1887

Chapter 34 : Regulation of Genes in

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in
Zoomout

Regulation of Genes in , Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555815554/9781555814373_Chap34-1.gif /docserver/preview/fulltext/10.1128/9781555815554/9781555814373_Chap34-2.gif

Abstract:

Transcription factors are grouped on the basis of the presence of conserved motifs and their modes of DNA binding. Genome-wide analysis of several strains indicates that this species contains between approximately 1,650 and 1,800 genes. The genome carries only three sigma factors: RpoD, FliA, and RpoN; the remaining 34 regulators belong to the specific transcription factors. The main essential sigma factor regulating almost all promoters is RpoD. Genome-wide analysis of that is based on this sequence (TGGCAC-N5-TTGC) indicated the existence of 17 putative RpoN promoters. The 17 identified RpoN promoters of control the transcription of 23 genes, of which 15 encode proteins that are involved in the assembly of the flagella. The majority of MarR homologs are transcriptional repressors that are autoregulated. Comparative genomic analysis of revealed the existence of seven major plasticity regions (PR), three of which (PR4, PR5, and PR6) contain genes involved in the production and modification of antigenic surface structures. One mechanism of gene regulation may involve direct modulation of the function of the RNA polymerase. DNA-binding proteins dictate the correct regulation of gene expression, so that the optimal amount and type of proteins are produced in response to specific internal and external stimuli. Although considerable progress has been made, the knowledge of the mechanisms that control gene regulation is still fragmentary.

Citation: Wösten M, van Mourik A, van Putten J. 2008. Regulation of Genes in , p 611-624. In Nachamkin I, Szymanski C, Blaser M (ed), , Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555815554.ch34

Key Concept Ranking

Gene Expression and Regulation
0.4704202
0.4704202
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of Figure 1.
Figure 1.

DNA sequence logos to indicate the sequence conservation of the sigma factors RpoD (A), RpoN (B) and FliA (C). Sequence logos were made of 300 RpoD, 17 RpoN, and 10 FliA promoter sequences with the program Weblogo (http://www.bio.cam.ac.uk/seqlogo/logo.cgi). Sequence conservation is measured in bits, and the degree of conservation of the different nucleotides is indicated by the height of a stack of letters. Numbers under the nucleotides indicate the relative distance to the transcription start site.

Citation: Wösten M, van Mourik A, van Putten J. 2008. Regulation of Genes in , p 611-624. In Nachamkin I, Szymanski C, Blaser M (ed), , Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555815554.ch34
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2.
Figure 2.

Regulons belonging to the (A) FlgS/FlgR, (B) DccS/DccR, and (C) PhosS/PhosR two-component systems. The different two-component systems activate (+) or repress (–) the transcription of the indicated genes and operons. The sizes of the gene arrows correspond to the size of the genes.

Citation: Wösten M, van Mourik A, van Putten J. 2008. Regulation of Genes in , p 611-624. In Nachamkin I, Szymanski C, Blaser M (ed), , Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555815554.ch34
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 3.
Figure 3.

Regulons belonging to Fur and PerR repressor proteins. The response regulators FurR and PerR repress (–) the transcription of the indicated genes and operons. Solid arrows point to genes for which binding of FurR to the promoter regions has been confirmed. Dashed arrows point to genes for direct binding of the transcription factor that still need to be demonstrated. The sizes of the gene arrows correspond to the size of the genes.

Citation: Wösten M, van Mourik A, van Putten J. 2008. Regulation of Genes in , p 611-624. In Nachamkin I, Szymanski C, Blaser M (ed), , Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555815554.ch34
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 4.
Figure 4.

Regulons belonging to (A) NssR and (B) CmeR transcription factors. The different two-component systems activate (+) or repress (–) the transcription of the indicated genes and operons. The sizes of the gene arrows correspond to the size of the genes.

Citation: Wösten M, van Mourik A, van Putten J. 2008. Regulation of Genes in , p 611-624. In Nachamkin I, Szymanski C, Blaser M (ed), , Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555815554.ch34
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555815554.ch34
1. Andersen, M. T.,, L. Brondsted,, B. M. Pearson,, F. Mulholland,, M. Parker,, C. Pin,, J. M. Wells, and, H. Ingmer. 2005. Diverse roles for HspR in Campylobacter jejuni revealed by the proteome, transcriptome and phenotypic characterization of an hspR mutant. Microbiology 151:905915.
2. Andrews, S. C.,, A. K. Robinson, and, F. Rodriguez-Quinones. 2003. Bacterial iron homeostasis. FEMS Microbiol. Rev. 27:215237.
3. Aravind, L.,, V. Anantharaman,, S. Balaji,, M. M. Babu, and, L. M. Iyer. 2005. The many faces of the helix-turn-helix domain: transcription regulation and beyond. FEMS Microbiol. Rev. 29:231262.
4. Baker, C. S.,, L. A. Eory,, H. Yakhnin,, J. Mercante,, T. Romeo, and, P. Babitzke. 2007. CsrA inhibits translation initiation of Escherichia coli hfq by binding to a single site overlapping the Shine-Dalgarno sequence. J. Bacteriol. 189:54725481.
5. Boer, P.,, J. A. Wagenaar,, R. P. Achterberg,, J. P. M. van Putten,, L. M. Schouls, and, B. Duim. 2002. Generation of Campylobacter jejuni genetic diversity in vivo. Mol. Microbiol. 44:351359.
6. Bras, A. M.,, S. Chatterjee,, B. W. Wren,, D. G. Newell, and, J. M. Ketley. 1999. A novel Campylobacter jejuni two-component regulatory system important for temperature-dependent growth and colonization. J. Bacteriol. 181:32983302.
7. Busenlehner, L. S.,, M. A. Pennella, and, D. P. Giedroc. 2003. The SmtB/ArsR family of metalloregulatory transcriptional repressors: structural insights into prokaryotic metal resistance. FEMS Microbiol. Rev. 27:131143.
8. Carrillo, C. D.,, E. Taboada,, J. H. Nash,, P. Lanthier,, J. Kelly,, P. C. Lau,, R. Verhulp,, O. Mykytczuk,, J. Sy,, W. A. Findlay,, K. Amoako,, S. Gomis,, P. Willson,, J. W. Austin,, A. Potter,, L. Babiuk,, B. Allan, and, C. M. Szymanski. 2004. Genome-wide expression analyses of Campylobacter jejuni NCTC11168 reveals coordinate regulation of motility and virulence by flhA. J. Biol. Chem. 279:2032720338.
9. Chatterji, D., and, A. K. Ohja. 2001. Revisiting the stringent response, ppGpp and starvation signaling. Curr. Opin. Microbiol. 4:160165.
10. Creuzenet, C. 2004. Characterization of CJ1293, a new UDP-GlcNAc C6 dehydratase from Campylobacter jejuni. FEBS Lett. 559:136140.
11. Dombroski, A. J.,, W. A. Walter,, M. T. Record,, Jr.,, D. A. Siegele, and, C. A. Gross. 1992. Polypeptides containing highly conserved regions of transcription initiation factor sigma 70 exhibit specificity of binding to promoter DNA. Cell 70:501512.
12. Egan, S. M. 2002. Growing repertoire of AraC/XylS activators. J. Bacteriol. 184:55295532.
13. Elvers, K. T.,, S. M. Turner,, L. M. Wainwright,, G. Marsden,, J. Hinds,, J. A. Cole,, R. K. Poole,, C. W. Penn, and, S. F. Park. 2005. NssR, a member of the Crp-Fnr superfamily from Campylobacter jejuni, regulates a nitrosative stress-responsive regulon that includes both a single-domain and a truncated haemoglobin. Mol. Microbiol. 57:735750.
14. Elvers, K. T.,, G. Wu,, N. J. Gilberthorpe,, R. K. Poole, and, S. F. Park. 2004. Role of an inducible single-domain hemoglobin in mediating resistance to nitric oxide and nitrosative stress in Campylobacter jejuni and Campylobacter coli. J. Bacteriol. 186:53325341.
15. Engels, V., and, V. F. Wendisch. 2007. The DeoR-type regulator SugR represses expression of ptsG in Corynebacterium glutamicum. J. Bacteriol. 189:29552966.
16. Gaynor, E. C.,, D. H. Wells,, J. K. MacKichan, and, S. Falkow. 2005. The Campylobacter jejuni stringent response controls specific stress survival and virulence-associated phenotypes. Mol. Microbiol. 56:827.
17. Goon, S.,, C. P. Ewing,, M. Lorenzo,, D. Pattarini,, G. Majam, and, P. Guerry. 2006. A sigma28-regulated nonflagella gene contributes to virulence of Campylobacter jejuni 81-176. Infect. Immun. 74:769772.
18. Haghjoo, E., and, J. E. Galán. 2007. Identification of a transcriptional regulator that controls intracellular gene expression in Salmonella Typhi. Mol. Microbiol. 64:15491561.
19. Hanninen, M. L.,, M. Hakkinen, and, H. Rautelin. 1999. Stability of related human and chicken Campylobacter jejuni genotypes after passage through chick intestine studied by pulsed-field gel electrophoresis. Appl. Environ. Microbiol. 65:22722275.
20. Hantke, K. 2001. Iron and metal regulation in bacteria. Curr. Opin. Microbiol. 4:172177.
21. Hendrixson, D. R. 2006. A phase-variable mechanism controlling the Campylobacter jejuni FlgR response regulator influences commensalism. Mol. Microbiol. 61:16461659.
22. Hendrixson, D. R., and, V. J. DiRita. 2004. Identification of Campylobacter jejuni genes involved in commensal colonization of the chick gastrointestinal tract. Mol. Microbiol. 52:471484.
23. Hendrixson, D. R., and, V. J. DiRita. 2003. Transcription of σ54-dependent but not σ28-dependent flagellar genes in Campylobacter jejuni is associated with formation of the flagellar secretory apparatus. Mol. Microbiol. 50:687702.
24. Heusipp, G.,, S. Falker, and, M. A. Schmidt. 2007. DNA adenine methylation and bacterial pathogenesis. Int. J. Med. Microbiol. 297:17.
25. Hobman, J. L.,, J. Wilkie, and, N. L. Brown. 2005. A design for life: prokaryotic metal-binding MerR family regulators. Biometals 18:429436.
26. Hofreuter, D.,, J. Tsai,, R. O. Watson,, V. Novik,, B. Altman,, M. Benitez,, C. Clark,, C. Perbost,, T. Jarvie,, L. Du, and, J. E. Galan. 2006. Unique features of a highly pathogenic Campylobacter jejuni strain. Infect. Immun. 74:46944707.
27. Holmes, K.,, F. Mulholland,, B. M. Pearson,, C. Pin,, J. McNicholl-Kennedy,, J. M. Ketley, and, J. M. Wells. 2005. Campylobacter jejuni gene expression in response to iron limitation and the role of Fur. Microbiology 151:243257.
28. Jagannathan, A.,, C. Constantinidou, and, C. W. Penn. 2001. Roles of rpoN, fliA, and flgR in expression of flagella in Campylobacter jejuni. J. Bacteriol. 183:29372942.
29. Korner, H.,, H. J. Sofia, and, W. G. Zumft. 2003. Phylogeny of the bacterial superfamily of Crp-Fnr transcription regulators: exploiting the metabolic spectrum by controlling alternative gene programs. FEMS Microbiol. Rev. 27:559592.
30. Kustu, S.,, A. K. North, and, D. S. Weiss. 1991. Prokaryotic transcriptional enhancers and enhancer-binding proteins. Trends Biochem. Sci. 16:397402.
31. Lin, J.,, M. Akiba,, O. Sahin, and, Q. Zhang. 2005a. CmeR functions as a transcriptional repressor for the multidrug efflux pump CmeABC in Campylobacter jejuni. Antimicrob. Agents Chemother. 49:10671075.
32. Lin, J.,, C. Cagliero,, B. Guo,, Y. W. Barton,, M. C. Maurel,, S. Payot, and, Q. Zhang. 2005b. Bile salts modulate expression of the CmeABC multidrug efflux pump in Campylobacter jejuni. J. Bacteriol. 187:74177424.
33. Lin, J.,, L. O. Michel, and, Q. Zhang. 2002. CmeABC functions as a multidrug efflux system in Campylobacter jejuni. Antimicrob. Agents Chemother. 46:21242131.
34. Logan, S. M.,, J. F. Kelly,, P. Thibault,, C. P. Ewing, and, P. Guerry. 2002. Structural heterogeneity of carbohydrate modifications affects serospecificity of Campylobacter flagellins. Mol. Microbiol. 46:587597.
35. MacKichan, J. K.,, E. C. Gaynor,, C. Chang,, S. Cawthraw,, D. G. Newell,, J. F. Miller, and, S. Falkow. 2004. The Campylobacter jejuni dccRS two-component system is required for optimal in vivo colonization but is dispensable for in vitro growth. Mol. Microbiol. 54:12691286.
36. Moen, B.,, A. Oust,, O. Langsrud,, N. Dorrell,, G. L. Marsden,, J. Hinds,, A. Kohler,, B. W. Wren, and, K. Rudi. 2005. Explorative multifactor approach for investigating global survival mechanisms of Campylobacter jejuni under environmental conditions. Appl. Environ. Microbiol. 71:20862094.
37. Molina-Henares, A. J.,, T. Krell,, M. Eugenia Guazzaroni,, A. Segura, and, J. L. Ramos. 2006. Members of the IclR family of bacterial transcriptional regulators function as activators and/or repressors. FEMS Microbiol. Rev. 30:157186.
38. Morett, E., and, L. Segovia. 1993. The sigma 54 bacterial enhancer-binding protein family: mechanism of action and phylogenetic relationship of their functional domains. J. Bacteriol. 175:60676074.
39. Muller, S.,, M. Pflock,, J. Schar,, S. Kennard, and, D. Beier. 2007. Regulation of expression of atypical orphan response regulators of Helicobacter pylori. Microbiol. Res. 162:114.
40. Narberhaus, F. 1999. Negative regulation of bacterial heat shock genes. Mol. Microbiol. 31:18.
41. Palyada, K.,, D. Threadgill, and, A. Stintzi. 2004. Iron acquisition and regulation in Campylobacter jejuni. J. Bacteriol. 186:47144729.
42. Parker, C. T.,, B. Quinones,, W. G. Miller,, S. T. Horn, and, R. E. Mandrell. 2006. Comparative genomic analysis of Campylobacter jejuni strains reveals diversity due to genomic elements similar to those present in C. jejuni strain RM1221. J. Clin. Microbiol. 44:41254135.
43. Parkhill, J.,, B. W. Wren,, K. Mungall,, J. M. Ketley,, C. Churcher,, D. Basham,, T. Chillingworth,, R. M. Davies,, T. Feltwell,, S. Holroyd,, K. Jagels,, A. V. Karlyshev,, S. Moule,, M. J. Pallen,, C. W. Penn,, M. A. Quail,, M. A. Rajandream,, K. M. Rutherford,, A. H. van Vliet,, S. Whitehead, and, B. G. Barrell. 2000. The genome sequence of the food-borne pathogen Campylobacter jejuni reveals hypervariable sequences. Nature 403:665668.
44. Parkinson, J. S. 1993. Signal transduction schemes of bacteria. Cell 73:857871.
45. Pearson, B. M.,, C. Pin,, J. Wright,, K. Anson,, T. Humphrey, and, J. M. Wells. 2003. Comparative genome analysis of Campylobacter jejuni using whole genome DNA microarrays. FEBS Lett. 554:224230
46. Peres, C. M., and, C. S. Harwood. 2006. BadM is a transcriptional repressor and one of three regulators that control benzoyl coenzyme A reductase gene expression in Rhodopseudomonas palustris. J. Bacteriol. 188:86628665.
47. Perraud, A. L.,, V. Weiss, and, R. Gross. 1999. Signalling pathways in two-component phosphorelay systems. Trends Microbiol. 7:115120.
48. Petersen, L.,, T. S. Larsen,, D. W. Ussery,, S. L. On, and, A. Krogh. 2003. RpoD promoters in Campylobacter jejuni exhibit a strong periodic signal instead of a –35 box. J. Mol. Biol. 326:13611372.
49. Pittman, M. S.,, K. T. Elvers,, L. Lee,, M. A. Jones,, R. K. Poole,, S. F. Park, and, D. J. Kelly. 2007. Growth of Campylobacter jejuni on nitrate and nitrite: electron transport to NapA and NrfA via NrfH and distinct roles for NrfA and the globin Cgb in protection against nitrosative stress. Mol. Microbiol. 63:575590.
50. Poly, F.,, C. Ewing,, S. Goon,, T. E. Hickey,, D. Rockabrand,, G. Majam,, L. Lee,, J. Phan,, N. J. Savarino, and, P. Guerry. 2007. Heterogeneity of a Campylobacter jejuni protein that is secreted through the flagella filament. Infect. Immun. 75:38593867.
51. Poole, R. K. 2005. Nitric oxide and nitrosative stress tolerance in bacteria. Biochem. Soc. Trans. 33:176180.
52. Pumbwe, L., and, L. J. Piddock. 2002. Identification and molecular characterisation of CmeB, a Campylobacter jejuni multidrug efflux pump. FEMS Microbiol. Lett. 206:185189.
53. Ramos, J. L.,, M. Martinez-Bueno,, A. J. Molina-Henares,, W. Teran,, K. Watanabe,, X. Zhang,, M. T. Gallegos,, R. Brennan, and, R. Tobes. 2005. The TetR family of transcriptional repressors. Microbiol. Mol. Biol. Rev. 69:326356.
54. Raphael, B. H.,, S. Pereira,, G. A. Flom,, Q. Zhang,, J. M. Ketley, and, M. E. Konkel. 2005. The Campylobacter jejuni response regulator, CbrR, modulates sodium deoxycholate resistance and chicken colonization. J. Bacteriol. 187:36623670.
55. Ratledge, C., and, L. G. Dover. 2000. Iron metabolism in pathogenic bacteria. Annu. Rev. Microbiol. 54:881941.
56. Ridley, K. A.,, J. D. Rock,, Y. Li, and, J. M. Ketley. 2006. Heme utilization in Campylobacter jejuni. J. Bacteriol. 188:78627875.
57. Schell, M. A. 1993. Molecular biology of the LysR family of transcriptional regulators. Annu. Rev. Microbiol. 47:597626.
58. Serkin, C. D., and, H. S. Seifert. 2000. Iron availability regulates DNA recombination in Neisseria gonorrhoeae. Mol. Microbiol. 37:10751086.
59. Shingler, V. 1996. Signal sensing by sigma 54-dependent regulators: derepression as a control mechanism. Mol. Microbiol. 19:409416.
60. Sommerlad, S. M., and, D. R. Hendrixson. 2007. Analysis of the roles of FlgP and FlgQ in flagellar motility of Campylobacter jejuni. J. Bacteriol. 189:179186.
61. Spohn, G.,, A. Danielli,, D. Roncarati,, I. Delany,, R. Rappuoli, and, V. Scarlato. 2004. Dual control of Helicobacter pylori heat shock gene transcription by HspR and HrcA. J. Bacteriol. 186:29562965.
62. Stintzi, A. 2003. Gene expression profile of Campylobacter jejuni in response to growth temperature variation. J. Bacteriol. 185:20092016.
63. Stintzi, A.,, D. Marlow,, K. Palyada,, H. Naikare,, R. Panciera,, L. Whitworth, and, C. Clarke. 2005. Use of genome-wide expression profiling and mutagenesis to study the intestinal lifestyle of Campylobacter jejuni. Infect. Immun. 73:17971810.
64. Stock, A. M.,, V. L. Robinson, and, P. N. Goudreau. 2000. Two-component signal transduction. Annu. Rev. Biochem. 69:183215.
65. Studholme, D. J., and, M. Buck. 2000. The biology of enhancer-dependent transcriptional regulation in bacteria: insights from genome sequences. FEMS Microbiol. Lett. 186:19.
66. Studholme, D. J., and, R. N. Pau. 2003. A DNA element recognised by the molybdenum-responsive transcription factor ModE is conserved in Proteobacteria, green sulphur bacteria and Archaea. BMC Microbiol. 3:24.
67. Thompson, S. A.,, O. L. Shedd,, K. C. Ray,, M. H. Beins,, J. P. Jorgensen, and, M. J. Blaser. 1998. Campylobacter fetus surface layer proteins are transported by a type I secretion system. J. Bacteriol. 180:64506458.
68. van Vliet, A. H.,, M. L. Baillon,, C. W. Penn, and, J. M. Ketley. 1999. Campylobacter jejuni contains two fur homologs: characterization of iron-responsive regulation of peroxide stress defense genes by the PerR repressor. J. Bacteriol. 181:63716376.
69. van Vliet, A. H.,, J. M. Ketley,, S. F. Park, and, C. W. Penn. 2002. The role of iron in Campylobacter gene regulation, metabolism and oxidative stress defense. FEMS Microbiol. Rev. 26:173186.
70. Vogel, J., and, E. G. Wagner. 2007. Target identification of small noncoding RNAs in bacteria. Curr. Opin. Microbiol. 10:262270.
71. Voskuil, M. I.,, K. Voepel, and, G. H. Chambliss. 1995. The –16 region, a vital sequence for the utilization of a promoter in Bacillus subtilis and Escherichia coli. Mol. Microbiol. 17:271279.
72. Wilkinson, S. P., and, A. Grove. 2004. HucR, a novel uric acid-responsive member of the MarR family of transcriptional regulators from Deinococcus radiodurans. J. Biol. Chem. 279:5144251450.
73. Wilkinson, S. P., and, A. Grove. 2006. Ligand-responsive transcriptional regulation by members of the MarR family of winged helix proteins. Curr. Issues Mol. Biol. 8:5162.
74. Woodall, C. A.,, M. A. Jones,, P. A. Barrow,, J. Hinds,, G. L. Mars-den,, D. J. Kelly,, N. Dorrell,, B. W. Wren, and, D. J. Maskell. 2005. Campylobacter jejuni gene expression in the chick cecum: evidence for adaptation to a low-oxygen environment. Infect. Immun. 73:52785285.
75. Wooldridge, K. G.,, P. H. Williams, and, J. M. Ketley. 1994. Iron-responsive genetic regulation in Campylobacter jejuni: cloning and characterization of a fur homolog. J. Bacteriol. 176:58525856.
76. Wösten, M. M.,, M. Boeve,, W. Gaastra, and, B. A. M. van der Zeijst. 1998a. Cloning and characterization of the gene encoding the primary σ-factor of Campylobacter jejuni. FEMS Microbiol. Lett. 162:97103.
77. Wösten, M. M.,, M. Boeve,, M. G. Koot,, A. C. van Nuene, and, B. A. M. van der Zeijst. 1998b. Identification of Campylobacter jejuni promoter sequences. J. Bacteriol. 180:594599.
78. Wösten, M. M.,, C. T. Parker,, A. van Mourik,, M. R. Guilhabert,, L. van Dijk, and, J. P. M. van Putten. 2006. The Campylobacter jejuni PhosS/PhosR operon represents a non-classical phosphate-sensitive two-component system. Mol. Microbiol. 62:278291.
79. Wösten, M. M.,, J. A. Wagenaar, and, J. P. M. van Putten. 2004. The FlgS/FlgR two-component signal transduction system regulates the fla regulon in Campylobacter jejuni. J. Biol. Chem. 279:1621416222.
80. Young, B. A.,, T. M. Gruber, and, C. A. Gross. 2002. Views of transcription initiation. Cell 109:417420.

Tables

Generic image for table
Table 1.

transcription factors

Citation: Wösten M, van Mourik A, van Putten J. 2008. Regulation of Genes in , p 611-624. In Nachamkin I, Szymanski C, Blaser M (ed), , Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555815554.ch34

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error