1887

Chapter 27 : Lipooligosaccharides: Structures and Biosynthesis

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in
Zoomout

Lipooligosaccharides: Structures and Biosynthesis, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555815554/9781555814373_Chap27-1.gif /docserver/preview/fulltext/10.1128/9781555815554/9781555814373_Chap27-2.gif

Abstract:

This chapter reviews the structure, biosynthesis, and genetic determination of lipooligosaccharides (LOSs), with particular reference to the core oligosaccharide region. In particular, the genetic bases for variation of the outer core are discussed, including gene content variation between LOS loci and mechanisms generating LOS core region variation. Although the chapter predominantly addresses the biosynthesis of the variable LOS outer core of , the biosynthesis and genetic determination of the inner core lipid A region is also examined. Variation in LOS structures is due to diversity of the constituent sugars (number of carbon atoms, ring form, isomeric form, anomeric configuration, etc.), the derivatization of the sugars with noncarbohydrate moieties, and the linkages between the individual sugars (or monosaccharides). The formation of these linkages is determined by the glycosyltransferases and other transferases encoded in the LOS biosynthesis locus. Sugar availability for incorporation into LOS is often determined by enzymes from the LOS biosynthesis locus that are involved in synthesis of sugar intermediates such as cytidine monophosphate-5--acetylneuraminic acid (CMPNeu5Ac). There is evidence of recombination occurring within the LOS locus to create mosaics of different classes. Functions can be assigned to 12 of the 13 open reading frames (ORFs) present in the LOS biosynthesis locus of OH4384, the only exception being ORF 12a. The variety of capsular polysaccharide (CPS) structures and biosynthesis loci observed in suggests that it would contribute as much as the LOS repertoire to an open pan-glycome.

Citation: Gilbert M, Parker C, Moran A. 2008. Lipooligosaccharides: Structures and Biosynthesis, p 483-504. In Nachamkin I, Szymanski C, Blaser M (ed), , Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555815554.ch27
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of Figure 1.
Figure 1.

LOS outer core structures exhibiting molecular mimicry of gangliosides. Core structures of (A) serostrains HS:19 and HS:4 (GM1a and GD1a mimics), (B) isolate OH4384 (GT1a mimic), (C) isolate OH4382 (GD3 mimic), (D) serostrain HS:10 and isolate PG836 (GD3 and GD1c mimics), (E) serostrain HS:1 (GM2 mimic), (F) serostrain HS:2 (GM3 mimic, i.e., without Gal-β(1,3)-GalNAc-β(1,4)) and NCTC 11168 (also HS:2 serotype but outer core mimics GM1a and GM2 due to phase-variable terminal Gal), (G) serostrains HS:23 and HS:36 (GM2 mimic), and (H) phase-variable strain 81-176 (GM2 and GM3 and mimics predominantly, but also GD1b and GD2). All sugars are in the pyranosidic form and are -enantiomers. Gal, galactose; GalNAc, acetyl-galactosamine; Glc, glucose; Hep, -heptose; Kdo, 2-keto-3-deoxyoctulosonic acid; Neu5Ac, -acetylneuraminic acid; , phosphate; Etn, phosphoethanolamine.

Citation: Gilbert M, Parker C, Moran A. 2008. Lipooligosaccharides: Structures and Biosynthesis, p 483-504. In Nachamkin I, Szymanski C, Blaser M (ed), , Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555815554.ch27
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2.
Figure 2.

LOS outer core structures that are not mimicking gangliosides. serostrain HS:3 (A), serostrain HS:30 (B), ATCC 35221 (C), and PC 637 (D). All sugars are in the pyranosidic form and are -enantiomers. Gal, galactose; GalNAc, acetyl-galactosamine; Glc, glucose; GlcNAc, acetyl-glucosamine; Hep, -heptose; Kdo, 2-keto-3-deoxyoctulosonic acid; , phosphate; Etn, phosphoethanolamine; Qui3NAc, -acetylated 3-amino-3,6-dideoxyglucosamine (quinovosamine); Qui3Nacyl, quinovosamine -acylated with 3-hydroxybutanol or 3-hydroxy-2,3-dimethyl-5-oxoprolyl chains.

Citation: Gilbert M, Parker C, Moran A. 2008. Lipooligosaccharides: Structures and Biosynthesis, p 483-504. In Nachamkin I, Szymanski C, Blaser M (ed), , Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555815554.ch27
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 3.
Figure 3.

LOS classes that possess a sialyltransferase gene. Classes A, B, C, M, and R (C. T. Parker et al., unpublished data).

Citation: Gilbert M, Parker C, Moran A. 2008. Lipooligosaccharides: Structures and Biosynthesis, p 483-504. In Nachamkin I, Szymanski C, Blaser M (ed), , Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555815554.ch27
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 4.
Figure 4.

LOS classes related to LOS class D, class F, and class G (C. T. Parker et al., unpublished data).

Citation: Gilbert M, Parker C, Moran A. 2008. Lipooligosaccharides: Structures and Biosynthesis, p 483-504. In Nachamkin I, Szymanski C, Blaser M (ed), , Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555815554.ch27
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 5.
Figure 5.

LOS classes that possess genes similar to those required for biosynthesis of 6-deoxysugars, and homologs (C. T. Parker et al., unpublished data).

Citation: Gilbert M, Parker C, Moran A. 2008. Lipooligosaccharides: Structures and Biosynthesis, p 483-504. In Nachamkin I, Szymanski C, Blaser M (ed), , Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555815554.ch27
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 6.
Figure 6.

Biosynthesis of the LOS core in OH4384. Adapted from .

Citation: Gilbert M, Parker C, Moran A. 2008. Lipooligosaccharides: Structures and Biosynthesis, p 483-504. In Nachamkin I, Szymanski C, Blaser M (ed), , Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555815554.ch27
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 7.
Figure 7.

Alternative extensions of the LOS outer core from HepII.

Citation: Gilbert M, Parker C, Moran A. 2008. Lipooligosaccharides: Structures and Biosynthesis, p 483-504. In Nachamkin I, Szymanski C, Blaser M (ed), , Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555815554.ch27
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 8.
Figure 8.

Biosynthesis of class C core structures.

Citation: Gilbert M, Parker C, Moran A. 2008. Lipooligosaccharides: Structures and Biosynthesis, p 483-504. In Nachamkin I, Szymanski C, Blaser M (ed), , Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555815554.ch27
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 9.
Figure 9.

Biosynthesis of class A core structures with a sialylated inner Gal.

Citation: Gilbert M, Parker C, Moran A. 2008. Lipooligosaccharides: Structures and Biosynthesis, p 483-504. In Nachamkin I, Szymanski C, Blaser M (ed), , Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555815554.ch27
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 10.
Figure 10.

Biosynthesis of classes A and B core structures with a nonsialylated inner Gal.

Citation: Gilbert M, Parker C, Moran A. 2008. Lipooligosaccharides: Structures and Biosynthesis, p 483-504. In Nachamkin I, Szymanski C, Blaser M (ed), , Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555815554.ch27
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 11.
Figure 11.

Biosynthesis of class B core structures extended from Glc-β(1,2)-HepII.

Citation: Gilbert M, Parker C, Moran A. 2008. Lipooligosaccharides: Structures and Biosynthesis, p 483-504. In Nachamkin I, Szymanski C, Blaser M (ed), , Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555815554.ch27
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 12.
Figure 12.

Alternative structures resulting from different combinations of Cst-II and SOAT variants.

Citation: Gilbert M, Parker C, Moran A. 2008. Lipooligosaccharides: Structures and Biosynthesis, p 483-504. In Nachamkin I, Szymanski C, Blaser M (ed), , Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555815554.ch27
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555815554.ch27
1. Aspinall, G. O.,, C. M. Lynch,, H. Pang,, R. T. Shaver, and, A. P. Moran. 1995a. Chemical structures of the core region of Campylobacter jejuni O:3 lipopolysaccharide and an associated polysaccharide. Eur. J. Biochem. 231:570578.
2. Aspinall, G. O.,, A. Mainkar,, M. M. Prendergast,, B. Jacobs, and, A. P. Moran. 1998. Lipopolysaccharides from a neuropathy-associated infection from Campylobacter jejuni serotype O:23, p. 93–96. In A. J. Lastovica,, D. G. Newell, and, E. E. Lastovica (ed.), Campylobacter, Helicobacter, and Related Organisms. Institute of Child Health and University of Cape Town, Cape Town, South Africa.
3. Aspinall, G. O.,, A. G. McDonald,, H. Pang,, L. A. Kurjanczyk, and, J. L. Penner. 1994. Lipopolysaccharides of Campylobacter jejuni serotype O:19: structures of core oligosaccharide regions from the serostrain and two bacterial isolates from patients with the Guillain-Barré syndrome. Biochemistry 33:241249.
4. Aspinall, G. O.,, A. G. McDonald,, H. Pang,, L. A. Kurjanczyk, and, J. L. Penner. 1993a. Lipopolysaccharide of Campylobacter coli serotype O:30. Fractionation and structure of liberated core oligosaccharide. J. Biol. Chem. 268:62636268.
5. Aspinall, G. O.,, A. G. McDonald,, T. S. Raju,, H. Pang,, L. A. Kurjanczyk,, J. L. Penner, and, A. P. Moran. 1993b. Chemical structure of the core region of Campylobacter jejuni serotype O: 2 lipopolysaccharide. Eur. J. Biochem. 213:10291037.
6. Aspinall, G. O.,, A. G. McDonald,, T. S. Raju,, H. Pang,, A. P. Moran, and, J. L. Penner. 1993c. Chemical structures of the core regions of Campylobacter jejuni serotypes O:1, O:4, O:23, and O:36 lipopolysaccharides. Eur. J. Biochem. 216:880.
7. Aspinall, G. O.,, M. A. Monteiro, and, H. Pang. 1995b. Lipooligosaccharide of the Campylobacter lari type strain ATCC 35221. Structure of the liberated oligosaccharide and an associated extracellular polysaccharide. Carbohydr. Res. 279:245264.
8. Aspinall, G. O.,, M. A. Monteiro,, H. Pang,, L. A. Kurjanczyk, and, J. L. Penner. 1995c. Lipo-oligosaccharide of Campylobacter lari strain PC 637. Structure of the liberated oligosaccharide and an associated extracellular polysaccharide. Carbohydr. Res. 279:227244.
9. Beer, W.,, M. Adam, and, G. Seltmann. 1986. Monosaccharide composition of lipopolysaccharides from Campylobacter jejuni and Campylobacter coli. J. Basic Microbiol. 26:201204.
10. Bernatchez, S.,, M. Gilbert,, M.-C. Blanchard,, M.-F. Karwaski,, J. Li,, S. DeFrees, and, W. W. Wakarchuk. 2007. Variants of the β-1,3-galactosyltransferase CgtB from the bacterium Campylobacter jejuni have distinct acceptor specificities. Glycobiology 17:13331343.
11. Bernatchez, S.,, C. M. Szymanski,, N. Ishiyama,, J. Li,, H. C. Jarrell,, P. C. Lau,, A. M. Berghuis,, N. M. Young, and, W. W. Wakarchuk. 2005. A single bifunctional UDP-GlcNAc/Glc 4-epimerase supports the synthesis of three cell surface glycoconjugates in Campylobacter jejuni. J. Biol. Chem. 280:47924802.
12. Chiu, C. P.,, A. G. Watts,, L. L. Lairson,, M. Gilbert,, D. Lim,, W. W. Wakarchuk,, S. G. Withers, and, N. C. Strynadka. 2004. Structural analysis of the sialyltransferase CstII from Campylobacter jejuni in complex with a substrate analog. Nat. Struct. Mol. Biol. 11:163170.
13. Corcoran, A. T., and, A. P. Moran. 2007. Influence of growth conditions on diverse polysaccharide production by Campylobacter jejuni. FEMS Immunol. Med. Microbiol. 49:124132.
14. De Libero, G.,, A. P. Moran,, H. J. Gober,, E. Rossy,, A. Shamshiev,, O. Chelnokova,, Z. Mazorra,, S. Vendetti,, A. Sacchi,, M. M. Prendergast,, S. Sansano,, A. Tonevitsky,, R. Landmann, and, L. Mori. 2005. Bacterial infections promote T cell recognition of self-glycolipids. Immunity 22:763772.
15. Deszo, E. L.,, S. M. Steenbergen,, D. I. Freedberg, and, E. R. Vimr. 2005. Escherichia coli K1 polysialic acid O-acetyltransferase gene, neuO, and the mechanism of capsule form variation involving a mobile contingency locus. Proc. Natl. Acad. Sci. USA 102:55645569.
16. Dorrell, N.,, J. A. Mangan,, K. G. Laing,, J. Hinds,, D. Linton,, H. Al-Ghusein,, B. G. Barrell,, J. Parkhill,, N. G. Stoker,, A. V. Karlyshev,, P. D. Butcher, and, B. W. Wren. 2001. Whole genome comparison of Campylobacter jejuni human isolates using a low-cost microarray reveals extensive genetic diversity. Genome Res. 11:17061715.
17. Dzieciatkowska, M.,, D. Brochu,, A. V. Belkum,, A. P. Heikema,, N. Yuki,, R. S. Houliston,, J. C. Richards,, M. Gilbert, and, J. Li. 2007. Mass spectrometric analysis of intact lipooligosaccharide: direct evidence for O-acetylated sialic acids and discovery of O-linked glycine expressed by Campylobacter jejuni. Biochemistry 46:1470414714.
18. Filiatrault, M. J.,, B. W. Gibson,, B. Schilling,, S. Sun,, R. S. Munson, Jr., and, A. A. Campagnari. 2000. Construction and characterization of Haemophilus ducreyi lipooligosaccharide (LOS) mutants defective in expression of heptosyltransferase III and beta1,4-glucosyltransferase: identification of LOS glycoforms containing lactosamine repeats. Infect. Immun. 68:33523361.
19. Fouts, D. E.,, E. F. Mongodin,, R. E. Mandrell,, W. G. Miller,, D. A. Rasko,, J. Ravel,, L. M. Brinkac,, R. T. DeBoy,, C. T. Parker,, S. C. Daugherty,, R. J. Dodson,, A. S. Durkin,, R. Madupu,, S. A. Sullivan,, J. U. Shetty,, M. A. Ayodeji,, A. Shvartsbeyn,, M. C. Schatz,, J. H. Badger,, C. M. Fraser, and, K. E. Nelson. 2005. Major structural differences and novel potential virulence mechanisms from the genomes of multiple Campylobacter species. PLoS Biol. 3:e15.
20. Gilbert, M.,, J. R. Brisson,, M. F. Karwaski,, J. Michniewicz,, A. M. Cunningham,, Y. Wu,, N. M. Young, and, W. W. Wakarchuk. 2000. Biosynthesis of ganglioside mimics in Campylobacter jejuni OH4384. Identification of the glycosyltransferase genes, enzymatic synthesis of model compounds, and characterization of nanomole amounts by 600-mhz (1)h and (13)c NMR analysis. J. Biol. Chem. 275:38963906.
21. Gilbert, M.,, M. F. Karwaski,, S. Bernatchez,, N. M. Young,, E. Taboada,, J. Michniewicz,, A. M. Cunningham, and, W. W. Wakarchuk. 2002. The genetic bases for the variation in the lipooligosaccharide of the mucosal pathogen, Campylobacter jejuni. Biosynthesis of sialylated ganglioside mimics in the core oligosaccharide. J. Biol. Chem. 277:327337.
22. Gilbert, M.,, P. C. Godschalk,, M. F. Karwaski,, C. W. Ang,, B. A. van,, J. Li,, W. W. Wakarchuk, and, H. P. Endtz. 2004. Evidence for acquisition of the lipooligosaccharide biosynthesis locus in Campylobacter jejuni GB11, a strain isolated from a patient with Guillain-Barré syndrome, by horizontal exchange. Infect. Immun. 72:11621165.
23. Gilbert, M.,, P. C. R. Godschalk,, C. T. Parker,, H. P. Endtz, and, W. W. Wakarchuk. 2005. Genetic basis for the variation in the lipooligosaccharide outer core of Campylobacter jejuni and possible association of glycosyltransferase genes with post-infectious neuropathies, p. 219248. In J. M. Ketley and, M. E. Konkel (ed.), Campylobacter: Molecular and Cellular Biology. Horizon Bioscience, Norfolk, United Kingdom.
24. Godschalk, P. C.,, A. P. Heikema,, M. Gilbert,, T. Komagamine,, C. W. Ang,, J. Glerum,, D. Brochu,, J. Li,, N. Yuki,, B. C. Jacobs,, B. A. van, and, H. P. Endtz. 2004. The crucial role of Campylobacter jejuni genes in anti-ganglioside antibody induction in Guillain-Barré syndrome. J. Clin. Investig. 114:16591665.
25. Godschalk, P. C.,, M. L. Kuijf,, J. Li,, M. F. St,, C. W. Ang,, B. C. Jacobs,, M. F. Karwaski,, D. Brochu,, A. Moterassed,, H. P. Endtz,, B. A. van, and, M. Gilbert. 2007. Structural characterization of Campylobacter jejuni lipooligosaccharide outer cores associated with Guillain-Barré and Miller Fisher syndromes. Infect. Immun. 75:12451254.
26. Guerry, P.,, C. P. Ewing,, T. E. Hickey,, M. M. Prendergast, and, A. P. Moran. 2000. Sialylation of lipooligosaccharide cores affects immunogenicity and serum resistance of Campylobacter jejuni. Infect. Immun. 68:66566662.
27. Guerry, P.,, C. M. Szymanski,, M. M. Prendergast,, T. E. Hickey,, C. P. Ewing,, D. L. Pattarini, and, A. P. Moran. 2002. Phase variation of Campylobacter jejuni 81-176 lipooligosaccharide affects ganglioside mimicry and invasiveness in vitro. Infect. Immun. 70:787793.
28. Hanniffy, O. M.,, A. S. Shashkov,, A. P. Moran,, M. M. Prendergast,, S. N. Senchenkova,, Y. A. Knirel, and, A. V. Savage. 1999. Chemical structure of a polysaccharide from Campylobacter jejuni 176.83 (serotype O:41) containing only furanose sugars. Carbohydr. Res. 319:124132.
29. Hanniffy, O. M.,, A. S. Shashkov,, A. P. Moran,, S. N. Senchenkova, and, A. V. Savage. 2001. Chemical structure of the core oligosaccharide of aerotolerant Campylobacter jejuni O:2 lipopolysaccharide. Carbohydr. Res. 330:223229.
30. Houliston, R. S.,, H. P. Endtz,, N. Yuki,, J. Li,, H. C. Jarrell,, M. Koga,, B. A. van,, M. F. Karwaski,, W. W. Wakarchuk, and, M. Gilbert. 2006. Identification of a sialate O-acetyltransferase from Campylobacter jejuni: demonstration of direct transfer to the C-9 position of terminal alpha-2, 8-linked sialic acid. J. Biol. Chem. 281:1148011486.
31. Kanipes, M. I.,, E. Papp-Szabo,, P. Guerry, and, M. A. Monteiro. 2006. Mutation of waaC, encoding heptosyltransferase I in Campylobacter jejuni 81-176, affects the structure of both lipooligosaccharide and capsular carbohydrate. J. Bacteriol. 188:32733279.
32. Kanipes, M. I.,, D. Rockabrand,, X. Tan,, M. A. Monteiro, and, P. Guerry. 2007. Biological and structural characterization of the Campylobacter jejuni 81-176 galactosyltransferase mutant, abstr. D-020. In Abstracts of the American Society for Microbiology 107th Annual General Meeting. ASM Press, Washington, DC.
33. Karlyshev, A. V.,, O. L. Champion,, C. Churcher,, J. R. Brisson,, H. C. Jarrell,, M. Gilbert,, D. Brochu,, M. F. St,, J. Li,, W. W. Wakarchuk,, I. Goodhead,, M. Sanders,, K. Stevens,, B. White,, J. Parkhill,, B. W. Wren, and, C. M. Szymanski. 2005a. Analysis of Campylobacter jejuni capsular loci reveals multiple mechanisms for the generation of structural diversity and the ability to form complex heptoses. Mol. Microbiol. 55:90103.
34. Karlyshev, A. V.,, J. M. Ketley, and, B. W. Wren. 2005b. The Campylobacter jejuni glycome. FEMS Microbiol. Rev. 29:377390.
35. Karlyshev, A. V.,, D. Linton,, N. A. Gregson,, A. J. Lastovica, and, B. W. Wren. 2000. Genetic and biochemical evidence of a Campylobacter jejuni capsular polysaccharide that accounts for Penner serotype specificity. Mol. Microbiol. 35:529541.
36. Kilcoyne, M.,, A. P. Moran,, A. S. Shashkov,, S. N. Senchenkova,, J. A. Ferris,, A. T. Corcoran, and, A. V. Savage. 2006. Molecular origin of two polysaccharides of Campylobacter jejuni 81116. FEMS Microbiol. Lett. 263:214222.
37. Klena, J. D.,, S. A. Gray, and, M. E. Konkel. 1998. Cloning, sequencing, and characterization of the lipopolysaccharide biosynthetic enzyme heptosyltransferase I gene (waaC) from Campylobacter jejuni and Campylobacter coli. Gene 222:177185.
38. Koga, M.,, M. Gilbert,, M. Takahashi,, J. Li,, S. Koike,, K. Hirata, and, N. Yuki. 2006. Comprehensive analysis of bacterial risk factors for the development of Guillain-Barré syndrome after Campylobacter jejuni enteritis. J. Infect. Dis. 193:547555.
39. Komagamine, T., and, N. Yuki. 2006. Ganglioside mimicry as a cause of Guillain-Barré syndrome. CNS Neurol. Disord. Drug Targets 5:391400.
40. Leonard, E. E.,, T. Takata,, M. J. Blaser,, S. Falkow,, L. S. Tompkins, and, E. C. Gaynor. 2003. Use of an open-reading frame-specific Campylobacter jejuni DNA microarray as a new genotyping tool for studying epidemiologically related isolates. J. Infect. Dis. 187:691694.
41. Leonard, E. E.,, L. S. Tompkins,, S. Falkow, and, I. Nachamkin. 2004. Comparison of Campylobacter jejuni isolates implicated in Guillain-Barré syndrome and strains that cause enteritis by a DNA microarray. Infect. Immun. 72:11991203.
42. Levinson, G., and, G. A. Gutman. 1987. Slipped-strand mispairing: a major mechanism for DNA sequence evolution. Mol. Biol. Evol. 4:203221.
43. Lewis, A. L.,, V. Nizet, and, A. Varki. 2004. Discovery and characterization of sialic acid O-acetylation in group B Streptococcus. Proc. Natl. Acad. Sci. USA 101:1112311128.
44. Linton, D.,, M. Gilbert,, P. G. Hitchen,, A. Dell,, H. R. Morris,, W. W. Wakarchuk,, N. A. Gregson, and, B. W. Wren. 2000. Phase variation of a beta-1,3 galactosyltransferase involved in generation of the ganglioside GM1-like lipo-oligosaccharide of Campylobacter jejuni. Mol. Microbiol. 37:501514.
45. Medini, D.,, C. Donati,, H. Tettelin,, V. Masignani, and, R. Rappuoli. 2005. The microbial pan-genome. Curr. Opin. Genet. Dev. 15:589594.
46. Moran, A. P. 1995. Biological and serological characterization of Campylobacter jejuni lipopolysaccharides with deviating core and lipid A structures. FEMS Immunol. Med. Microbiol. 11:121130.
47. Moran, A. P. 1997. Structure and conserved characteristics of Campylobacter jejuni lipopolysaccharides. J. Infect. Dis. 176(Suppl. 2):S115S121.
48. Moran, A. P.,, H. Annuk, and, M. M. Prendergast. 2005. Antibodies induced by ganglioside-mimicking Campylobacter jejuni lipooligosaccharides recognise epitopes at the nodes of Ranvier. J. Neuroimmunol. 165:179185.
49. Moran, A. P.,, I. M. Helander,, B. Lindner, and, D. T. O’Malley. 1996a. Structural analysis of lipid A from Campylobacter fetus smooth-form LPS. J. Endotoxin Res. 3(Suppl. 1):34.
50. Moran, A. P., and, D. T. O’Malley. 1995. Potential role of lipopolysaccharides of Campylobacter jejuni in the development of Guillain-Barré syndrome. J. Endotoxin Res. 2:233235.
51. Moran, A. P.,, D. T. O’Malley,, T. U. Kosunen, and, I. M. Helander. 1994. Biochemical characterization of Campylobacter fetus lipopolysaccharides. Infect. Immun. 62:39223929.
52. Moran, A. P.,, D. T. O’Malley,, J. Vuopio-Varkila,, K. Varkila,, L. Pyhala,, H. Saxen, and, I. M. Helander. 1996b. Biological characterization of Campylobacter fetus lipopolysaccharides. FEMS Immunol. Med. Microbiol. 15:4350.
53. Moran, A. P., and, J. L. Penner. 1999. Serotyping of Campylobacter jejuni based on heat-stable antigens: relevance, molecular basis and implications in pathogenesis. J. Appl. Microbiol. 86:361377.
54. Moran, A. P.,, J. L. Penner, and, G. O. Aspinall. 2000. Campylobacter lipopolysaccharides, p. 241257. In I. Nachamkin and, M. J. Blaser (ed.), Campylobacter, 2nd ed. ASM Press, Washington, DC.
55. Moran, A. P., and, M. M. Prendergast. 2001. Molecular mimicry in Campylobacter jejuni and Helicobacter pylori lipopolysaccharides: contribution of gastrointestinal infections to autoimmunity. J. Autoimmun. 16:241256.
56. Moran, A. P.,, M. M. Prendergast, and, B. J. Appelmelk. 1996c. Molecular mimicry of host structures by bacterial lipopolysaccharides and its contribution to disease. FEMS Immunol. Med. Microbiol. 16:105115.
57. Moran, A. P.,, E. T. Rietschel,, T. U. Kosunen, and, U. Zahringer. 1991a. Chemical characterization of Campylobacter jejuni lipopolysaccharides containing N-acetylneuraminic acid and 2,3-diamino-2,3-dideoxy-d-glucose. J. Bacteriol. 173:618626.
58. Moran, A. P.,, U. Zahringer,, U. Seydel,, D. Scholz,, P. Stutz, and, E. T. Rietschel. 1991b. Structural analysis of the lipid A component of Campylobacter jejuni CCUG 10936 (serotype O:2) lipopolysaccharide. Description of a lipid A containing a hybrid backbone of 2-amino-2-deoxy-d-glucose and 2,3-diamino-2,3-dideoxy-d-glucose. Eur. J. Biochem. 198:459469.
59. Muldoon, J.,, A. S. Shashkov,, A. P. Moran,, J. A. Ferris,, S. N. Senchenkova, and, A. V. Savage. 2002. Structures of two polysaccharides of Campylobacter jejuni 81116. Carbohydr. Res. 337:22232229.
60. Nam Shin, J. E.,, S. Ackloo,, A. S. Mainkar,, M. A. Monteiro,, H. Pang,, J. L. Penner, and, G. O. Aspinall. 1998. Lipooligosaccharides of Campylobacter jejuni serotype O:10. Structures of core oligosaccharide regions from a bacterial isolate from a patient with the Miller-Fisher syndrome and from the serotype reference strain. Carbohydr. Res. 305:223232.
61. Oldfield, N. J.,, A. P. Moran,, L. A. Millar,, M. M. Prendergast, and, J. M. Ketley. 2002. Characterization of the Campylobacter jejuni heptosyltransferase II gene, waaF, provides genetic evidence that extracellular polysaccharide is lipid A core independent. J. Bacteriol. 184:21002107.
62. Parker, C. T.,, S. T. Horn,, M. Gilbert,, W. G. Miller,, D. L. Woodward, and, R. E. Mandrell. 2005. Comparison of Campylobacter jejuni lipooligosaccharide biosynthesis loci from a variety of sources. J. Clin. Microbiol. 43:27712781.
63. Parker, C. T.,, B. Quinones,, W. G. Miller,, S. T. Horn, and, R. E. Mandrell. 2006. Comparative genomic analysis of Campylobacter jejuni strains reveals diversity due to genomic elements similar to those present in C. jejuni strain RM1221. J. Clin. Microbiol. 44:41254135.
64. Parkhill, J.,, B. W. Wren,, K. Mungall,, J. M. Ketley,, C. Churcher,, D. Basham,, T. Chillingworth,, R. M. Davies,, T. Feltwell,, S. Holroyd,, K. Jagels,, A. V. Karlyshev,, S. Moule,, M. J. Pallen,, C. W. Penn,, M. A. Quail,, M. A. Rajandream,, K. M. Rutherford,, A. H. van Vliet,, S. Whitehead, and, B. G. Barrell. 2000. The genome sequence of the food-borne pathogen Campylobacter jejuni reveals hypervariable sequences. Nature 403:665668.
65. Pearson, B. M.,, C. Pin,, J. Wright,, K. I’Anson,, T. Humphrey, and, J. M. Wells. 2003. Comparative genome analysis of Campylobacter jejuni using whole genome DNA microarrays. FEBS Lett. 554:224230.
66. Penner, J. L., and, G. O. Aspinall. 1997. Diversity of lipopolysaccharide structures in Campylobacter jejuni. J. Infect. Dis. 176(Suppl. 2):S135S138.
67. Phongsisay, V.,, V. N. Perera, and, B. N. Fry. 2006. Exchange of lipooligosaccharide synthesis genes creates potential GuillainBarré syndrome-inducible strains of Campylobacter jejuni. Infect. Immun. 74:13681372.
68. Phongsisay, V.,, V. N. Perera, and, B. N. Fry. 2007. Expression of the htrB gene is essential for responsiveness of Salmonella typhimurium and Campylobacter jejuni to harsh environments. Microbiology 153:254262.
69. Prendergast, M. M.,, T. U. Kosunen, and, A. P. Moran. 2001. Development of an immunoassay for rapid detection of ganglioside GM(1) mimicry in Campylobacter jejuni strains. J. Clin. Microbiol. 39:14941500.
70. Prendergast, M. M.,, A. J. Lastovica, and, A. P. Moran. 1998. Lipopolysaccharides from Campylobacter jejuni O:41 strains associated with Guillain-Barré syndrome exhibit mimicry of GM1 ganglioside. Infect. Immun. 66:36493655.
71. Prendergast, M. M., and, A. P. Moran. 2000. Lipopolysaccharides in the development of the Guillain-Barré syndrome and Miller Fisher syndrome forms of acute inflammatory peripheral neuropathies. J. Endotox. Res. 6:341359.
72. Prendergast, M. M.,, D. R. Tribble,, S. Baqar,, D. A. Scott,, J. A. Ferris,, R. I. Walker, and, A. P. Moran. 2004. In vivo phase variation and serologic response to lipooligosaccharide of Campylobacter jejuni in experimental human infection. Infect. Immun. 72:916922.
73. Prendergast, M. M.,, H. J. Willison, and, A. P. Moran. 1999. Human monoclonal immunoglobulin M antibodies to ganglioside GM1 show diverse cross-reactivities with lipopolysaccharides of Campylobacter jejuni strains associated with Guillain-Barré syndrome. Infect. Immun. 67:36983701.
74. Preston, M. A., and, J. L. Penner. 1987. Structural and antigenic properties of lipopolysaccharides from serotype reference strains of Campylobacter jejuni. Infect. Immun. 55:18061812.
75. Raetz, C. R.,, C. M. Reynolds,, M. S. Trent, and, R. E. Bishop. 2007. Lipid A modification systems in gram-negative bacteria. Ann. Rev. Biochem. 76:295329.
76. Raetz, C. R., and, C. Whitfield. 2002. Lipopolysaccharide endotoxins. Ann. Rev. Biochem. 71:635700.
77. Rietschel, E. T.,, L. Brade,, O. Holst,, V. A. Kulschin,, B. Lindner,, A. P. Moran,, U. F. Schade,, U. Zähringer, and, H. Brade. 1990. Molecular structure of bacterial endotoxin in relation to bioactivity, p. 1532. In A. Nowotny,, J. J. Spitzer, and, E. J. Ziegler (ed.), Cellular and Molecular Aspects of Endotoxin Reactions, vol. 1. Elsevier Science, Amsterdam.
78. Rietschel, E. T.,, T. Kirikae,, F. U. Schade,, U. Mamat,, G. Schmidt,, H. Loppnow,, A. J. Ulmer,, U. Zahringer,, U. Seydel,, F. Di Padova,, M. Schreier, and, H. Brade. 1994. Bacterial endotoxin: molecular relationships of structure to activity and function. FASEB J. 8:217225.
79. Schromm, A. B.,, K. Brandenburg,, H. Loppnow,, A. P. Moran,, M. H. Koch,, E. T. Rietschel, and, U. Seydel. 2000. Biological activities of lipopolysaccharides are determined by the shape of their lipid A portion. Eur. J. Biochem. 267:20082013.
80. Senchenkova, S. N.,, A. S. Shashkov,, Y. A. Knirel,, J. J. McGovern, and, A. P. Moran. 1997. The O-specific polysaccharide chain of Campylobacter fetus serotype A lipopolysaccharide is a partially O-acetylated 1,3-linked alpha-d-mannan. Eur. J. Biochem. 245:637641.
81. Senchenkova, S. N.,, A. S. Shashkov,, Y. A. Knirel,, J. J. McGovern, and, A. P. Moran. 1996. The O-specific polysaccharide chain of Campylobacter fetus serotype B lipopolysaccharide is a d-rhamnan terminated with 3-O-methyl-d-rhamnose (d-acofriose). Eur. J. Biochem. 239:434438.
82. St Michael, F.,, C. M. Szymanski,, J. Li,, K. H. Chan,, N. H. Khieu,, S. Larocque,, W. W. Wakarchuk,, J. R. Brisson, and, M. A. Monteiro. 2002. The structures of the lipooligosaccharide and capsule polysaccharide of Campylobacter jejuni genome sequenced strain NCTC 11168. Eur. J. Biochem. 269:51195136.
83. Sundaram, A. K.,, L. Pitts,, K. Muhammad,, J. Wu,, M. Betenbaugh,, R. W. Woodard, and, W. F. Vann. 2004. Characterization of N-acetylneuraminic acid synthase isoenzyme 1 from Campylobacter jejuni. Biochem. J. 383:8389.
84. Sweet, C. R.,, A. A. Ribeiro, and, C. R. Raetz. 2004. Oxidation and transamination of the 3″-position of UDP-N-acetylglucosamine by enzymes from Acidithiobacillus ferrooxidans. Role in the formation of lipid a molecules with four amide-linked acyl chains. J. Biol. Chem. 279:2540025410.
85. Szymanski, C. M.,, F. S. Michael,, H. C. Jarrell,, J. Li,, M. Gilbert,, S. Larocque,, E. Vinogradov, and, J. R. Brisson. 2003. Detection of conserved N-linked glycans and phase-variable lipooligosaccharides and capsules from Campylobacter cells by mass spectrometry and high resolution magic angle spinning NMR spectroscopy. J. Biol. Chem. 278:2450924520.
86. Taboada, E. N.,, R. R. Acedillo,, C. D. Carrillo,, W. A. Findlay,, D. T. Medeiros,, O. L. Mykytczuk,, M. J. Roberts,, C. A. Valencia,, J. M. Farber, and, J. H. Nash. 2004. Large-scale comparative genomics meta-analysis of Campylobacter jejuni isolates reveals low level of genome plasticity. J. Clin. Microbiol. 42:45664576.
87. Trent, M. S., and, C. R. H. Raetz. 2002. Cloning of EptA, the lipidA phosphoethanolamine transferase associated with polyxin resistance. J. Endotoxin Res. 8:158.
88. Wright, J. C.,, D. W. Hood,, G. A. Randle,, K. Makepeace,, A. D. Cox,, J. Li,, R. Chalmers,, J. C. Richards, and, E. R. Moxon. 2004. lpt6, a gene required for addition of phosphoethanolamine to inner-core lipopolysaccharide of Neisseria meningitidis and Haemophilus influenzae. J. Bacteriol. 186:69706982.
89. Yang, L. Y.,, Z. H. Pei,, S. Fujimoto, and, M. J. Blaser. 1992. Reattachment of surface array proteins to Campylobacter fetus cells. J. Bacteriol. 174:12581267.
90. Yuki, N.,, T. Taki,, F. Inagaki,, T. Kasama,, M. Takahashi,, K. Saito,, S. Handa, and, T. Miyatake. 1993. A bacterium lipopolysaccharide that elicits Guillain-Barré syndrome has a GM1 ganglioside-like structure. J. Exp. Med. 178:17711775.

Tables

Generic image for table
Table 1.

Variants of glycosyltransferases and sialate -acetyltransferase (SOAT) involved in the biosynthesis of LOS outer cores

Citation: Gilbert M, Parker C, Moran A. 2008. Lipooligosaccharides: Structures and Biosynthesis, p 483-504. In Nachamkin I, Szymanski C, Blaser M (ed), , Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555815554.ch27

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error