. R. Duncan, and, A. J. Winter. 1973. Persistent genital tract infection with Vibrio fetus intestinalis associated with serotypic alteration of the infecting strain. Am. J. Vet. Res. 34:13991403.
108. Sebald, M., and, M. Véron. 1963. Teneur en bases de l’ADN et classification des vibrions. Ann. Inst. Pasteur 105:897910.
109. Senchenkova, S. N.,, A. S. Shashkov,, Y. A. Knirel,, J. J. McGovern, and, A. P. Moran. 1997. The O-specific polysaccharide chain of Campylobacter fetus serotype A lipopolysaccharide is a partially O-acetylated 1,3-linked alpha-d-mannan. Eur. J. Biochem. 245:637641.
110. Senchenkova, S. N.,, A. S. Shashkov,, Y. A. Knirel,, J. J. McGovern, and, A. P. Moran. 1996. The O-specific polysaccharide chain of Campylobacter fetus serotype B lipopolysaccharide is a d-rhamnan terminated with 3-O-methyl-d-rhamnose (d-acofriose). Eur. J. Biochem. 239:434438.
111. Skirrow, M. B. 1994. Diseases due to Campylobacter, Helicobacter and related bacteria. J. Comp. Pathol. 111:113149.
112. Smibert, R. M. 1978. The genus Campylobacter. Annu. Rev. Microbiol. 32:673709.
113. Smith, T., and, M. Taylor. 1919. Some morphological and biological characters of the spirilla (Vibrio fetus, n. sp.) associated with disease of the fetal membranes in cattle. J. Exp. Med. 30:299311.
114. Taylor, D. E., and, A. S. Chau. 1997. Cloning and nucleotide sequence of the gyrA gene from Campylobacter fetus subsp. fetus ATCC 27374 and characterization of ciprofloxacin-resistant laboratory and clinical isolates. Antimicrob. Agents Chemother. 41:665671.
115. Taylor, D. E.,, R. S. Garner, and, B. J. Allan. 1983. Characterization of tetracycline resistance plasmids from Campylobacter jejuni and Campylobacter coli. Antimicrob. Agents Chemother. 24:930935.
116. Taylor, P. R.,, W. M. Weinstein, and, J. H. Bryner. 1979. Campylobacter fetus infection in human subjects: association with raw milk. Am. J. Med. 66:779783.
117. Tettelin, H.,, V. Masignani,, M. J. Cieslewicz,, C. Donati,, D. Medini,, N. L. Ward,, S. V. Angiuoli,, J. Crabtree,, A. L. Jones,, A. S. Durkin,, R. T. Deboy,, T. M. Davidsen,, M. Mora,, M. Scarselli,, I. Margarit y Ros,, J. D. Peterson,, C. R. Hauser,, J. P. Sundaram,, W. C. Nelson,, R. Madupu,, L. M. Brinkac,, R. J. Dodson,, M. J. Rosovitz,, S. A. Sullivan,, S. C. Daugherty,, D. H. Haft,, J. Selengut,, M. L. Gwinn,, L. Zhou,, N. Zafar,, H. Khouri,, D. Radune,, G. Dimitrov,, K. Watkins,, K. J. O’Connor,, S. Smith,, T. R. Utterback,, O. White,, C. E. Rubens,, G. Grandi,, L. C. Madoff,, D. L. Kasper,, J. L. Telford,, M. R. Wessels,, R. Rappuoli, and, C. M. Fraser. 2005. Genome analysis of multiple pathogenic isolates of Streptococcus agalactiae: implications for the microbial “pan-genome.” Proc. Natl. Acad. Sci. USA 102:1395013955.
118. Thanabalu, T.,, E. Koronakis,, C. Hughes, and, V. Koronakis. 1998. Substrate-induced asembly of a contiguous channel for protein export from E. coli: reversible bridging of an inner-membrane translocase to an outer membrane exit pore. EMBO J. 17:64876496.
119. Thompson, S. A.,, O. L. Shedd,, K. C. Ray,, M. H. Beins,, J. P. Jorgensen, and, M. J. Blaser. 1998. Campylobacter fetus surface layer proteins are transported by a type I secretion system. J. Bacteriol. 180:64506458.
120. Tremblay, C., and, C. Gaudreau. 1998. Antimicrobial susceptibility testing of 59 strains of Campylobacter fetus subsp. fetus. Anti-microb. Agents Chemother. 42:18471849.
121. Tu, Z.,, J. Hui, and, M. J. Blaser. 2004a. Conservation and diversity of sap homologues and their organization amongst Campylobacter fetus isolates. Infect. Immun. 72:17151724.
122. Tu, Z.,, D. W. Ussery,, D. T. Pride, and, M. J. Blaser. 2003a. Genomic characteristics of the Campylobacter fetus sap island. Genome Lett. 2:3440.
123. Tu, Z.,, G. Zeitlin,, J.-P. Gagner,, T. Keo,, B. Hanna, and, M. J. Blaser. 2004b. Campylobacter fetus of reptile origin as a human pathogen. J. Clin. Microbiol. 42:44054407.
124. Tu, Z.-C.,, F. E. Dewhirst, and, M. J. Blaser. 2001a. Evidence that the Campylobacter fetus sap island is an ancient genomic constituent with origins before mammals and reptiles diverged. Infect. Immun. 69:22372244.
125. Tu, Z. C.,, W. Eisner,, B. N. Kreiswirth, and, M. J. Blaser. 2005a. Genetic divergence of Campylobacter fetus strains of mammal and reptile origins. J. Clin. Microbiol. 43:33343340.
126. Tu, Z. C.,, C. Gaudreau, and, M. J. Blaser. 2005b. Mechanisms underlying Campylobacter fetus pathogenesis in humans: surface layer protein variation in relapsing infections. J. Infect. Dis. 191:20822089.
127. Tu, Z.-C.,, K. C. Ray,, S. A. Thompson, and, M. J. Blaser. 2001b. Campylobacter fetus uses multiple loci for DNA inversion within the 5′ conserved region of sap homologs. J. Bacteriol. 183:66546661.
128. Tu, Z.-C.,, T. M. Wassenaar,, S. A. Thompson, and, M. J. Blaser. 2003b. Structure and genotypic plasticity of the Campylobacter fetus sap locus. Mol. Microbiol. 48:685698.
129. Tummuru, M. K., and, M. J. Blaser. 1992. Characterization of the Campylobacter fetus sapA promoter: evidence that the sapA promoter is deleted in spontaneous mutant strains. J. Bacteriol. 174:59165922.
130. Tummuru, M. K., and, M. J. Blaser. 1993. Rearrangement of sapA homologs with conserved and variable regions in Campylobacter fetus. Proc. Natl. Acad. Sci. USA 90:72657269.
131. Ullmann, U.,, H. Langmaack, and, C. Blasius. 1982. Campylobacteriosis in humans caused by subspecies intestinalis and fetus. Six new diseases. Infection 10(Suppl. 2):S64S66.
132. van Vliet, A. H.,, M. L. Baillon,, C. W. Penn, and, J. M. Ketley. 1999. Campylobacter jejuni contains two fur homologs: characterization of iron-responsive regulation of peroxide stress defense genes by the PerR repressor. J. Bacteriol. 181:63716376.
133. Velayudhan, J.,, M. A. Jones,, P. A. Barrow, and, D. J. Kelly. 2004. l-Serine catabolism via an oxygen-labile l-serine dehydratase is essential for colonization of the avian gut by Campylobacter jejuni. Infect. Immun. 72:260268.
134. Véron, M., and, R. Chatelain. 1973. Taxonomic study of the genus Campylobacter Sebald and Véron and designation of the neotype strain for the type species Campylobacter fetus (Smith and Taylor) Sebald and Véron. Int. J. Syst. Bacteriol. 23:122134.
135. Verresen, L.,, M. Vrolix,, J. Verhaegen, and, R. Lins. 1985. Campylobacter bacteraemia. Report of 2 cases and review of the literature. Acta Clin. Belg. 40:99104.
136. Vinzent, R.,, J. Dumas, and, N. Picard. 1947. Septicemie grave au cours de la grossesse due a un vibrion: avortment consecutif. Bull. Acad. Natl. Med. 131:9093.
137. Wang, B.,, E. Kraig, and, D. Kolodrubetz. 1998. A new member of the S-layer protein family: characterization of the crs gene from Campylobacter rectus. Infect. Immun. 66:15211526.
138. Wang, B.,, E. Kraig, and, D. Kolodrubetz. 2000. Use of defined mutants to assess the role of the Campylobacter rectus S-layer in bacterium-epithelial cell interactions. Infect. Immun. 68:14651473.
139. Wang, E.,, M. M. Garcia,, M. S. Blake,, Z. Pei, and, M. J. Blaser. 1993. Shift in S-layer protein expression responsible for antigenic variation in Campylobacter fetus. J. Bacteriol. 175:49794984.
140. Wang, W. L., and, M. J. Blaser. 1986. Detection of pathogenic Campylobacter species in blood culture systems. J. Clin. Microbiol. 23:709714.
141. Washburn, R. G.,, N. C. Julian,, E. Wang, and, M. J. Blaser. 1991. Inhibition of complement by surface array proteins from Campylobacter fetus, abstr. 1328. 31st Intersci. Conf. Antimicrob. Agents Chemother., Chicago, IL.
142. Washio, T.,, J. Sasayama, and, M. Tomita. 1998. Analysis of complete genomes suggests that many prokaryotes do not rely on hairpin formation in transcription termination. Nucleic Acids Res. 26:54565463.
143. Winter, A. J.,, E. C. McCoy,, C. S. Fullmer,, K. Burda, and, P. J. Bier. 1978. Microcapsule of Campylobacter fetus: chemical and physical characterization. Infect. Immun. 22:963971.
144. Yang, L. Y.,, Z. H. Pei,, S. Fujimoto, and, M. J. Blaser. 1992. Reattachment of surface array proteins to Campylobacter fetus cells. J. Bacteriol. 174:12581267.
145. Zechner, E. L., and, M. J. Bailey. 2004. The horizontal gene pool. Plasmid 51:6774.

Tables

Generic image for table
Table 1.

Outcome of experimental ovine challenge with wild-type and mutant strains

Citation: Blaser M, Newell D, Thompson S, Zechner E. 2008. Pathogenesis of , p 401-428. In Nachamkin I, Szymanski C, Blaser M (ed), , Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555815554.ch23
Generic image for table
Table 2.

Biochemical properties of S-layer proteins

Citation: Blaser M, Newell D, Thompson S, Zechner E. 2008. Pathogenesis of , p 401-428. In Nachamkin I, Szymanski C, Blaser M (ed), , Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555815554.ch23

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error