Chapter 26 : -Linked Flagellar Glycosylation in

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in

-Linked Flagellar Glycosylation in , Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555815554/9781555814373_Chap26-1.gif /docserver/preview/fulltext/10.1128/9781555815554/9781555814373_Chap26-2.gif


Protein glycosylation has long been recognized as an important posttranslational modification in eukaryotic systems and one that imparts unique and diverse biological functions to the respective proteins. Although there is a considerable gap in our knowledge on the process of -linked glycosylation in prokaryotes as a result of the significant glycan diversity among prokaryotes, the -linked flagellar glycosylation system of has received considerable attention and is one of the more detailed prokaryotic systems studied to date. The first evidence for posttranslational modification of flagellin came from VC167 flagellin by direct chemical analysis of purified flagellar peptides. Mapping of glycosylation sites of VC167 flagellin also confirmed a conservation in localization to the central region of the monomer. Comparative genomic analyses of isolates has revealed that the flagellar locus displays considerable genetic variability. The glycans on flagellin appear to play complex roles in the biology of . The role of glycan composition on flagellar filaments was examined in vivo. Flagellins from the Epsilonproteobacteria, including both and spp., are not recognized by TLR5 receptors. Significant progress has been made in defining at the molecular level the structural nature of the novel sialic acid-like nonulosonate sugars found to be decorating the flagellar filaments of , and it is clear that these types of studies will be integral to future work exploring the role of novel glycan moieties in biological interactions.

Citation: Logan S, Schoenhofen I, Guerry P. 2008. -Linked Flagellar Glycosylation in , p 471-481. In Nachamkin I, Szymanski C, Blaser M (ed), , Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555815554.ch26

Key Concept Ranking

Proteolytic Cleavage
Protein Folding
Carbohydrate Biosynthesis
Highlighted Text: Show | Hide
Loading full text...

Full text loading...


Image of Figure 1.
Figure 1.

Localization of flagellar glycosylation sites to surface-exposed regions of each monomer within the assembled filament. (A) Structure of FliC from serovar Typhimurium with major domains labeled as previously described ( ). The Protein Data Bank accession code is 1UCU and is displayed in Protein Explorer. (B) Assignment map of flagellin 81-176. The primary amino acid sequence of FlaA is shown, and modified residues are highlighted. The sequences corresponding to ND0, ND1, D2, D3, CD1, and CD0 domains from the FliC structure are indicated for FlaA on the left side.

Citation: Logan S, Schoenhofen I, Guerry P. 2008. -Linked Flagellar Glycosylation in , p 471-481. In Nachamkin I, Szymanski C, Blaser M (ed), , Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555815554.ch26
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2.
Figure 2.

Structures of glycans found on flagellins compared with that of sialic acid. (A) Sialic acid or 5-acetamido-3,5-dideoxy--β--nonulosonic acid (Neu5Ac). (B) Pseudaminic acid or 5,7-diacetamido-3,5,7,9-tetradeoxy--α--nonulosonic acid and derivatives. (C) Legionaminic acid or 5,7-diacetamido-3,5,7,9-tetradeoxy--β--nonulosonic acid and derivatives. Known R groups are shown for both (B) and (C), illustrating the diversity of functional groups observed for each. Sialic acid and legionaminic acid exhibit the same absolute configuration. Confirmation of α or β linkage of B and C to flagellin has yet to be determined.

Citation: Logan S, Schoenhofen I, Guerry P. 2008. -Linked Flagellar Glycosylation in , p 471-481. In Nachamkin I, Szymanski C, Blaser M (ed), , Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555815554.ch26
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 3.
Figure 3.

CMP-Pse pathway of The enzymes and biosynthetic intermediates of the CMP–pseudaminic acid pathway, in order, are PseB, NAD(P)-dependent dehydratase/epimerase; PseC, PLP-dependent aminotransferase; PseH, -acetyltransferase; PseG, UDP-sugar hydrolase; PseI, pseudaminic acid synthase; PseF, CMP-pseudaminic acid synthetase; and (I) UDP-GlcNAc; (II) UDP-2-acetamido-2,6-dideoxy-β--hexos-4-ulose; (III) UDP-4-amino-4,6-dideoxy-β--AltNAc; (IV) UDP-2,4-diacetamido-2,4,6-trideoxy-β--altropyranose; (V) 2,4-diacetamido-2,4,6-trideoxy--altropyranose; (VI) pseudaminic acid; (VII) CMP–pseudaminic acid. Pyranose rings are shown as their predominant chair conformation in solution determined from nuclear Overhauser effects (NOEs) and coupling constants. Schematic representations of PseB and PseC structures from are shown ( ).

Citation: Logan S, Schoenhofen I, Guerry P. 2008. -Linked Flagellar Glycosylation in , p 471-481. In Nachamkin I, Szymanski C, Blaser M (ed), , Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555815554.ch26
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 4.
Figure 4.

Adherence pattern of green fluorescent protein (GPF)-tagged 81-176 cells to INT407 cells. A microcolony of 81-176 tagged with GFP on INT407 cells in culture after 18-h incubation ( ). The image shows complex interactions of bacteria on the intestinal epithelial cells, and some of the bacteria are visible as apparent chains. Phase microscopy of the same field confirmed that the monolayer remained intact.

Citation: Logan S, Schoenhofen I, Guerry P. 2008. -Linked Flagellar Glycosylation in , p 471-481. In Nachamkin I, Szymanski C, Blaser M (ed), , Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555815554.ch26
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 5.
Figure 5.

Molecular models of Pse5Ac7Ac, Leg5Am7Ac, and Leg5AmNMe7Ac. The exocyclic chain (C7 to C9) and pendant groups at C5 and C7 are displayed as reduced van der Waals spheres to show the extent of their structural diversities. Coordinates are available at http://ibs-isb.nrc-cnrc.gc.ca/facilities/NMR/molecularmodeling-e.html. From .

Citation: Logan S, Schoenhofen I, Guerry P. 2008. -Linked Flagellar Glycosylation in , p 471-481. In Nachamkin I, Szymanski C, Blaser M (ed), , Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555815554.ch26
Permissions and Reprints Request Permissions
Download as Powerpoint


1. Aas, F. E.,, A. Vik,, J. Vedde,, M. Koomey, and, W. Egge-Jacobsen. 2007. Neisseria gonorrhoeae O-linked pilin glycosylation: functional analyses define both the biosynthetic pathway and glycan structure. Mol. Microbiol. 65:607624.
2. Alm, R. A.,, P. Guerry,, M. E. Power, and, T. J. Trust. 1992. Variation in antigenicity and molecular weight of Campylobacter coli VC167 flagellin in different genetic backgrounds. J. Bacteriol. 174:42304238.
3. Andersen-Nissen, E.,, K. D. Smith,, K. L. Strobe,, S. L. Barrett,, B. T. Cookson,, S. M. Logan, and, A. Aderem. 2005. Evasion of Toll-like receptor 5 by flagellated bacteria. Proc. Natl. Acad. Sci. USA 102:92479252.
4. Black, R. E.,, M. M. Levine,, M. L. Clements,, T. P. Hughes, and, M. J. Blaser. 1988. Experimental Campylobacter jejuni infection in humans. J. Infect. Dis. 157:472479.
5. Caldwell, M. B.,, P. Guerry,, E. C. Lee,, J. P. Burans, and, R. I. Walker. 1985. Reversible expression of flagella in Campylobacter jejuni. Infect. Immun. 50:941943.
6. Castric, P.,, F. J. Cassels, and, R. W. Carlson. 2001. Structural characterization of the Pseudomonas aeruginosa 1244 pilin glycan. J. Biol. Chem. 276:2647926485.
7. Chaban, B.,, S. Voisin,, J. Kelly,, S. M. Logan, and, K. F. Jarrell. 2006. Identification of genes involved in the biosynthesis and attachment of Methanococcus voltae N-linked glycans: insight into N-linked glycosylation pathways in Archaea. Mol. Microbiol. 61:259268.
8. Champion, O. L.,, M. W. Gaunt,, O. Gundogdu,, A. Elmi,, A. A. Witney,, J. Hinds,, N. Dorrell, and, B. W. Wren. 2005. Comparative phylogenomics of the food-borne pathogen Campylobacter jejuni reveals genetic markers predictive of infection source. Proc. Natl. Acad. Sci. USA 102:1604316048.
9. Chou, W. K.,, S. Dick,, W. W. Wakarchuk, and, M. E. Tanner. 2005. Identification and characterization of NeuB3 from Campylobacter jejuni as a pseudaminic acid synthase. J. Biol. Chem. 43:3592235928.
10. Creuzenet, C. 2004. Characterization of CJ1293, a new UDP-GlcNAc C6 dehydratase from Campylobacter jejuni. FEBS Lett. 559:136140.
11. Doig, P.,, N. Kinsella,, P. Guerry, and, T. J. Trust. 1996. Characterization of a post-translational modification of Campylobacter flagellin: identification of a sero-specific glycosyl moiety. Mol. Microbiol. 19:379387.
12. Dorrell, N.,, J. A. Mangan,, K. G. Laing,, J. Hinds,, D. Linton,, H. Al Ghusein,, B. G. Barrell,, J. Parkhill,, N. G. Stoker,, A. V. Karlyshev,, P. D. Butcher, and, B. W. Wren. 2001. Whole genome comparison of Campylobacter jejuni human isolates using a low-cost microarray reveals extensive genetic diversity. Genome Res. 11:17061715.
13. Fox, J. G. 2002. The non-H. pylori helicobacters: their expanding role in gastrointestinal and systemic diseases. Gut 50:273283.
14. Golden, N. J., and, D. W. Acheson. 2002. Identification of motility and autoagglutination Campylobacter jejuni mutants by random transposon mutagenesis. Infect. Immun. 70:17611771.
15. Goon, S.,, J. F. Kelly,, S. M. Logan,, C. P. Ewing, and, P. Guerry. 2003. Pseudaminic acid, the major modification on Campylobacter flagellin, is synthesized via the Cj1293 gene. Mol. Microbiol. 50:659671.
16. Guerry, P.,, R. A. Alm,, M. E. Power,, S. M. Logan, and, T. J. Trust. 1991. Role of two flagellin genes in Campylobacter motility. J. Bacteriol. 173:47574764.
17. Guerry, P.,, P. Doig,, R. A. Alm,, D. H. Burr,, N. Kinsella, and, T. J. Trust. 1996. Identification and characterization of genes required for post-translational modification of Campylobacter coli VC167 flagellin. Mol. Microbiol. 19:369378.
18. Guerry, P.,, C. P. Ewing,, M. Schirm,, M. Lorenzo,, J. Kelly,, D. Pattarini,, G. Majam,, P. Thibault, and, S. M. Logan. 2006. Changes in flagellin glycosylation affect Campylobacter autoagglutination and virulence. Mol. Microbiol. 60:299311.
19. Guerry, P.,, C. P. Ewing,, I. C. Schoenhofen, and, S. M. Logan. 2007. Protein glycosylation in Campylobacter jejuni: partial suppression of pglF by mutation of pseC. J. Bacteriol. 189:67316733.
20. Guerry, P.,, S. M. Logan,, S. Thornton, and, T. J. Trust. 1990. Genomic organization and expression of Campylobacter flagellin genes. J. Bacteriol. 172:18531860.
21. Hayashi, F.,, K. D. Smith,, A. Ozinsky,, T. R. Hawn,, E. C. Yi,, D. R. Goodlett,, J. K. Eng,, S. Akira,, D. M. Underhill, and, A. Aderem. 2001. The innate immune response to bacterial flagellin is mediated by Toll-like receptor 5. Nature 410:10991103.
22. Hendrixson, D. R., and, V. J. DiRita. 2004. Identification of Campylobacter jejuni genes involved in commensal colonization of the chick gastrointestinal tract. Mol. Microbiol. 52:471484.
23. Hendrixson, D. R., and, V. J. DiRita. 2003. Transcription of sigma54-dependent but not sigma28-dependent flagellar genes in Campylobacter jejuni is associated with formation of the flagellar secretory apparatus. Mol. Microbiol. 50:687702.
24. Ishiyama, N.,, C. Creuzenet,, W. L. Miller,, M. Demendi,, E. M. Anderson,, G. Harauz,, J. S. Lam, and, A. M. Berghuis. 2006. Structural studies of FlaA1 from Helicobacter pylori reveal the mechanism for inverting 4,6-dehydratase activity. J. Biol. Chem. 281:2448924495.
25. Jagannathan, A.,, C. Constantinidou, and, C. W. Penn. 2001. Roles of rpoN, fliA, and flgR in expression of flagella in Campylobacter jejuni. J. Bacteriol. 183:29372942.
26. Josenhans, C.,, L. Vossebein,, S. Friedrich, and, S. Suerbaum. 2002. The neuA/flmD gene cluster of Helicobacter pylori is involved in flagellar biosynthesis and flagellin glycosylation. FEMS Microbiol. Lett. 210:165172.
27. Joshua, G. W.,, C. Guthrie-Irons,, A. Karlyshev, and, B. Wren. 2006. Biofilm formation in Campylobacter jejuni. Microbiology 152:387396.
28. Kalmokoff, M.,, P. Lanthier,, T. L. Tremblay,, M. Foss,, P. C. Lau,, G. Sanders,, J. Austin,, J. Kelly, and, C. M. Szymanski. 2006. Proteomic analysis of Campylobacter jejuni 11168 biofilms reveals a role for the motility complex in biofilm formation. J. Bacteriol. 188:43124320.
29. Karlyshev, A. V.,, D. Linton,, N. A. Gregson, and, B. W. Wren. 2002. A novel paralogous gene family involved in phase-variable flagella-mediated motility in Campylobacter jejuni. Microbiology 148:473480.
30. Kim, C. C.,, E. A. Joyce,, K. Chan, and, S. Falkow. 2002. Improved analytical methods for microarray-based genome-composition analysis. Genome Biol. 3:RESEARCH0065.
31. Kiss, E.,, A. Kereszt,, F. Barta,, S. Stephens,, B. L. Reuhs,, A. Kondorosi, and, P. Putnoky. 2001. The rkp-3 gene region of Sinorhizobium meliloti Rm41 contains strain-specific genes that determine K antigen structure. Mol. Plant Microbe Interact. 14:13951403.
32. Knirel, Y. A.,, A. S. Shashkov,, Y. E. Tsvetkov,, P. E. Jansson, and, U. Zahringer. 2003. 5,7-Diamino-3,5,7,9-tetradeoxynon-2-ulosonic acids in bacterial glycopolymers: chemistry and biochemistry. Adv. Carbohydr. Chem. Biochem. 58:371417.
33. Knirel, Y. A.,, E. V. Vinogradov,, V. L. L’vov,, N. A. Kocharova,, A. S. Shashkov,, B. A. Dmitriev, and, N. K. Kochetkov. 1984. Sialic acids of a new type from the lipopolysaccharides of Pseudomonas aeruginosa and Shigella boydii. Carbohydr. Res. 133:C5C8.
34. Lee, L. H.,, E. Burg, III,, S. Baqar,, A. L. Bourgeois,, D. H. Burr,, C. P. Ewing,, T. J. Trust, and, P. Guerry. 1999. Evaluation of a truncated recombinant flagellin subunit vaccine against Campylobacter jejuni. Infect. Immun. 67:57995805.
35. Lee, S. K.,, A. Stack,, E. Katzowitsch,, S. I. Aizawa,, S. Suerbaum, and, C. Josenhans. 2003. Helicobacter pylori flagellins have very low intrinsic activity to stimulate human gastric epithelial cells via TLR5. Microbes Infect. 5:13451356.
36. Leonard, E. E.,, T. Takata,, M. J. Blaser,, S. Falkow,, L. S. Tompkins, and, E. C. Gaynor. 2003. Use of an open-reading frame-specific Campylobacter jejuni DNA microarray as a new genotyping tool for studying epidemiologically related isolates. J. Infect. Dis. 187:691694.
37. Linton, D.,, A. V. Karlyshev,, P. G. Hitchen,, H. R. Morris,, A. Dell,, N. A. Gregson, and, B. W. Wren. 2000. Multiple N-acetyl neuraminic acid synthetase (neuB) genes in Campylobacter jejuni: identification and characterization of the gene involved in sialylation of lipo-oligosaccharide. Mol. Microbiol. 35:11201134.
38. Logan, S. M. 2006. Flagellar glycosylation—a new component of the motility repertoire? Microbiology 152:12491262.
39. Logan, S. M.,, J. F. Kelly,, P. Thibault,, C. P. Ewing, and, P. Guerry. 2002. Structural heterogeneity of carbohydrate modifications affects serospecificity of Campylobacter flagellins. Mol. Microbiol. 46:587597.
40. Logan, S. M.,, T. J. Trust, and, P. Guerry. 1989. Evidence for post-translational modification and gene duplication of Campylobacter flagellin. J. Bacteriol. 171:30313038.
41. Luneberg, E.,, N. Zetzmann,, D. Alber,, Y. A. Knirel,, O. Kooistra,, U. Zahringer, and, M. Frosch. 2000. Cloning and functional characterization of a 30 kb gene locus required for lipopolysaccharide biosynthesis in Legionella pneumophila. Int. J. Med. Microbiol. 290:3749.
42. McNally, D. J.,, A. J. Aubry,, J. P. Hui,, N. H. Khieu,, D. Whitfield,, C. P. Ewing,, P. Guerry,, J. R. Brisson,, S. M. Logan, and, E. C. Soo. 2007. Targeted metabolomics analysis of Campylobacter coli VC167 reveals legionaminic acid derivatives as novel flagellar glycans. J. Biol. Chem. 282:1446314475.
43. McNally, D. J.,, J. P. Hui,, A. J. Aubry,, K. K. Mui,, P. Guerry,, J. R. Brisson,, S. M. Logan, and, E. C. Soo. 2006a. Functional characterization of the flagellar glycosylation locus in Campylobacter jejuni 81-176 using a focused metabolomics approach. J. Biol. Chem. 281:1848918498.
44. McNally, D. J.,, I. C. Schoenhofen,, E. F. Mulrooney,, D. M. Whitfield,, E. Vinogradov,, J. S. Lam,, S. M. Logan, and, J. R. Brisson. 2006b. Identification of labile UDP-ketosugars in Helicobacter pylori, Campylobacter jejuni and Pseudomonas aeruginosa: key metabolites used to make glycan virulence factors. Chembiochemistry 7:18651868.
45. Misawa, N., and, M. J. Blaser. 2000. Detection and characterization of autoagglutination activity by Campylobacter jejuni. Infect. Immun. 68:61686175.
46. Obhi, R. K., and, C. Creuzenet. 2005. Biochemical characterization of the Campylobacter jejuni Cj1294, a novel UDP-4-keto-6-deoxy-GlcNAc aminotransferase that generates UDP-4-amino-4,6-dideoxy-GalNAc. J. Biol. Chem. 280:2090220908.
47. Olivier, N. B.,, M. M. Chen,, J. R. Behr, and, B. Imperiali. 2006. In vitro biosynthesis of UDP-N,N′-diacetylbacillosamine by enzymes of the Campylobacter jejuni general protein glycosylation system. Biochemistry 45:1365913669.
48. Parkhill, J.,, B. W. Wren,, K. Mungall,, J. M. Ketley,, C. Churcher,, D. Basham,, T. Chillingworth,, R. M. Davies,, T. Feltwell,, S. Holroyd,, K. Jagels,, A. V. Karlyshev,, S. Moule,, M. J. Pallen,, C. W. Penn,, M. A. Quail,, M. A. Rajandream,, K. M. Rutherford,, A. H. van Vliet,, S. Whitehead, and, B. G. Barrell. 2000. The genome sequence of the food-borne pathogen Campylobacter jejuni reveals hypervariable sequences. Nature 403:665668.
49. Parrish, J. R.,, J. Yu,, G. Liu,, J. A. Hines,, J. E. Chan,, B. A. Mangiola,, H. Zhang,, S. Pacifico,, F. Fotouhi,, V. J. DiRita,, T. Ideker,, P. Andrews, and, R. L. Finley, Jr. 2007. A proteome-wide protein interaction map for Campylobacter jejuni. Genome Biol. 8:R130.
50. Pearson, B. M.,, C. Pin,, J. Wright,, K. I’Anson,, T. Humphrey, and, J. M. Wells. 2003. Comparative genome analysis of Campylobacter jejuni using whole genome DNA microarrays. FEBS Lett. 554:224230.
51. Power, M. E.,, P. Guerry,, W. D. McCubbin,, C. M. Kay, and, T. J. Trust. 1994. Structural and antigenic characteristics of Campylobacter coli FlaA flagellin. J. Bacteriol. 176:33033313.
52. Samatey, F. A.,, K. Imada,, F. Vonderviszt,, Y. Shirakihara, and, K. Namba. 2000. Crystallization of the F41 fragment of flagellin and data collection from extremely thin crystals. J. Struct. Biol. 132:106111.
53. Schirm, M.,, I. C. Schoenhofen,, S. M. Logan,, K. C. Waldron, and, P. Thibault. 2005. Identification of unusual bacterial glycosylation by tandem mass spectrometry analyses of intact proteins. Anal. Chem. 77:77747782.
54. Schirm, M.,, E. C. Soo,, A. J. Aubry,, J. Austin,, P. Thibault, and, S. M. Logan. 2003. Structural, genetic and functional characterization of the flagellin glycosylation process in Helicobacter pylori. Mol. Microbiol. 48:15791592.
55. Schoenhofen, I. C.,, V. V. Lunin,, J. P. Julien,, Y. Li,, E. Ajamian,, A. Matte,, M. Cygler,, J. R. Brisson,, A. Aubry,, S. M. Logan,, S. Bhatia,, W. W. Wakarchuk, and, N. M. Young. 2006a. Structural and functional characterization of PseC, an aminotransferase involved in the biosynthesis of pseudaminic acid, an essential flagellar modification in Helicobacter pylori. J. Biol. Chem. 281:89078916.
56. Schoenhofen, I. C.,, D. J. McNally,, J. R. Brisson, and, S. M. Logan. 2006b. Elucidation of the CMP-pseudaminic acid pathway in Helicobacter pylori: synthesis from UDP-N-acetylglucosamine by a single enzymatic reaction. Glycobiology 16:8C14C.
57. Schoenhofen, I. C.,, D. J. McNally,, E. Vinogradov,, D. Whitfield,, M. Young,, S. Dick,, W. W. Wakarchuk,, J. R. Brisson, and, S. M. Logan. 2006c. Functional characterisation of dehydratase/aminotransferase pairs from Helicobacter and Campylobacter: enzymes distinguishing the pseudaminic acid and bacillosamine biosynthetic pathways. J. Biol. Chem. 281:723732.
58. Smedley, J. G., III,, E. Jewell,, J. Roguskie,, J. Horzempa,, A. Syboldt,, D. B. Stolz, and, P. Castric. 2005. Influence of pilin glycosylation on Pseudomonas aeruginosa 1244 pilus function. Infect. Immun. 73:79227931.
59. Soo, E. C.,, A. J. Aubry,, S. M. Logan,, P. Guerry,, J. F. Kelly,, N. M. Young, and, P. Thibault. 2004. Selective detection and identification of sugar nucleotides by CE-electrospray-MS and its application to bacterial metabolomics. Anal. Chem. 76:619626.
60. Szymanski, C. M., and, B. W. Wren. 2005. Protein glycosylation in bacterial mucosal pathogens. Nat. Rev. Microbiol. 3:225237.
61. Thibault, P.,, S. M. Logan,, J. F. Kelly,, J. R. Brisson,, C. P. Ewing,, T. J. Trust, and, P. Guerry. 2001. Identification of the carbohydrate moieties and glycosylation motifs in Campylobacter jejuni flagellin. J. Biol. Chem. 276:3486234870.
62. Yonekura, K.,, S. Maki-Yonekura, and, K. Namba. 2005. Building the atomic model for the bacterial flagellar filament by electron cryomicroscopy and image analysis. Structure 13:407412.
63. Yonekura, K.,, S. Maki-Yonekura, and, K. Namba. 2003. Complete atomic model of the bacterial flagellar filament by electron cryomicroscopy. Nature 424:643650.
64. Young, N. M.,, J. R. Brisson,, J. Kelly,, D. C. Watson,, L. Tessier,, P. H. Lanthier,, H. C. Jarrell,, N. Cadotte,, F. St Michael,, E. Aberg, and, C. M. Szymanski. 2002. Structure of the N-linked glycan present on multiple glycoproteins in the gram-negative bacterium, Campylobacter jejuni. J. Biol. Chem. 277:4253042539.


Generic image for table
Table 1.

O-linked flagellar glycans

Citation: Logan S, Schoenhofen I, Guerry P. 2008. -Linked Flagellar Glycosylation in , p 471-481. In Nachamkin I, Szymanski C, Blaser M (ed), , Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555815554.ch26

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error