1887

Chapter 2 : Role of Toll-Like Receptors in the Innate Immune Response to RNA Viruses

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in
Zoomout

Role of Toll-Like Receptors in the Innate Immune Response to RNA Viruses, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555815561/9781555814366_Chap02-1.gif /docserver/preview/fulltext/10.1128/9781555815561/9781555814366_Chap02-2.gif

Abstract:

Innate immunity is based on an intricate system of host pattern recognition receptors (PRRs) that specifically recognize pathogen-associated molecular patterns (PAMPs). Toll-like receptors (TLRs) are ubiquitously and constitutively expressed on many different cell types including both immune and nonimmune cells. Cytotoxic T lymphocytes (CTLs) are potentially the most important protective component of host immunity to an array of viruses. Thus, the significance of TLRs in preventing virus-induced disease may lie in this cross talk between the innate immune response and antigen-specific adaptive immunity. The RNA viruses described in this chapter are all from distinct virus families, highlighting the overall importance of TLR2 and TLR4 in sensing RNA viral proteins as immediate danger signals of virus infection. RNA viruses have evolved specific mechanisms to inhibit TLR signaling pathways, and this provides compelling evidence for the importance of TLR-induced antiviral immunity in controlling RNA virus replication. In naturally occurring virus infections, TLR3 may in fact play a key role in controlling virus spread through the induction of a less damaging proinflammatory response to much lower viral doses. The exact physiological role of TLR3 in host innate immunity to RNA viruses has remained somewhat elusive. Cell-type specificity is a critical consideration in assessing the physiological contribution of TLRs to the innate immune response to RNA viruses. Priming an efficient immune response would potentially allow the host to limit replication of the virus and hence limit disease progression and even potentially lead to viral clearance.

Citation: Bowie A, Keating S. 2009. Role of Toll-Like Receptors in the Innate Immune Response to RNA Viruses, p 9-27. In Brasier A, García-Sastre A, Lemon S (ed), Cellular Signaling and Innate Immune Responses to RNA Virus Infections. ASM Press, Washington, DC. doi: 10.1128/9781555815561.ch2

Key Concept Ranking

Mouse mammary tumor virus
0.492981
0.492981
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of Figure 1
Figure 1

Activation of NF-κB by TLRs. Upon engagement of viral PAMPs at the surface of the cell (for TLR2 and TLR4) or within endosomal compartments (for TLR3 and TLR7/8), TLR dimerization occurs. This induces conformational changes within the receptor TIR domains, allowing them to recruit the appropriate downstream TIR adaptor via TIR:TIR domain associations. This is followed by activation of the IRAKs and, critically, triggering of TRAF6 ubiquitination by IRAK-2. Lysine-63-linked polyubiquitin chains conjugated to TRAF6 are specifically recognized by TAB2/3, which results in activation of the TAK1 complex and subsequent phosphorylation of the IKK complex by TAK1. TAK1-mediated phosphorylation of MKK6 leads to JNK and p38 MAP kinase activation. Phosphorylation of IκB-α by the activated IKK complex is coupled to lysine-48-linked ubiquitination of IκB-α and its subsequent proteasomal degradation. This allows NF-κB dimers to translocate into the nucleus and induce transcription of proinflammatory cytokines.

Citation: Bowie A, Keating S. 2009. Role of Toll-Like Receptors in the Innate Immune Response to RNA Viruses, p 9-27. In Brasier A, García-Sastre A, Lemon S (ed), Cellular Signaling and Innate Immune Responses to RNA Virus Infections. ASM Press, Washington, DC. doi: 10.1128/9781555815561.ch2
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2
Figure 2

Activation of IRFs by TLRs. Upon binding of their associated viral PAMPs, TLR3 and TLR4 trigger activation of IRF3 and IRF7 via the TIR adaptor TRIF. TLR3 recruits TRIF directly while TLR4 engages TRIF through the bridging adaptor TRAM. TRIF stimulates activation of the noncanonical IKK kinases, TBK1 and IKK-ε, through associations with TRAF3 and NAP1. These kinases mediate phosphorylation of IRF3 and IRF7, facilitating their dimerization and translocation to the nucleus, where they upregulate the transcription of type I interferons (IFN-α and IFN-β). TLR7/8 recruits the TIR adaptor MyD88, which then activates the serine/threonine kinases IRAK-4 and IRAK-1. IRAK-1 can then go on to directly phosphorylate IRF7 in a process that requires TRAF6 and TRAF3. Opsonin and IKK-α have also been implicated in this signaling process, but the exact details of their involvement have yet to be deciphered.

Citation: Bowie A, Keating S. 2009. Role of Toll-Like Receptors in the Innate Immune Response to RNA Viruses, p 9-27. In Brasier A, García-Sastre A, Lemon S (ed), Cellular Signaling and Innate Immune Responses to RNA Virus Infections. ASM Press, Washington, DC. doi: 10.1128/9781555815561.ch2
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555815561.ch02
1. Ahmad-Nejad, P.,, H. Hacker,, M. Rutz,, S. Bauer,, R. M. Vabulas, and, H. Wagner. 2002. Bacterial CpG-DNA and lipopolysaccharides activate Toll-like receptors at distinct cellular compartments. Eur. J. Immunol. 32:19581968.
2. Ahonen, C. L.,, C. L. Doxsee,, S. M. McGurran,, T. R. Riter,, W. F. Wade,, R. J. Barth,, J. P. Vasilakos,, R. J. Noelle, and, R. M. Kedl. 2004. Combined TLR and CD40 triggering induces potent CD8+ T cell expansion with variable dependence on type I IFN. J. Exp. Med. 199:775784.
3. Akira, S.,, S. Uematsu, and, O. Takeuchi. 2006. Pathogen recognition and innate immunity. Cell 124:783801.
4. Alexopoulou, L.,, A. C. Holt,, R. Medzhitov, and, R. A. Flavell. 2001. Recognition of double-stranded RNA and activation of NF-kappaB by Toll-like receptor 3. Nature 413:732738.
5. Bell, J. K.,, I. Botos,, P. R. Hall,, J. Askins,, J. Shiloach,, D. M. Segal, and, D. R. Davies. 2005. The molecular structure of the Toll-like receptor 3 ligand-binding domain. Proc. Natl. Acad. Sci. USA 102:1097610980.
6. Bieback, K.,, E. Lien,, I. M. Klagge,, E. Avota,, J. Schneider-Schaulies,, W. P. Duprex,, H. Wagner,, C. J. Kirschning,, V. Ter Meulen, and, S. Schneider-Schaulies. 2002. Hemagglutinin protein of wild-type measles virus activates Toll-like receptor 2 signaling. J. Virol. 76:87298736.
7. Brooks, D. G.,, M. J. Trifilo,, K. H. Edelmann,, L. Teyton,, D. B. McGavern, and, M. B. Oldstone. 2006. Interleukin-10 determines viral clearance or persistence in vivo. Nat. Med. 12:13011309.
8. Burns, K.,, J. Clatworthy,, L. Martin,, F. Martinon,, C. Plumpton,, B. Maschera,, A. Lewis,, K. Ray,, J. Tschopp, and, F. Volpe. 2000. Tollip, a new component of the IL-1RI pathway, links IRAK to the IL-1 receptor. Nat. Cell. Biol. 2:346351.
9. Cao, Z.,, W. J. Henzel, and, X. Gao. 1996. IRAK: a kinase associated with the interleukin-1 receptor. Science 271:11281131.
10. Chen, Z. J. 2005. Ubiquitin signalling in the NF-kappaB pathway. Nat. Cell Biol. 7:758765.
11. Choe, J.,, M. S. Kelker, and, I. A. Wilson. 2005. Crystal structure of human Toll-like receptor 3 (TLR3) ecto-domain. Science 309:581585.
12. Collins, S. E.,, R. S. Noyce, and, K. L. Mossman. 2004. Innate cellular response to virus particle entry requires IRF3 but not virus replication. J. Virol. 78:17061717.
13. Deng, L.,, C. Wang,, E. Spencer,, L. Yang,, A. Braun,, J. You,, C. Slaughter,, C. Pickart, and, Z. J. Chen. 2000. Activation of the IkappaB kinase complex by TRAF6 requires a dimeric ubiquitin-conjugating enzyme complex and a unique polyubiquitin chain. Cell 103:351361.
14. Diebold, S. S.,, T. Kaisho,, H. Hemmi,, S. Akira, and, C. Reis e Sousa. 2004. Innate antiviral responses by means of TLR7-mediated recognition of single-stranded RNA. Science 303:15291531.
15. Diebold, S. S.,, C. Massacrier,, S. Akira,, C. Paturel,, Y. Morel, and, C. Reis e Sousa. 2006. Nucleic acid agonists for Toll-like receptor 7 are defined by the presence of uridine ribonucleotides. Eur. J. Immunol. 36:32563267.
16. Dolganiuc, A.,, S. Oak,, K. Kodys,, D. T. Golenbock,, R. W. Finberg,, E. Kurt-Jones, and, G. Szabo. 2004. Hepatitis C core and nonstructural 3 proteins trigger Toll-like receptor 2-mediated pathways and inflammatory activation. Gastroenterology 127:15131524.
17. Du, X.,, A. Poltorak,, Y. Wei, and, B. Beutler. 2000. Three novel mammalian Toll-like receptors: gene structure, expression, and evolution. Eur. Cytokine Netw. 11:362371.
18. Edelmann, K. H.,, S. Richardson-Burns,, L. Alexopoulou,, K. L. Tyler,, R. A. Flavell, and, M. B. Oldstone. 2004. Does Toll-like receptor 3 play a biological role in virus infections? Virology 322:231238.
19. Ehl, S.,, R. Bischoff,, T. Ostler,, S. Vallbracht,, J. Schulte-Monting,, A. Poltorak, and, M. Freudenberg. 2004. The role of Toll-like receptor 4 versus interleukin-12 in immunity to respiratory syncytial virus. Eur. J. Immunol. 34:11461153.
20. Ejrnaes, M.,, C. M. Filippi,, M. M. Martinic,, E. M. Ling,, L. M. Togher,, S. Crotty, and, M. G. von Herrath. 2006. Resolution of a chronic viral infection after interleukin-10 receptor blockade. J. Exp. Med. 203:24612472.
21. Fitzgerald, K. A.,, S. M. McWhirter,, K. L. Faia,, D. C. Rowe,, E. Latz,, D. T. Golenbock,, A. J. Coyle,, S. M. Liao, and, T. Maniatis. 2003. IKKepsilon and TBK1 are essential components of the IRF3 signaling pathway. Nat. Immunol. 4:491496.
22. Fitzgerald, K. A.,, E. M. Palsson-McDermott,, A. G. Bowie,, C. A. Jefferies,, A. S. Mansell,, G. Brady,, E. Brint,, A. Dunne,, P. Gray,, M. T. Harte,, D. McMurray,, D. E. Smith,, J. E. Sims,, T. A. Bird, and, L. A. O’Neill. 2001. Mal (MyD88-adapter-like) is required for Toll-like receptor-4 signal transduction. Nature 413:7883.
23. Fitzgerald, K. A.,, D. C. Rowe,, B. J. Barnes,, D. R. Caffrey,, A. Visintin,, E. Latz,, B. Monks,, P. M. Pitha, and, D. T. Golenbock. 2003. LPS-TLR4 signaling to IRF-3/7 and NF-kappaB involves the Toll adapters TRAM and TRIF. J. Exp. Med. 198:10431055.
24. Foy, E.,, K. Li,, R. Sumpter, Jr.,, Y. M. Loo,, C. L. Johnson,, C. Wang,, P. M. Fish,, M. Yoneyama,, T. Fujita,, S. M. Lemon, and, M. Gale, Jr. 2005. Control of antiviral defenses through hepatitis C virus disruption of retinoic acid-inducible gene-I signaling. Proc. Natl. Acad. Sci. USA 102:29862991.
25. Foy, E.,, K. Li,, C. Wang,, R. Sumpter, Jr.,, M. Ikeda,, S. M. Lemon, and, M. Gale, Jr. 2003. Regulation of interferon regulatory factor-3 by the hepatitis C virus serine protease. Science 300:11451148.
26. Fujimoto, C.,, Y. Nakagawa,, K. Ohara, and, H. Takahashi. 2004. Polyriboinosinic polyribocytidylic acid [poly(I:C)]/TLR3 signaling allows class I processing of exogenous protein and induction of HIV-specific CD8+ cytotoxic T lymphocytes. Int. Immunol. 16:5563.
27. Funami, K.,, M. Matsumoto,, H. Oshiumi,, T. Akazawa,, A. Yamamoto, and, T. Seya. 2004. The cytoplasmic ‘linker region’ in Toll-like receptor 3 controls receptor localization and signaling. Int. Immunol. 16:11431154.
28. Gagro, A.,, M. Tominac,, V. Krsulovic-Hresic,, A. Bace,, M. Matic,, V. Drazenovic,, G. Mlinaric-Galinovic,, E. Kosor,, K. Gotovac,, I. Bolanca,, S. Batinica, and, S. Rabatic. 2004. Increased Toll-like receptor 4 expression in infants with respiratory syncytial virus bronchiolitis. Clin. Exp. Immunol. 135:267272.
29. Georgel, P.,, Z. Jiang,, S. Kunz,, E. Janssen,, J. Mols,, K. Hoebe,, S. Bahram,, M. B. Oldstone, and, B. Beutler. 2007. Vesicular stomatitis virus glycoprotein G activates a specific antiviral Toll-like receptor 4-dependent pathway. Virology 362:304313.
30. Gohda, J.,, T. Matsumura, and, J. Inoue. 2004. Cutting edge: TNFR-associated factor (TRAF) 6 is essential for MyD88-dependent pathway but not Toll/IL-1 receptor domain-containing adaptor-inducing IFN-beta (TRIF)-dependent pathway in TLR signaling. J. Immunol. 173:29132917.
31. Gowen, B. B.,, J. D. Hoopes,, M. H. Wong,, K. H. Jung,, K. C. Isakson,, L. Alexopoulou,, R. A. Flavell, and, R. W. Sidwell. 2006. TLR3 deletion limits mortality and disease severity due to phlebovirus infection. J. Immunol. 177:63016307.
32. Guillot, L.,, R. Le Goffic,, S. Bloch,, N. Escriou,, S. Akira,, M. Chignard, and, M. Si-Tahar. 2005. Involvement of Toll-like receptor 3 in the immune response of lung epithelial cells to double-stranded RNA and influenza A virus. J. Biol. Chem. 280:55715580.
33. Hacker, H.,, V. Redecke,, B. Blagoev,, I. Kratchmarova,, L. C. Hsu,, G. G. Wang,, M. P. Kamps,, E. Raz,, H. Wagner,, G. Hacker,, M. Mann, and, M. Karin. 2006. Specificity in Toll-like receptor signalling through distinct effector functions of TRAF3 and TRAF6. Nature 439:204207.
34. Hardarson, H. S.,, J. S. Baker,, Z. Yang,, E. Purevjav,, C. H. Huang,, L. Alexopoulou,, N. Li,, R. A. Flavell,, N. E. Bowles, and, J. G. Vallejo. 2007. Toll-like receptor 3 is an essential component of the innate stress response in virus-induced cardiac injury. Am. J. Physiol. Heart Circ. Physiol. 292:H251H258.
35. Harte, M. T.,, I. R. Haga,, G. Maloney,, P. Gray,, P. C. Reading,, N. W. Bartlett,, G. L. Smith,, A. Bowie, and, L. A. O’Neill. 2003. The poxvirus protein A52R targets Toll-like receptor signaling complexes to suppress host defense. J. Exp. Med. 197:343351.
36. Heil, F.,, P. Ahmad-Nejad,, H. Hemmi,, H. Hochrein,, F. Ampenberger,, T. Gellert,, H. Dietrich,, G. Lipford,, K. Takeda,, S. Akira,, H. Wagner, and, S. Bauer. 2003. The Toll-like receptor 7 (TLR7)-specific stimulus loxoribine uncovers a strong relationship within the TLR7, 8 and 9 subfamily. Eur. J. Immunol. 33:29872997.
37. Heil, F.,, H. Hemmi,, H. Hochrein,, F. Ampenberger,, C. Kirschning,, S. Akira,, G. Lipford,, H. Wagner, and, S. Bauer. 2004. Species-specific recognition of single-stranded RNA via Toll-like receptor 7 and 8. Science 303:15261529.
38. Hemmi, H.,, T. Kaisho,, O. Takeuchi,, S. Sato,, H. Sanjo,, K. Hoshino,, T. Horiuchi,, H. Tomizawa,, K. Takeda, and, S. Akira. 2002. Small anti-viral compounds activate immune cells via the TLR7 MyD88-dependent signaling pathway. Nat. Immunol. 3:196200.
39. Hemmi, H.,, O. Takeuchi,, T. Kawai,, T. Kaisho,, S. Sato,, H. Sanjo,, M. Matsumoto,, K. Hoshino,, H. Wagner,, K. Takeda, and, S. Akira. 2000. A Toll-like receptor recognizes bacterial DNA. Nature 408:740745.
40. Hemmi, H.,, O. Takeuchi,, S. Sato,, M. Yamamoto,, T. Kaisho,, H. Sanjo,, T. Kawai,, K. Hoshino,, K. Takeda, and, S. Akira. 2004. The roles of two IkappaB kinase-related kinases in lipopolysaccharide and double stranded RNA signaling and viral infection. J. Exp. Med. 199:16411650.
41. Hoebe, K.,, X. Du,, P. Georgel,, E. Janssen,, K. Tabeta,, S. O. Kim,, J. Goode,, P. Lin,, N. Mann,, S. Mudd,, K. Crozat,, S. Sovath,, J. Han, and, B. Beutler. 2003. Identification of Lps2 as a key transducer of MyD88-independent TIR signalling. Nature 424:743748.
42. Honda, K.,, Y. Ohba,, H. Yanai,, H. Negishi,, T. Mizutani,, A. Takaoka,, C. Taya, and, T. Taniguchi. 2005. Spatiotemporal regulation of MyD88-IRF-7 signalling for robust type-I interferon induction. Nature 434:10351040.
43. Honda, K.,, H. Yanai,, H. Negishi,, M. Asagiri,, M. Sato,, T. Mizutani,, N. Shimada,, Y. Ohba,, A. Takaoka,, N. Yoshida, and, T. Taniguchi. 2005. IRF-7 is the master regulator of type-I interferon-dependent immune responses. Nature 434:772777.
44. Hornung, V.,, J. Ellegast,, S. Kim,, K. Brzozka,, A. Jung,, H. Kato,, H. Poeck,, S. Akira,, K. K. Conzelmann,, M. Schlee,, S. Endres, and, G. Hartmann. 2006. 5′-Triphosphate RNA is the ligand for RIG-I. Science 314:994997.
45. Hoshino, K.,, T. Sugiyama,, M. Matsumoto,, T. Tanaka,, M. Saito,, H. Hemmi,, O. Ohara,, S. Akira, and, T. Kaisho. 2006. IkappaB kinase-alpha is critical for interferon-alpha production induced by Toll-like receptors 7 and 9. Nature 440:949953.
46. Jiang, Z.,, P. Georgel,, X. Du,, L. Shamel,, S. Sovath,, S. Mudd,, M. Huber,, C. Kalis,, S. Keck,, C. Galanos,, M. Freudenberg, and, B. Beutler. 2005. CD14 is required for MyD88-independent LPS signaling. Nat. Immunol. 6:565570.
47. Jiang, Z.,, T. W. Mak,, G. Sen, and, X. Li. 2004. Toll-like receptor 3-mediated activation of NF-kappaB and IRF3 diverges at Toll-IL-1 receptor domain-containing adapter inducing IFN-beta. Proc. Natl. Acad. Sci. USA 101:35333538.
48. Jude, B. A.,, Y. Pobezinskaya,, J. Bishop,, S. Parke,, R. M. Medzhitov,, A. V. Chervonsky, and, T. V. Golovkina. 2003. Subversion of the innate immune system by a retrovirus. Nat. Immunol. 4:573578.
49. Jurk, M.,, F. Heil,, J. Vollmer,, C. Schetter,, A. M. Krieg,, H. Wagner,, G. Lipford, and, S. Bauer. 2002. Human TLR7 or TLR8 independently confer responsiveness to the antiviral compound R-848. Nat. Immunol. 3:499.
50. Kanakaraj, P.,, P. H. Schafer,, D. E. Cavender,, Y. Wu,, K. Ngo,, P. F. Grealish,, S. A. Wadsworth,, P. A. Peterson,, J. J. Siekierka,, C. A. Harris, and, W. P. Fung-Leung. 1998. Interleukin (IL)-1 receptor-associated kinase (IRAK) requirement for optimal induction of multiple IL-1 signaling pathways and IL-6 production. J. Exp. Med. 187:20732079.
51. Kanayama, A.,, R. B. Seth,, L. Sun,, C. K. Ea,, M. Hong,, A. Shaito,, Y. H. Chiu,, L. Deng, and, Z. J. Chen. 2004. TAB2 and TAB3 activate the NF-kappaB pathway through binding to polyubiquitin chains. Mol. Cell 15:535548.
52. Kato, H.,, O. Takeuchi, and, S. Akira. 2006. [Cell type specific involvement of RIG-I in antiviral responses.] Nippon Rinsho 64:12441247.
53. Kato, H.,, O. Takeuchi,, S. Sato,, M. Yoneyama,, M. Yamamoto,, K. Matsui,, S. Uematsu,, A. Jung,, T. Kawai,, K. J. Ishii,, O. Yamaguchi,, K. Otsu,, T. Tsujimura,, C. S. Koh,, C. Reis e Sousa,, Y. Matsuura,, T. Fujita, and, S. Akira. 2006. Differential roles of MDA5 and RIG-I helicases in the recognition of RNA viruses. Nature 441:101105.
54. Katze, M. G.,, Y. He, and, M. Gale, Jr. 2002. Viruses and interferon: a fight for supremacy. Nat. Rev. Immunol. 2:675687.
55. Kawai, T.,, O. Adachi,, T. Ogawa,, K. Takeda, and, S. Akira. 1999. Unresponsiveness of MyD88-deficient mice to endotoxin. Immunity 11:115122.
56. Kawai, T., and, S. Akira. 2007. Antiviral signaling through pattern recognition receptors. J. Biochem. (Tokyo) 141:137145.
57. Kawai, T.,, S. Sato,, K. J. Ishii,, C. Coban,, H. Hemmi,, M. Yamamoto,, K. Terai,, M. Matsuda,, J. Inoue,, S. Uematsu,, O. Takeuchi, and, S. Akira. 2004. Interferon-alpha induction through Toll-like receptors involves a direct interaction of IRF7 with MyD88 and TRAF6. Nat. Immunol. 5:10611068.
58. Keating, S. E.,, G. M. Maloney,, E. M. Moran, and, A. G. Bowie. 2007. IRAK-2 participates in multiple Toll-like receptor signaling pathways to NFκB via activation of TRAF6 ubiquitination. J. Biol. Chem. 282:3343533443.
59. Kim, T. W.,, K. Staschke,, K. Bulek,, J. Yao,, K. Peters,, K. H. Oh,, Y. Vandenburg,, H. Xiao,, W. Qian,, T. Hamilton,, B. Min,, G. Sen,, R. Gilmour, and, X. Li. 2007. A critical role for IRAK4 kinase activity in Toll-like receptor-mediated innate immunity. J. Exp. Med. 204:10251036.
60. Kobayashi, K.,, L. D. Hernandez,, J. E. Galan,, C. A. Janeway, Jr.,, R. Medzhitov, and, R. A. Flavell. 2002. IRAK-M is a negative regulator of Toll-like receptor signaling. Cell 110:191202.
61. Koziczak-Holbro, M.,, C. Joyce,, A. Gluck,, B. Kinzel,, M. Muller,, C. Tschopp,, J. C. Mathison,, C. N. Davis, and, H. Gram. 2007. IRAK-4 kinase activity is required for inter-leukin-1 (IL-1) receptor- and Toll-like receptor 7-mediated signaling and gene expression. J. Biol. Chem. 282:1355213560.
62. Krug, A.,, G. D. Luker,, W. Barchet,, D. A. Leib,, S. Akira, and, M. Colonna. 2004. Herpes simplex virus type 1 activates murine natural interferon-producing cells through Toll-like receptor 9. Blood 103:14331437.
63. Kurt-Jones, E. A.,, L. Popova,, L. Kwinn,, L. M. Haynes,, L. P. Jones,, R. A. Tripp,, E. E. Walsh,, M. W. Freeman,, D. T. Golenbock,, L. J. Anderson, and, R. W. Finberg. 2000. Pattern recognition receptors TLR4 and CD14 mediate response to respiratory syncytial virus. Nat. Immunol. 1:398401.
64. Latz, E.,, A. Schoenemeyer,, A. Visintin,, K. A. Fitzgerald,, B. G. Monks,, C. F. Knetter,, E. Lien,, N. J. Nilsen,, T. Espevik, and, D. T. Golenbock. 2004. TLR9 signals after translocating from the ER to CpG DNA in the lysosome. Nat. Immunol. 5:190198.
65. Lee, H. K.,, J. M. Lund,, B. Ramanathan,, N. Mizushima, and, A. Iwasaki. 2007. Autophagy-dependent viral recognition by plasmacytoid dendritic cells. Science 315:13981401.
66. Le Goffic, R.,, V. Balloy,, M. Lagranderie,, L. Alexopoulou,, N. Escriou,, R. Flavell,, M. Chignard, and, M. Si-Tahar. 2006. Detrimental contribution of the Toll-like receptor (TLR)3 to influenza A virus-induced acute pneumonia. PLoS Pathog. 2:e53.
67. Li, K.,, Z. Chen,, N. Kato,, M. Gale, Jr., and, S. M. Lemon. 2005. Distinct poly(I-C) and virus-activated signaling pathways leading to interferon-β production in hepatocytes. J. Biol. Chem. 280:1673916747.
68. Li, S.,, A. Strelow,, E. J. Fontana, and, H. Wesche. 2002. IRAK-4: a novel member of the IRAK family with the properties of an IRAK-kinase. Proc. Natl. Acad. Sci. USA 99:55675572.
69. Lund, J.,, A. Sato,, S. Akira,, R. Medzhitov, and, A. Iwasaki. 2003. Toll-like receptor 9-mediated recognition of Herpes simplex virus-2 by plasmacytoid dendritic cells. J. Exp. Med. 198:513520.
70. Lund, J. M.,, L. Alexopoulou,, A. Sato,, M. Karow,, N. C. Adams,, N. W. Gale,, A. Iwasaki, and, R. A. Flavell. 2004. Recognition of single-stranded RNA viruses by Toll-like receptor 7. Proc. Natl. Acad. Sci. USA 101:55985603.
71. Martin, M. U., and, H. Wesche. 2002. Summary and comparison of the signaling mechanisms of the Toll/interleukin-1 receptor family. Biochim. Biophys. Acta 1592:265280.
72. Matsumoto, M.,, K. Funami,, M. Tanabe,, H. Oshiumi,, M. Shingai,, Y. Seto,, A. Yamamoto, and, T. Seya. 2003. Subcellular localization of Toll-like receptor 3 in human dendritic cells. J. Immunol. 171:31543162.
73. Matsumoto, M.,, S. Kikkawa,, M. Kohase,, K. Miyake, and, T. Seya. 2002. Establishment of a monoclonal antibody against human Toll-like receptor 3 that blocks double-stranded RNA-mediated signaling. Biochem. Biophys. Res. Commun. 293:13641369.
74. McWhirter, S. M.,, K. A. Fitzgerald,, J. Rosains,, D. C. Rowe,, D. T. Golenbock, and, T. Maniatis. 2004. IFN-regulatory factor 3-dependent gene expression is defective in Tbk1-deficient mouse embryonic fibroblasts. Proc. Natl. Acad. Sci. USA 101:233238.
75. Medzhitov, R.,, P. Preston-Hurlburt,, E. Kopp,, A. Stadlen,, C. Chen,, S. Ghosh, and, C. A. Janeway, Jr. 1998. MyD88 is an adaptor protein in the hToll/IL-1 receptor family signaling pathways. Mol. Cell 2:253258.
76. Meylan, E.,, K. Burns,, K. Hofmann,, V. Blancheteau,, F. Martinon,, M. Kelliher, and, J. Tschopp. 2004. RIP1 is an essential mediator of Toll-like receptor 3-induced NF-kappa B activation. Nat. Immunol. 5:503507.
77. Meylan, E.,, J. Curran,, K. Hofmann,, D. Moradpour,, M. Binder,, R. Bartenschlager, and, J. Tschopp. 2005. Cardif is an adaptor protein in the RIG-I antiviral pathway and is targeted by hepatitis C virus. Nature 437:11671172.
78. Meylan, E., and, J. Tschopp. 2006. Toll-like receptors and RNA helicases: two parallel ways to trigger antiviral responses. Mol. Cell 22:561569.
79. Mibayashi, M.,, L. Martinez-Sobrido,, Y. M. Loo,, W. B. Cardenas,, M. Gale, Jr., and, A. Garcia-Sastre. 2007. Inhibition of retinoic acid-inducible gene I-mediated induction of beta interferon by the NS1 protein of influenza A virus. J. Virol. 81:514524.
80. Muzio, M.,, J. Ni,, P. Feng, and, V. M. Dixit. 1997. IRAK (Pelle) family member IRAK-2 and MyD88 as proximal mediators of IL-1 signaling. Science 278:16121615.
81. Negishi, H.,, Y. Fujita,, H. Yanai,, S. Sakaguchi,, X. Ouyang,, M. Shinohara,, H. Takayanagi,, Y. Ohba,, T. Taniguchi, and, K. Honda. 2006. Evidence for licensing of IFN-gamma-induced IFN regulatory factor 1 transcription factor by MyD88 in Toll-like receptor-dependent gene induction program. Proc. Natl. Acad. Sci. USA 103:1513615141.
82. Oganesyan, G.,, S. K. Saha,, B. Guo,, J. Q. He,, A. Shahangian,, B. Zarnegar,, A. Perry, and, G. Cheng. 2006. Critical role of TRAF3 in the Toll-like receptor-dependent and -independent antiviral response. Nature 439:208211.
83. O’Neill, L. A., and, A. G. Bowie. 2007. The family of five: TIR-domain-containing adaptors in Toll-like receptor signalling. Nat. Rev. Immunol. 7:353364.
84. Oshiumi, H.,, M. Matsumoto,, K. Funami,, T. Akazawa, and, T. Seya. 2003. TICAM-1, an adaptor molecule that participates in Toll-like receptor 3-mediated interferon-beta induction. Nat. Immunol. 4:161167.
85. Oshiumi, H.,, M. Sasai,, K. Shida,, T. Fujita,, M. Matsumoto, and, T. Seya. 2003. TIR-containing adapter molecule (TICAM)-2, a bridging adapter recruiting to Toll-like receptor 4 TICAM-1 that induces interferon-beta. J. Biol. Chem. 278:4975149762.
86. Pichlmair, A., and, C. Reis e Sousa. 2007. Innate recognition of viruses. Immunity 27:370383.
87. Poltorak, A.,, T. Merlin,, P. J. Nielsen,, O. Sandra,, I. Smirnova,, I. Schupp,, T. Boehm,, C. Galanos, and, M. A. Freudenberg. 2001. A point mutation in the IL-12R beta 2 gene underlies the IL-12 unresponsiveness of Lps-defective C57BL/10ScCr mice. J. Immunol. 167:21062111.
88. Rassa, J. C.,, J. L. Meyers,, Y. Zhang,, R. Kudaravalli, and, S. R. Ross. 2002. Murine retroviruses activate B cells via interaction with Toll-like receptor 4. Proc. Natl. Acad. Sci. USA 99:22812286.
89. Reis e Sousa, C. 2004. Toll-like receptors and dendritic cells: for whom the bug tolls. Semin. Immunol. 16:2734.
90. Rudd, B. D.,, E. Burstein,, C. S. Duckett,, X. Li, and, N. W. Lukacs. 2005. Differential role for TLR3 in respiratory syncytial virus-induced chemokine expression. J. Virol. 79:33503357.
91. Rudd, B. D.,, J. J. Smit,, R. A. Flavell,, L. Alexopoulou,, M. A. Schaller,, A. Gruber,, A. A. Berlin, and, N. W. Lukacs. 2006. Deletion of TLR3 alters the pulmonary immune environment and mucus production during respiratory syncytial virus infection. J. Immunol. 176:19371942.
92. Saito, T., and, M. Gale, Jr. 2007. Principles of intracellular viral recognition. Curr. Opin. Immunol. 19:1723.
93. Samuel, C. E. 2001. Antiviral actions of interferons. Clin. Microbiol. Rev. 14:778809.
94. Sasai, M.,, H. Oshiumi,, M. Matsumoto,, N. Inoue,, F. Fujita,, M. Nakanishi, and, T. Seya. 2005. Cutting edge: NF-kappaB-activating kinase-associated protein 1 participates in TLR3/Toll-IL-1 homology domain-containing adapter molecule-1-mediated IFN regulatory factor 3 activation. J. Immunol. 174:2730.
95. Sato, S.,, M. Sugiyama,, M. Yamamoto,, Y. Watanabe,, T. Kawai,, K. Takeda, and, S. Akira. 2003. Toll/IL-1 receptor domain-containing adaptor inducing IFN-beta (TRIF) associates with TNF receptor-associated factor 6 and TANK-binding kinase 1, and activates two distinct transcription factors, NF-kappa B and IFN-regulatory factor-3, in the Toll-like receptor signaling. J. Immunol. 171:43044310.
96. Satoh, M.,, M. Nakamura,, T. Akatsu,, Y. Shimoda,, I. Segawa, and, K. Hiramori. 2004. Toll-like receptor 4 is expressed with enteroviral replication in myocardium from patients with dilated cardiomyopathy. Lab. Invest. 84:173181.
97. Schmitz, F.,, A. Heit,, S. Guggemoos,, A. Krug,, J. Mages,, M. Schiemann,, H. Adler,, I. Drexler,, T. Haas,, R. Lang, and, H. Wagner. 2007. Interferon-regulatory-factor 1 controls Toll-like receptor 9-mediated IFN-beta production in myeloid dendritic cells. Eur. J. Immunol. 37:315327.
98. Schoenemeyer, A.,, B. J. Barnes,, M. E. Mancl,, E. Latz,, N. Goutagny,, P. M. Pitha,, K. A. Fitzgerald, and, D. T. Golenbock. 2005. The interferon regulatory factor, IRF5, is a central mediator of TLR7 signaling. J. Biol. Chem. 280:1700517012.
99. Schroder, M., and, A. G. Bowie. 2005. TLR3 in antiviral immunity: key player or bystander? Trends Immunol. 26:462468.
100. Schulz, O.,, S. S. Diebold,, M. Chen,, T. I. Naslund,, M. A. Nolte,, L. Alexopoulou,, Y. T. Azuma,, R. A. Flavell,, P. Liljestrom, and, C. Reis e Sousa. 2005. Toll-like receptor 3 promotes cross-priming to virus-infected cells. Nature 433:887892.
101. Sharma, S.,, B. R. tenOever,, N. Grandvaux,, G. P. Zhou,, R. Lin, and, J. Hiscott. 2003. Triggering the interferon antiviral response through an IKK-related pathway. Science 300:11481151.
102. Shaw, M. L.,, W. B. Cardenas,, D. Zamarin,, P. Palese, and, C. F. Basler. 2005. Nuclear localization of the Nipah virus W protein allows for inhibition of both virus-and Toll-like receptor 3-triggered signaling pathways. J. Virol. 79:60786088.
103. Shinohara, M. L.,, L. Lu,, J. Bu,, M. B. Werneck,, K. S. Kobayashi,, L. H. Glimcher, and, H. Cantor. 2006. Osteopontin expression is essential for interferon-alpha production by plasmacytoid dendritic cells. Nat. Immunol. 7:498506.
104. Solis, M.,, R. Romieu-Mourez,, D. Goubau,, N. Grandvaux,, T. Mesplede,, I. Julkunen,, A. Nardin,, M. Salcedo, and, J. Hiscott. 2007. Involvement of TBK1 and IKKepsilon in lipopolysaccharide-induced activation of the interferon response in primary human macrophages. Eur. J. Immunol. 37:528539.
105. Song, Y. J.,, K. Y. Jen,, V. Soni,, E. Kieff, and, E. Cahir-McFarland. 2006. IL-1 receptor-associated kinase 1 is critical for latent membrane protein 1-induced p65/RelA serine 536 phosphorylation and NF-kappaB activation. Proc. Natl. Acad. Sci. USA 103:26892694.
106. Sumpter, R., Jr.,, Y. M. Loo,, E. Foy,, K. Li,, M. Yoneyama,, T. Fujita,, S. M. Lemon, and, M. Gale, Jr. 2005. Regulating intracellular antiviral defense and permissiveness to hepatitis C virus RNA replication through a cellular RNA helicase, RIG-I. J. Virol. 79:26892699.
107. Suzuki, N.,, S. Suzuki,, G. S. Duncan,, D. G. Millar,, T. Wada,, C. Mirtsos,, H. Takada,, A. Wakeham,, A. Itie,, S. Li,, J. M. Penninger,, H. Wesche,, P. S. Ohashi,, T. W. Mak, and, W. C. Yeh. 2002. Severe impairment of interleukin-1 and Toll-like receptor signalling in mice lacking IRAK-4. Nature 416:750756.
108. Swantek, J. L.,, M. F. Tsen,, M. H. Cobb, and, J. A. Thomas. 2000. IL-1 receptor-associated kinase modulates host responsiveness to endotoxin. J. Immunol. 164:43014306.
109. Takaoka, A.,, H. Yanai,, S. Kondo,, G. Duncan,, H. Negishi,, T. Mizutani,, S. Kano,, K. Honda,, Y. Ohba,, T. W. Mak, and, T. Taniguchi. 2005. Integral role of IRF-5 in the gene induction programme activated by Toll-like receptors. Nature 434:243249.
110. Tal, G.,, A. Mandelberg,, I. Dalal,, K. Cesar,, E. Somekh,, A. Tal,, A. Oron,, S. Itskovich,, A. Ballin,, S. Houri,, A. Beigelman,, O. Lider,, G. Rechavi, and, N. Amariglio. 2004. Association between common Toll-like receptor 4 mutations and severe respiratory syncytial virus disease. J. Infect. Dis. 189:20572063.
111. Tanner, N. K., and, P. Linder. 2001. DExD/H box RNA helicases: from generic motors to specific dissociation functions. Mol. Cell 8:251262.
112. tenOever, B. R.,, S. L. Ng,, M. A. Chua,, S. M. McWhirter,, A. Garcia-Sastre, and, T. Maniatis. 2007. Multiple functions of the IKK-related kinase IKKepsilon in interferon-mediated antiviral immunity. Science 315:12741278.
113. Thomas, J. A.,, J. L. Allen,, M. Tsen,, T. Dubnicoff,, J. Danao,, X. C. Liao,, Z. Cao, and, S. A. Wasserman. 1999. Impaired cytokine signaling in mice lacking the IL-1 receptor-associated kinase. J. Immunol. 163:978984.
114. Thompson, A. J., and, S. A. Locarnini. 2007. Toll-like receptors, RIG-I-like RNA helicases and the antiviral innate immune response. Immunol. Cell. Biol. 85:435445.
115. Triantafilou, K., and, M. Triantafilou. 2004. Coxsackievirus B4-induced cytokine production in pancreatic cells is mediated through Toll-like receptor 4. J. Virol. 78:1131311320.
116. Uematsu, S.,, S. Sato,, M. Yamamoto,, T. Hirotani,, H. Kato,, F. Takeshita,, M. Matsuda,, C. Coban,, K. J. Ishii,, T. Kawai,, O. Takeuchi, and, S. Akira. 2005. Interleukin-1 receptor-associated kinase-1 plays an essential role for Toll-like receptor (TLR)7- and TLR9-mediated interferon-α induction. J. Exp. Med. 201:915923.
117. Unterholzner, L., and, A. G. Bowie. 2007. The interplay between viruses and innate immune signaling: recent insights and therapeutic opportunities. Biochem. Pharmacol. 75:589602.
118. Wang, C.,, L. Deng,, M. Hong,, G. R. Akkaraju,, J. Inoue, and, Z. J. Chen. 2001. TAK1 is a ubiquitin-dependent kinase of MKK and IKK. Nature 412:346351.
119. Wang, T.,, T. Town,, L. Alexopoulou,, J. F. Anderson,, E. Fikrig, and, R. A. Flavell. 2004. Toll-like receptor 3 mediates West Nile virus entry into the brain causing lethal encephalitis. Nat. Med. 10:13661373.
120. Yamamoto, M.,, S. Sato,, H. Hemmi,, S. Uematsu,, K. Hoshino,, T. Kaisho,, O. Takeuchi,, K. Takeda, and, S. Akira. 2003. TRAM is specifically involved in the Toll-like receptor 4-mediated MyD88-independent signaling pathway. Nat. Immunol. 4:11441150.
121. Yamamoto, M.,, S. Sato,, K. Mori,, K. Hoshino,, O. Takeuchi,, K. Takeda, and, S. Akira. 2002. Cutting edge: a novel Toll/IL-1 receptor domain-containing adapter that preferentially activates the IFN-beta promoter in the Toll-like receptor signaling. J. Immunol. 169:66686672.
122. Yoneyama, M.,, M. Kikuchi,, T. Natsukawa,, N. Shinobu,, T. Imaizumi,, M. Miyagishi,, K. Taira,, S. Akira, and, T. Fujita. 2004. The RNA helicase RIG-I has an essential function in double-stranded RNA-induced innate antiviral responses. Nat. Immunol. 5:730737.
123. Zhou, S.,, E. A. Kurt-Jones,, L. Mandell,, A. Cerny,, M. Chan,, D. T. Golenbock, and, R. W. Finberg. 2005. MyD88 is critical for the development of innate and adaptive immunity during acute lymphocytic choriomeningitis virus infection. Eur. J. Immunol. 35:822830.

Tables

Generic image for table
Table 1

PAMPs presented by RNA viruses and the TLRs that specifically detect them

Citation: Bowie A, Keating S. 2009. Role of Toll-Like Receptors in the Innate Immune Response to RNA Viruses, p 9-27. In Brasier A, García-Sastre A, Lemon S (ed), Cellular Signaling and Innate Immune Responses to RNA Virus Infections. ASM Press, Washington, DC. doi: 10.1128/9781555815561.ch2

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error