1887

Chapter 30 : Regulation of Flagellar Gene Expression and Assembly

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in
Zoomout

Regulation of Flagellar Gene Expression and Assembly, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555815554/9781555814373_Chap30-1.gif /docserver/preview/fulltext/10.1128/9781555815554/9781555814373_Chap30-2.gif

Abstract:

Campylobacters produce proteins required for motility that are absent in other well studied motile bacteria, and have portions of conserved pathways mixed with unique mechanisms of promoting flagellar gene regulation, biosynthesis, and motility. Chemotaxis is an essential property of flagellar motility that influences the movement of bacteria toward appropriate environmental and host niches that support ideal bacterial growth and away from components that are less beneficial for growth or harmful to the organism. Although much information regarding flagellar motility has been gleaned by analyzing predictions from genomic sequences, the field of flagellar motility in campylobacters was moved forward by the development of new genetic tools and strategies for studying these bacteria. Seminal works for understanding regulatory pathways for flagellar gene expression and assembly of proteins into a flagellum largely focused on those of species followed by and species. Early studies focusing on antigens of that are recognized by convalescent human antisera after infection revealed that the major flagellin FlaA is the foremost immunodominant antigen. Thus, much early work regarding flagellar motility in campylobacters largely centered on the genetic organization and expression of the flagellin genes of and . Flagellar motility in campylobacters is also affected by phase variation. Much progress has been made in the last decade in identifying proteins of campylobacters required for flagellar motility and understanding the roles of these proteins in flagellar gene regulation, biosynthesis of the organelle, and chemotaxis.

Citation: Hendrixson D. 2008. Regulation of Flagellar Gene Expression and Assembly, p 545-558. In Nachamkin I, Szymanski C, Blaser M (ed), , Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555815554.ch30

Key Concept Ranking

Gene Expression and Regulation
0.4527638
Flagellar Motor Switch Proteins
0.44409496
Flagellar Hook Protein
0.4307028
Hook-Filament Junction Proteins
0.41724333
0.4527638
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of Figure 1.
Figure 1.

Proposed regulatory cascade for expression of flagellar genes in campylobacters. The regulatory cascade is based on data acquired through analysis of strains. (Left) may lack a master regulator for expression of early flagellar genes. These early genes, which include those encoding σ, σ, FlgM, FlgS, FlgR, FlhF, and components of the flagellar export apparatus (FlhA, FlhB, FliP, FliR, FliO, FliQ, and FliF), may be constitutively expressed. After formation of the flagellar export apparatus, FlgS may sense an undetermined signal to autophosphorylate and begin a signal transduction cascade, terminating in activation of FlgR and expression of σ-dependent flagellar genes. Expression of σ-dependent flagellar genes results in production of the flagellar basal body and hook proteins, which complete formation of the flagellar secretory system. (Middle) Until the flagellar secretory system has formed, FlgM may inhibit the activity of σ for expression of target genes. This inhibitory effect may be strain dependent in campylobacters. After formation of the secretory system, FlgM is likely transported out of the cytoplasm through this system. σ is then relieved from inhibition and can function in expression of target genes that includes , encoding the major flagellin. (Right) Secretion of FlaA and other filament proteins occurs through the conduit formed by the flagellar export apparatus, rod, and hook to result in polymerization of the flagellar filament. OM, outer membrane; IM, inner membrane.

Citation: Hendrixson D. 2008. Regulation of Flagellar Gene Expression and Assembly, p 545-558. In Nachamkin I, Szymanski C, Blaser M (ed), , Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555815554.ch30
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555815554.ch30
1. Arora, S. K.,, B. W. Ritchings,, E. C. Almira,, S. Lory, and R. Ramphal. 1997. A transcriptional activiator, FleQ, regulates mucin adhesion and flagellar gene expression in Pseudomonas aeruginosa in a cascade manner. J. Bacteriol. 179:55745581.
2. Black, R. E.,, M. M. Levine,, M. L. Clements,, T. P. Hughes, and, M. J. Blaser. 1988. Experimental Campylobacter jejuni infection in humans. J. Infect. Dis. 157:472479.
3. Blair, D. F. 1995. How bacteria sense and swim. Annu. Rev. Microbiol. 49:489522.
4. Bleumink-Pluym, N. M.,, F. Verschoor,, W. Gaastra,, B. A. van der Zeijst, and, B. N. Fry. 1999. A novel approach for the construction of a Campylobacter mutant library. Microbiology. 145:21452151.
5. Caldwell, M. B.,, P. Guerry,, E. C. Lee,, J. P. Burns, and, R. I. Walker. 1985. Reversible expression of flagella in Campylobacter jejuni. Infect. Immun. 50:941943.
6. Carrillo, C. D.,, E. Taboada,, J. H. Nash,, P. Lanthier,, J. Kelly,, P. C. Lau,, R. Verhulp,, O. Mykytczuk,, J. Sy,, W. A. Findlay,, K. Amoako,, S. Gomis,, P. Willson,, J. W. Austin,, A. Potter,, L. Babiuk,, B. Allan, and, C. M. Szymanski. 2004. Gemone-wide expression analyses of Campylobacter jejuni NCTC11168 reveals coordinate regulation of motility and virulence by flhA. J. Biol. Chem. 279:2032720338.
7. Chadsey, M. S.,, J. E. Karlinsey, and, K. T. Hughes. 1998. The flagellar anti-σ factor FlgM actively dissociates Salmonella typhimurium σ28-RNA polymerase holoenzyme. Genes. Dev. 12:31233136.
8. Chang, C., and, J. F. Miller. 2006. Campylobacter jejuni colonization of mice with limited enteric flora. Infect. Immun. 74:52615271.
9. Chilcott, G. S., and, K. T. Hughes. 2000. Coupling of flagellar gene expression to flagellar assembly in Salmonella enterica serovar Typhimurium and Escherichia coli. Microbiol. Mol. Biol. Rev. 64:694708.
10. Colegio, O. R.,, T. J. Griffin,, N. D. Grindley, and, J. E. Galan. 2001. In vitro transposition system for efficient generation of random mutants of Campylobacter jejuni. J. Bacteriol. 183:23842388.
11. Correa, N. E.,, F. Peng, and, K. E. Klose. 2005. Roles of the regulatory proteins FlhF and FlhG in the Vibrio cholerae flagellar transcription hierarchy. J. Bacteriol. 187:63246332.
12. Dasgupta, N.,, S. K. Arora, and R. Ramphal. 2000. fleN, a gene that regulates flagellar number in Pseudomonas aeruginosa. J. Bacteriol. 182:357364.
13. Dasgupta, N., and R. Ramphal. 2001. Interaction of the antiactivator FleN with the transcriptional activator FleQ regulates flagellar number in Pseudomonas aeruginosa. J. Bacteriol. 183:66366644.
14. Dasgupta, N.,, M. C. Wolfgang,, A. L. Goodman,, S. K. Arora,, J. Jyot,, S. Lory, and R. Ramphal. 2003. A four-tiered transcriptional regulatory circuit controls flagellar biogenesis in Pseudomonas aeruginosa. Mol. Microbiol. 50:809824.
15. Doig, P.,, N. Kinsella,, P. Guerry, and, T. J. Trust. 1996. Characterization of a post-translational modification of Campylobacter flagellin: identification of a sero-specific glycosyl moiety. Mol. Microbiol. 19:379387.
16. Fan, F.,, K. Ohnishi,, N. R. Francis, and, R. M. Macnab. 1997. The FliP and FliR proteins of Salmonella typhimurium, putative components of the type III flagellar export apparatus are located in the flagellar basal body. Mol. Microbiol. 26:10351046.
17. Ferrero, R. L., and, A. Lee. 1988. Motility of Campylobacter jejuni in a viscous environment: comparison with conventional rod-shaped bacteria. J. Gen. Microbiol. 134:5359.
18. Fröderberg, L.,, E. Houben,, J. C. Samuelson,, M. Chen,, S.-K. Park,, G. J. Phillips,, R. Dalbey,, J. Lurink, and, J.-W. de Gier. 2003. Versatility of inner membrane protein biogenesis in Escherichia coli. Mol. Microbiol. 47:10151027.
19. Fouts, D. E.,, E. F. Mongodin,, R. E. Mandrell,, W. G. Miller,, D. A. Rasko,, J. Ravel.,, L. M. Brinkac,, R. T. DeBoy,, C. T. Parker,, S. C. Daugherty,, R. J. Dodson,, A. S. Durkin,, R. Madupu,, S. A. Sullivan,, J. U. Shetty,, M. A. Ayodeji,, A. Shvartsbeyn,, M. C. Schatz,, J. H. Badger,, C. M. Fraser, and, K. E. Nelson. 2005. Major structural differences and novel potential virulence mechanisms from the genomes of multiple Campylobacter species. PLoS Biol. 3:e15.
20. Gillen, K. L., and, K. T. Hughes. 1991. Molecular characterization of flgM, a gene encoding a negative regulator of flagellin synthesis in Salmonella typhimurium. J. Bacteriol. 173:64536459.
21. Glenn-Calvo, E.,, W. Bar, and M. Frosch. 1994. Isolation and characterization of the flagellar hook of Campylobacter jejuni. FEMS Microbiol. Lett. 123:299304.
22. Golden, N. J., and, D. W. Acheson. 2002. Identification of motility and autoagglutination Campylobacter jejuni mutants by random transposon mutagenesis. Infect. Immun. 70:17611771.
23. Golden, N. J.,, A. Camilli, and, D. W. Acheson. 2000. Random transposon mutagenesis of Campylobacter jejuni. Infect. Immun. 68:54505453.
24. Goon, S.,, C. P. Ewing,, M. Lorenzo,, D. Pattrini,, G. Majam, and P. Guerry. 2006. A σ28-regulated nonflagella gene contributes to virulence of Campylobacter jejuni 81-176. Infect. Immun. 74:769772.
25. Goon, S.,, J. F. Kelly,, S. M. Logan,, C. P. Ewing, and P. Guerry. 2003. Pseudaminic acid, the major modification on Campylobacter flagellin, is synthesized via the Cj1293 gene. Mol. Microbiol. 50:659671.
26. Grant, C. C. R.,, M. E. Konkel,, W. Cieplak,, Jr., and, L. S. Tomkins. 1993. Role of flagella in adherence, internalization, and translocation of Campylobacter jejuni in nonpolarized and polarized epithelial cell cultures. Infect. Immun. 61:17641771.
27. Guerry, P.,, R. A. Alm,, M. E. Power,, S. M. Logan, and, T. J. Trust. 1991. Role of two flagellin genes in Campylobacter motility. J. Bacteriol. 173:47574764.
28. Guerry, P.,, P. Doig,, R. A. Alm,, D. H. Burr,, N. Kinsella, and, T. J. Trust. 1996. Identification and characterization of genes required for post-translational modification of Campylobacter coli VC167 flagellin. Mol. Microbiol. 19:369378.
29. Guerry, P.,, C. P. Ewing,, M. Schirm,, M. Lorenzo,, J. Kelly,, D. Pattarini,, G. Majam,, P. Thibault, and S. Logan. 2006. Changes in flagellin glycosylation affect Campylobacter autoagglutination and virulence. Mol. Microbiol. 60:299311.
30. Guerry, P.,, S. M. Logan,, S. Thornton, and, T. J. Trust. 1990. Genomic organization and expression of Campylobacter flagellin genes. J. Bacteriol. 172:18531860.
31. Henderson, M. J., and, F. H. Milazzo. 1979. Arylsulfatase in Salmonella typhimurium: detection and influence of carbon source and tyramine on its synthesis. J. Bacteriol. 139:8087.
32. Hendrixson, D. R. 2006. A phase-variable mechanism controlling the Campylobacter jejuni FlgR response regulator influences commensalism. Mol. Microbiol. 61:16461659.
33. Hendrixson, D. R.,, B. J. Akerley, and, V. J. DiRita. 2001. Transposon mutagenesis of Campylobacter jejuni identifies a bipartite energy taxis system required for motility. Mol. Microbiol. 40:214224.
34. Hendrixson, D. R., and, V. J. DiRita. 2004. Identification of Campylobacter jejuni genes involved in commensal colonization of the chick gastrointestinal tract. Mol. Microbiol. 52:471484.
35. Hendrixson, D. R., and, V. J. DiRita. 2003. Transcription of σ54-dependent but not σ28-dependent flagellar genes in Campylobacter jejuni is associated with formation of the flagellar secretory apparatus. Mol. Microbiol. 50:687702.
36. Hueck, C. J. 1998. Type III protein secretion systems in bacterial pathogens of animals and plants. Microbiol. Mol. Biol. Rev. 62:379433.
37. Hughes, K. T.,, K. L., Gillen,, M. J. Semon, and, J. E. Karlinsey. 1993. Sensing structural intermediates in bacterial flagellar assembly by export of a negative regulator. Science 262:12771280.
38. Jagannathan, A.,, C. Constantinidou, and, C. W. Penn. 2001. Roles of rpoN, fliA, and flgR in expression of flagella in Campylobacter jejuni. J. Bacteriol. 183:29372942.
39. Jones, M. A.,, K. L. Marston,, C. A. Woodall,, D. J. Maskell,, D. Linton,, A. V. Karlyshev,, N. Dorrell,, B. W. Wren, and, P. A. Barrow. 2004. Adaptation of Campylobacter jejuni NCTC 11168 to high-level colonization of the avian gastrointestinal tract. Infect. Immun. 72:37693776.
40. Jyot, J.,, N. Dasgupta, and R. Ramphal. 2002. FleQ, the major flagellar gene regulator in Pseudomonas aeruginosa, binds to enhancer sites located either upstream or atypically downstream of the RpoN binding site. J. Bacteriol. 184:52515260.
41. Kalmokoff, M.,, P. Lanthier,, T.-L. Tremblay,, M. Foss,, P. C. Lau,, G. Sanders,, J. Autin,, J. Kelly, and, C. M. Szymanski. 2006. Proteomic analysis of Campylobacter jejuni 11168 biofilms reveals a role for the motility complex in biofilm formation. J. Bacteriol. 188:43124320.
42. Karlinsey, J. E.,, S. Tanaka,, V. Bettenworth,, S. Yamaguchi,, W. Boos,, S.-I. Aizawa, and, K. T. Hughes. 2000. Completion of the hook-basal body complex of the Salmonella typhimurium flagellum is coupled to FlgM secretion and fliC transcription. Mol. Microbiol. 37:12201231.
43. Karlyshev, A. V.,, D. Linton,, N. A. Gregson, and, B. W. Wren. 2002. A novel paralogous gene family involved in phase-variable flagella-mediated motility in Campylobacter jejuni. Microbiology. 148:473480.
44. Karlyshev, A. V., and, B. W. Wren. 2005. Development and application of an insertional system for gene delivery and expression in Campylobacter jejuni. Appl. Environ. Microbiol. 71:40044013.
45. Kihara, M.,, T. Minamino,, S. Yamaguchi, and, R. M. Macnab. 2001. Intergenic suppression between the flagellar MS ring protein FliF of Salmonella and FlhA, a membrane component of its export apparatus. J. Bacteriol. 183:16551662.
46. Kinsella, N.,, P. Guerry,, J. Cooney, and, T. J. Trust. 1997. The flgE gene of Campylobacter coli is under the control of the alternative σ factor σ54. J. Bacteriol. 179:46474653.
47. Klose, K. E., and, J. J. Mekalanos. 1998. Distict roles of an alternative sigma factor during both free-swimming and colonizing phases of the Vibrio cholerae pathogenic cycle. Mol. Microbiol. 28:501520.
48. Konkel, M. E.,, J. D. Klena,, V. Rivera-Amill,, M. R. Monteville,, D. Biswas,, B. Raphael, and J. Mickelson. 2004. Secretion of virulence proteins from Campylobacter jejuni is dependent on a functional flagellar export apparatus. J. Bacteriol. 186:32963303.
49. Kutsukake, K.,, Y. Ohya, and T. Iino. 1990. Transcriptional analysis of the flagellar regulon of Salmonella typhimurium. J. Bacteriol. 172:741747.
50. Lee, A.,, J. L. O’Rourke,, P. J. Barrington, and, T. J. Trust. 1986. Mucus colonization as a determinant of pathogenecity in intestinal infection by Campylobacter jejuni: a mouse cecal model. Infect. Immun. 51:536546.
51. Linton, D.,, A. V. Karlyshev,, P. G. Hitchen,, H. R. Morris,, A. Dell,, N. A. Gregson, and, B. W. Wren. 2000. Multiple N-acetyl neuraminic acid synthetase (neuB) genes in Campylobacter jejuni: identification and characterization of the gene involved in sialyation of lipo-oligosaccharide. Mol. Microbiol. 35:11201134.
52. Liu, R., and H. Ochman. 2007. The origins of flagellar gene operons and secondary flagellar systems. J. Bacteriol. 189:70987104.
53. Logan, S. M.,, J. F. Kelly,, P. Thibault,, C. P. Ewing, and P. Guerry. 2002. Structural heterogeneity of carbohydrate modifications affects serospecificity of Campylobacter flagellins. Mol. Microbiol. 46:587597.
54. Logan, S. M.,, T. J. Trust, and P. Guerry. 1989. Evidence for post-translational modification and gene duplication of Campylobacter flagellin. J. Bacteriol. 171:30313038.
55. Luirink, J.,, C. M. ten Hagen-Jongman,, C. C. van der Weijden,, B. Oudega,, S. High,, B. Dobberstein, and R. Kusters. 1994. An alternative protein targeting pathway in Escherichia coli: studies on the role of FtsY. EMBO J. 13:22892296.
56. Macnab, R. M. 2003. How bacteria assemble flagella. Annu. Rev. Microbiol. 57:77100.
57. Marchant, J.,, B. Wren, and J. Ketley. 2002. Exploiting genome sequence: predictions for mechanisms of Campylobacter chemotaxis. Trends Microbiol. 10:155159.
58. Matz, C.,, A. H. M. van Vliet,, J. M. Ketley, and, C. W. Penn. 2002. Mutational and transcriptional analysis of the Campylobacer jejuni flagellar biosynthesis gene flhB. Microbiology. 148:16791685.
59. McNally, D. J.,, A. J. Aubry,, J. P. Hui,, N. H. Khieu,, D. Whitfield,, C. P. Ewing,, P. Guerry,, J. R. Brisson,, S. M. Logan, and, E. C. Soo. 2007. Targeted metabolomics analysis of Campylobacter coli VC167 reveales legionaminic acid derivatives as novel flagellar glycans. J. Biol. Chem. 282:1446314475.
60. McNally, D. J.,, J. P. Hui,, A. J. Aubry,, K. K. Mui,, P. Guerry,, J. R. Brisson,, S. M. Logan, and, E. C. Soo. 2006. Functional characterization of the flagellar glycosylation locus in Campylobacter jejuni 81-176 using a focused metabolomics approach. J. Biol. Chem. 281:1848918498.
61. Miller, S.,, E. C. Pesci, and, C. L. Pickett. 1993. A Campylobacter jejuni homolog of the LcrD/FlbF family of proteins is necessary for flagellar biosynthesis. Infect. Immun. 61:29302936.
62. Minamino, T.,, T. Iino, and K. Kutuskake. 1994. Molecular characterization of the Salmonella typhimurium flhB operon and its protein products. J. Bacteriol. 176:76307637.
63. Minamino, T., and, R. M. Macnab. 1999. Components of the Salmonella flagellar export apparatus and classification of export substrates. J. Bacteriol. 181:13881394.
64. Misawa, N., and, M. J. Blaser. 2000. Detection and characterization of autoagglutination activity by Campylobacter jejuni. Infect. Immun. 68:61686175.
65. Murray, T. S., and, B. I. Kazmierczak. 2006. FlhF is required for swimming and swarming in Pseudomonas aeruginosa. J. Bacteriol. 188:69957004.
66. Nachamkin, I.,, X.-H. Yang, and, N. J. Stern. 1993. Role of Campylobacter jejuni flagella as colonization factors for three-day-old chicks: analysis with flagellar murants. Appl. Environ. Microbiol. 59:12691273.
67. Niehus, E.,, H. Gressmann,, F. Ye,, R. Schlapbach,, M. Dehio,, C. Dehio,, A. Stack,, T. F. Meyer,, S. Suerbaum, and C. Josenhans. 2004. Genome-wide analysis of transcriptional hierarchy and feedback regulation in the flagellar system of Helicobacter pylori. Mol. Microbiol. 52:947961.
68. Nuijten, P. J. M.,, N. M. C. Bleumink-Pluym,, W. Gaastra, and, B. A. M. van der Zeijst. 1989. Flagellin expression in Campylobacter jejuni is regulated at the transcriptional level. Infect. Immun. 57:10841088.
69. Nuijten, P. J.,, F. J. van Asten,, W. Gaastra, and, B. A. van der Zeijst. 1990. Structural and functional analysis of two Campylobacter jejuni flagellin genes. J. Biol. Chem. 265:1779817804.
70. Ohnishi, K.,, F. Fan,, G. J. Schoenhals,, M. Kihara, and, R. M. Macnab. 1997. The FliO, FliP, FliQ, and FliR proteins of Salmonella typhimurium: putative components for flagellar assembly. J. Bacteriol. 179:60926099.
71. Ohnishi, K.,, K. Kutsukake,, H. Suzuki, and T. Iino. 1992. A novel transcriptional regulation mechanism in the flagellar regulon of Salmonella typhimurium: an anti-sigma factor inhibits the activity of the flagellum-specific sigma factor, σF. Mol. Microbiol. 6:31493157.
72. Pallen, M. J.,, C. W. Penn, and, R. R. Chaudhuri. 2005. Bacterial flagellar diversity in the post-genomic era. Trends Microbiol. 13:143149.
73. Pandza, S. M.,, M. Baetens,, C. H. Park,, T. Au,, M. Keyhan, and A. Matin. 2000. The G-protein FlhF has a role in polar flagellar placement and general stress response induction in Pseudomonas putida. Mol. Microbiol. 36:414423.
74. Park, S.-F.,, D. Purdy, and S. Leach. 2000. Localized reversible frameshift mutation in the flhA gene confers phase variability to flagellin gene expression in Campylobacter coli. J. Bacteriol. 182:207210.
75. Parkhill, J.,, B. W. Wren.,, K. Mungall,, J. M. Ketley,, C. Churcher,, D. Basham,, T. Chillingworth,, R. M. Davies,, T. Feltwell,, S. Holroyd,, K, Gagels,, A. V. Karlyshev,, S. Moule,, M. J. Pallen,, C. W. Penn,, M. A. Quail,, M.-A. Rajandream,, K. M. Rutherford,, A. H. M van Vliet,, S. Whitehead, and, B. G. Barrell. 2000. The genome sequence of the food-borne pathogen Campylobacter jejuni reveals hypervariable sequences. Nature 403:665668.
76. Phillips, M. W., and A. Lee. 1983. Isolation and characterization of a spiral bacterium from the crypts of rodent gastrointestinal tracts. Appl. Environ. Microbiol. 45:675683.
77. Poly, F.,, C. Ewing,, S. Goon,, T. E. Hickey,, D. Rockabrand,, G. Majam,, L. Lee,, J. Phan,, N. J. Savarino, and P. Guerry. 2007. Heterogeneity of a Campylobacter jejuni protein that is secreted through the flagellar filament. Infect. Immun. 75:38593867.
78. Power, M. E.,, R. A. Alm, and, T. J. Trust. 1992. Biochemical and antigenic propertites of the Campylobacter flagellar hook protein. J. Bacteriol. 174:38743883.
79. Powers, T., and P. Walter. 1997. Co-translational protein targeting catalyzed by the Escherichia coli signal recognition particle and its receptor. EMBO J. 16:48804886.
80. Prouty, M. G.,, N. E. Correa, and, K. E. Klose. 2001. The novel σ54- and σ28-dependent flagellar gene transcriptionl hierarchy of Vibrio cholerae. Mol. Microbiol. 39:15951609.
81. Ribes, V.,, K. Römisch,, A. Giner,, B. Dobberstein, and D. Tollervey. 1990. E. coli 4.5S RNA is part of a ribonucleoprotein particle that has properties related to signal recognition particle. Cell 63:591600.
82. Seluanov, A., and E. Bibi. 1997. FtsY, the prokaryotic signal recognition particle receptor homologue, is essential for biogenesis of membrane proteins. J. Biol. Chem. 272:20532055.
83. Sommerlad, S. M., and, D. R. Hendrixson. 2007. Analysis of the roles of FlgP and FlgQ in flagellar motility of Campylobacter jejuni. J. Bacteriol. 189:179186.
84. Song, Y. C.,, S. Jin,, H. Louie,, D. Ng,, R. Lau,, Y. Zhang,, R. Weerasekera,, S. Al Rashid,, L. A. Ward,, S. D. Der, and, V. L. Chan. 2004. FlaC, a protein of Campylobacter jejuni TGH9011 (ATCC43431) secreted through the flagellar apparatus, binds epithelial cells and influences cell invasion. Mol Microbiol. 53:541553.
85. Thibault, P.,, S. M. Logan,, J. F. Kelly,, J. R. Brisson,, C. P. Ewing,, T. J. Trust, and P. Guerry. 2001. Identification of the carbohydrate moieties and glycosylation motifs in Campylobacter jejuni flagellin. J. Biol. Chem. 276:3486234870.
86. Titz, B.,, S. V. Rajagopala,, C. Ester,, R. Häuser, and, P. Uetz. 2006. Novel conserved assembly factor of the bacterial flagellum. J. Bacteriol. 188:77007706.
87. Valent, Q. A.,, P. A. Scotti,, S. High,, J.-W. de Gier,, G. von Heigne,, G. Lentzen,, G. Wintermeyer,, B. Oudega, and J. Luirink. 1998. The Escherichia coli SRP and SecB targeting pathways converge at the translocon. EMBO J. 17:25042512.
88. Wand, M. E.,, R. E. Sockett,, K. J. Evans,, N. Doherty,, P. M. Sharp,, K. R. Hardie, and K. Winzer. 2006. Helicobacter pylori FlhB functions: the FlhB C-terminal homologue HP1575 acts as a “spare part” to permit flagellar export when the HP0770 FlhBCC domain is deleted. J. Bacteriol. 188:75317541.
89. Wang, Y., and, D. E. Taylor. 1990. Natural transformation in Campylobacter species. J. Bacteriol. 172:949955.
90. Wassenaar, T. M.,, N. M. C. Bleumink-Pluym,, D. G. Newell,, P. J. Nuijten, and, B. A. M. van der Zeijst. 1994. Differential flagellin expression in a flaA flaB [H11001] mutant of Campylobacter jejuni. Infect. Immun. 62:39013906.
91. Wassenaar, T. M.,, N. M. C. Bleumink-Pluym, and, B. A. M. van der Zeijst. 1991. Inactivation of Campylobacter jejuni flagellin genes by homologous recombination demonstrates that flaA but not flaB is required for invasion. EMBO J. 10:20552061.
92. Wassenaar, T. M.,, B. A. M. van der Zeijst,, R. Ayling, and, D. G. Newell. 1993. Colonization of chicks by motility mutants of Campylobacter jejuni demonstrates the importance of flagellin A expression. J. Gen. Microbiol. 139:11711175.
93. Wenman, W. M.,, J. Chai,, T. J. Louie,, C. Goudreau,, H. Lior,, D. G. Newell,, A. D. Pearson, and, D. E. Taylor. 1985. Antigenic analysis of Campylobacter flagellar protein and other proteins. J. Clin. Microbiol. 21:108112.
94. Wösten, M. M. S. M.,, J. A. Wagenaar, and, J. P. M. van Putten. 2004. The FlgS/FlgR two-component signal transduction system regulates the fla regulon in Campylobacter jejuni. J. Biol. Chem. 279:1621416222.
95. Yao, R.,, D. H. Burr,, P. Doig,, T. J. Trust,, H. Niu, and P. Guerry. 1994. Isolation of motile and non-motile insertional mutants of Campylobacter jejuni: the role of motility in adherence and invasion of eukaryotic cells. Mol. Microbiol. 14:883893.
96. Yao, R.,, D. H. Burr, and P. Guerry. 1997. CheY-mediated modulation of Campylobacter jejuni virulence. Mol. Microbiol. 23:10211031.
97. Yao, R., and P. Guerry. 1996. Molecular cloning and site-specific mutagenesis of a gene involved in arylsulfatase production in Campylobacter jejuni. J. Bacterol. 178:33353338.

Tables

Generic image for table
Table 1.

Known and proposed proteins of that function in flagellar motility

Citation: Hendrixson D. 2008. Regulation of Flagellar Gene Expression and Assembly, p 545-558. In Nachamkin I, Szymanski C, Blaser M (ed), , Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555815554.ch30

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error