Chapter 3 : Cytoplasmic Pattern Receptors (RIG-I and MDA-5) and Signaling in Viral Infections

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in

Cytoplasmic Pattern Receptors (RIG-I and MDA-5) and Signaling in Viral Infections, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555815561/9781555814366_Chap03-1.gif /docserver/preview/fulltext/10.1128/9781555815561/9781555814366_Chap03-2.gif


This chapter focuses on the roles of retinoic acid-inducible gene I (RIG-I)-like RNA helicases (RLHs) in RNA virus recognition and RLH signaling pathways. It describes the roles of the toll-like receptors (TLRs) system with respect to the relationship between these two virus recognition mechanisms during the course of RNA virus infections in vivo. RIG-I mediated signaling is positively and negatively controlled by ubiquitination of RIG-I. First, the caspase recruitment domains (CARDs) of RIG-I undergo Lys-63-linked ubiquitination by tripartite motif (TRIM) 25, a ubiquitin E3 ligase composed of a RING finger domain, B box/coiled-coil domain, and SPRY domain. In addition to RLHs, TLRs are also important in recognizing virus infections. Innate immediate immune responses are important for mounting acquired immune responses to viral infections. Recently, two different virus infection models have been analyzed to examine the roles of RLHs and TLRs in the activation of acquired immune responses. The contributions of these two melanoma differentiation-associated gene 5 (MDA-5) and TLR3 systems to the activation of T-cell responses have been examined. Recent progress in studies of RLHs and their signaling pathways has revealed that the RLH system is essential for inducing innate immune responses in response to RNA viruses infecting cells. Furthermore, various immune cells cooperate in order to establish optimized antiviral immune responses. Thus, studies monitoring immune responses in vivo could be vital to fully clarify the mechanisms of antiviral immune responses.

Citation: Takeuchi O, Akira S. 2009. Cytoplasmic Pattern Receptors (RIG-I and MDA-5) and Signaling in Viral Infections, p 29-38. In Brasier A, García-Sastre A, Lemon S (ed), Cellular Signaling and Innate Immune Responses to RNA Virus Infections. ASM Press, Washington, DC. doi: 10.1128/9781555815561.ch3

Key Concept Ranking

Japanese encephalitis virus
Lymphocytic choriomeningitis virus
West nile virus
Lymphocytic choriomeningitis virus
West nile virus
Lymphocytic choriomeningitis virus
Highlighted Text: Show | Hide
Loading full text...

Full text loading...


Image of Figure 1
Figure 1

RLH-mediated recognition of RNA viruses. RIG-I and MDA-5 recognize 5′-triphosphate RNA and dsRNA from RNA viruses and interact with IPS-1. TRAF3 is recruited to IPS-1, and Lys-63-type polyubiquitination, which is controlled by the presence of DUBA, is induced. Subsequently, TRAF3 recruits TANK/NAP1/SINTBAD and TBK1/IKK-, which phosphorylate IRF3/IRF7. The phosphorylated IRFs translocate into the nucleus and induce the expression of type I IFN genes. NF-κB is also activated by IPS-1 via the FADD and caspase-8/10-dependent pathway.

Citation: Takeuchi O, Akira S. 2009. Cytoplasmic Pattern Receptors (RIG-I and MDA-5) and Signaling in Viral Infections, p 29-38. In Brasier A, García-Sastre A, Lemon S (ed), Cellular Signaling and Innate Immune Responses to RNA Virus Infections. ASM Press, Washington, DC. doi: 10.1128/9781555815561.ch3
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2
Figure 2

TLR signaling pathways leading to the production of type I IFNs. TLR3 and TLR7/9 activate distinct intracellular signaling pathways. TLR3 recruits TRIF as an adaptor molecule. TRIF associates with TRAF3, TRAF6, and RIP-1, which are responsible for the activation of IRF3, IRF7, and NF-κB. Downstream of TRAF3, TLR3 and RLHs share a common signaling cascade. On the other hand, TLR7 and TLR9 activate specialized signaling cascades in pDCs. In response to RNA and DNA viruses, TLR7 and TLR9 recruit MyD88 as an adaptor and activate IRAK-4, IRAK-1, and TRAF6, resulting in activation of the IKK complex and nuclear translocation of NF-κB, which in turn initiates the expression of proinflammatory cytokine genes. IRAK-1 and IKK-α activate IRF7 together with TRAF3 and IKK-α, and induce nuclear translocation of IRF7. Finally, transcription of type I IFN genes occurs.

Citation: Takeuchi O, Akira S. 2009. Cytoplasmic Pattern Receptors (RIG-I and MDA-5) and Signaling in Viral Infections, p 29-38. In Brasier A, García-Sastre A, Lemon S (ed), Cellular Signaling and Innate Immune Responses to RNA Virus Infections. ASM Press, Washington, DC. doi: 10.1128/9781555815561.ch3
Permissions and Reprints Request Permissions
Download as Powerpoint


1. Akira, S.,, S. Uematsu, and, O. Takeuchi. 2006. Pathogen recognition and innate immunity. Cell 124:783801.
2. Arimoto, K.,, H. Takahashi,, T. Hishiki,, H. Konishi,, T. Fujita, and, K. Shimotohno. 2007. Negative regulation of the RIG-I signaling by the ubiquitin ligase RNF125. Proc. Natl. Acad. Sci. USA 104:75007505.
3. Barral, P. M.,, J. M. Morrison,, J. Drahos,, P. Gupta,, D. Sarkar,, P. B. Fisher, and, V. R. Racaniello. 2007. MDA-5 is cleaved in poliovirus-infected cells. J. Virol. 81:36773684.
4. Beutler, B.,, C. Eidenschenk,, K. Crozat,, J. L. Imler,, O. Takeuchi,, J. A. Hoffmann, and, S. Akira. 2007. Genetic analysis of resistance to viral infection. Nat. Rev. Immunol. 7:753766.
5. Casrouge, A.,, S. Y. Zhang,, C. Eidenschenk,, E. Jouanguy,, A. Puel,, K. Yang,, A. Alcais,, C. Picard,, N. Mahfoufi,, N. Nicolas,, L. Lorenzo,, S. Plancoulaine,, B. Senechal,, F. Geissmann,, K. Tabeta,, K. Hoebe,, X. Du,, R. L. Miller,, B. Heron,, C. Mignot,, T. B. de Villemeur,, P. Lebon,, O. Dulac,, F. Rozenberg,, B. Beutler,, M. Tardieu,, L. Abel, and, J. L. Casanova. 2006. Herpes simplex virus encephalitis in human UNC-93B deficiency. Science 314:308312.
6. Chen, Z.,, Y. Benureau,, R. Rijnbrand,, J. Yi,, T. Wang,, L. Warter,, R. E. Lanford,, S. A. Weinman,, S. M. Lemon,, A. Martin, and, K Li. 2007. GB virus B disrupts RIG-I signaling by NS3/4A-mediated cleavage of the adaptor protein MAVS. J. Virol. 81:964976.
7. Fitzgerald, K. A.,, S. M. McWhirter,, K. L. Faia,, D. C. Rowe,, E. Latz,, D. T. Golenbock,, A. J. Coyle,, S. M. Liao, and, T. Maniatis. 2003. IKKepsilon and TBK1 are essential components of the IRF3 signaling pathway. Nat. Immunol. 4:491496.
8. Fredericksen, B. L.,, B. C. Keller,, J. Fornek,, M. G. Katze, and, M. Gale, Jr. 2008. Establishment and maintenance of the innate antiviral response to West Nile virus involves both RIG-I and MDA-5 signaling through IPS-1. J. Virol. 82:609616.
9. Gack, M. U.,, Y. C. Shin,, C. H. Joo,, T. Urano,, C. Liang,, L. Sun,, O. Takeuchi,, S. Akira,, Z. Chen,, S. Inoue, and, J. U. Jung. 2007. TRIM25 RING-finger E3 ubiquitin ligase is essential for RIG-I-mediated antiviral activity. Nature 446:916920.
10. Gitlin, L.,, W. Barchet,, S. Gilfillan,, M. Cella,, B. Beutler,, R. A. Flavell,, M. S. Diamond, and, M. Colonna. 2006. Essential role of mda-5 in type I IFN responses to polyriboinosinic:polyribocytidylic acid and encephalomyocarditis picornavirus. Proc. Natl. Acad. Sci. USA 103:84598464.
11. Guo, B., and, G. Cheng. 2007. Modulation of the interferon antiviral response by the TBK1/IKKi adaptor protein TANK. J. Biol. Chem. 282:1181711826.
12. Hacker, H.,, V. Redecke,, B. Blagoev,, I. Kratchmarova,, L. C. Hsu,, G. G. Wang,, M. P. Kamps,, E. Raz,, H. Wagner,, G. Hacker,, M. Mann, and, M. Karin. 2006. Specificity in Toll-like receptor signalling through distinct effector functions of TRAF3 and TRAF6. Nature 439:204207.
13. He, J. Q.,, B. Zarnegar,, G. Oganesyan,, S. K. Saha,, S. Yamazaki,, S. E. Doyle,, P. W. Dempsey, and, G. Cheng. 2006. Rescue of TRAF3-null mice by p100 NF-kappa B deficiency. J. Exp. Med. 203:24132418.
14. He, J. Q.,, S. K. Saha,, J. R. Kang,, B. Zarnegar, and, G. Cheng. 2007. Specificity of TRAF3 in its negative regulation of the noncanonical NF-kappa B pathway. J. Biol. Chem. 282:36883694.
15. Hemmi, H.,, O. Takeuchi,, S. Sato,, M. Yamamoto,, T. Kaisho,, H. Sanjo,, T. Kawai,, K. Hoshino,, K. Takeda, and, S. Akira. 2004. The roles of two IkappaB kinase-related kinases in lipopolysaccharide and double stranded RNA signaling and viral infection. J. Exp. Med. 199:16411650.
16. Honda, K.,, H. Yanai,, T. Mizutani,, H. Negishi,, N. Shimada,, N. Suzuki,, Y. Ohba,, A. Takaoka,, W. C. Yeh, and, T. Taniguchi. 2004. Role of a transductionaltranscriptional processor complex involving MyD88 and IRF-7 in Toll-like receptor signaling. Proc. Natl. Acad. Sci. USA 101:1541615421.
17. Honda, K.,, H. Yanai,, H. Negishi,, M. Asagiri,, M. Sato,, T. Mizutani,, N. Shimada,, Y. Ohba,, A. Takaoka,, N. Yoshida, and, T. Taniguchi. 2005. IRF-7 is the master regulator of type-I interferon-dependent immune responses. Nature 434:772777.
18. Honda, K.,, A. Takaoka, and, T. Taniguchi. 2006. Type I interferon gene induction by the interferon regulatory factor family of transcription factors. Immunity 25:349360.
19. Hornung, V.,, J. Ellegast,, S. Kim,, K. Brzozka,, A. Jung,, H. Kato,, H. Poeck,, S. Akira,, K. K. Conzelmann,, M. Schlee,, S. Endres, and, G. Hartmann. 2006. 5′-Triphosphate RNA is the ligand for RIG-I. Science 314:994997.
20. Hoshino, K.,, T. Sugiyama,, M. Matsumoto,, T. Tanaka,, M. Saito,, H. Hemmi,, O. Ohara,, S. Akira, and, T. Kaisho. 2006. IkappaB kinase-alpha is critical for interferon-alpha production induced by Toll-like receptors 7 and 9. Nature 440:949953.
21. Ishii, K. J.,, C. Coban,, H. Kato,, K. Takahashi,, Y. Torii,, F. Takeshita,, H. Ludwig,, G. Sutter,, K. Suzuki,, H. Hemmi,, S. Sato,, M. Yamamoto,, S. Uematsu,, T. Kawai,, O. Takeuchi, and, S. Akira. 2006. A Toll-like receptor-independent antiviral response induced by double-stranded B-form DNA. Nat. Immunol. 7:4048.
22. Iwasaki, A., and, R. Medzhitov. 2004. Toll-like receptor control of the adaptive immune responses. Nat. Immunol 5:987995.
23. Jounai, N.,, F. Takeshita,, K. Kobiyama,, A. Sawano,, A. Miyawaki,, K. Q. Xin,, K. J. Ishii,, T. Kawai,, S. Akira,, K. Suzuki, and, K. Okuda. 2007. The Atg5-Atg12 conjugate associates with innate antiviral immune responses. Proc. Natl. Acad. Sci. USA 104:1405014055.
24. Jung, A.,, H. Kato,, Y. Kumagai,, H. Kumar,, T. Kawai,, O. Takeuchi, and, S. Akira. 2008. Lymphocytoid choriomeningitis virus activates plasmacytoid dendritic cells and induces a cytotoxic T-cell response via MyD88. J. Virol. 82:196206.
25. Kang, D. C.,, R. V. Gopalkrishnan,, Q. Wu,, E. Jankowsky,, A. M. Pyle, and, P. B. Fisher. 2002. mda-5: an interferoninducible putative RNA helicase with double-stranded RNA-dependent ATPase activity and melanoma growth-suppressive properties. Proc. Natl. Acad. Sci. USA 99:637642.
26. Kato, H.,, S. Sato,, M. Yoneyama,, M. Yamamoto,, S. Uematsu,, K. Matsui,, T. Tsujimura,, K. Takeda,, T. Fujita,, O. Takeuchi, and, S. Akira. 2005. Cell type-specific involvement of RIG-I in antiviral response. Immunity 23:1928.
27. Kato, H.,, O. Takeuchi,, S. Sato,, M. Yoneyama,, M. Yamamoto,, K. Matsui,, S. Uematsu,, A. Jung,, T. Kawai,, K. J. Ishii,, O. Yamaguchi,, K. Otsu,, T. Tsujimura,, C. S. Koh,, C. Reis e Sousa,, Y. Matsuura,, T. Fujita, and, S. Akira. 2006. Differential roles of MDA-5 and RIG-I helicases in the recognition of RNA viruses. Nature 441:101105.
28. Kawai, T.,, S. Sato,, K. J. Ishii,, C. Coban,, H. Hemmi,, M. Yamamoto,, K. Terai,, M. Matsuda,, J. Inoue,, S. Uematsu,, O. Takeuchi, and, S. Akira. 2004. Interferon-alpha induction through Toll-like receptors involves a direct interaction of IRF7 with MyD88 and TRAF6. Nat. Immunol. 5:10611068.
29. Kawai, T.,, K. Takahashi,, S. Sato,, C. Coban,, H. Kumar,, H. Kato,, K. J. Ishii,, O. Takeuchi, and, S. Akira. 2005. IPS-1, an adaptor triggering RIG-I- and MDA-5-mediated type I interferon induction. Nat. Immunol. 6:981988.
30. Kayagaki, N.,, Q. Phung,, S. Chan,, R. Chaudhari,, C. Quan,, K. M. O’Rourke,, M. Eby,, E. Pietras,, G. Cheng,, J. F. Bazan,, Z. Zhang,, D. Arnott, and, V. M. Dixit. 2007. DUBA: a deubiquitinase that regulates type I interferon production. Science 318:16281632.
31. Kim, Y.,, P. Zhou,, L. Qian,, J. Z. Chuang,, J. Lee,, C. Li,, C. Iadecola,, C. Nathan, and, A. Ding. 2007. MyD88–5 links mitochondria, microtubules, and JNK3 in neurons and regulates neuronal survival. J. Exp. Med. 204:20632074.
32. Kovacsovics, M.,, F. Martinon,, O. Micheau,, J. L. Bodmer,, K. Hofmann, and, J. Tschopp. 2002. Overexpression of Helicard, a CARD-containing helicase cleaved during apoptosis, accelerates DNA degradation. Curr. Biol. 12:838843.
33. Koyama, S.,, K. J. Ishii,, H. Kumar,, T. Tanimoto,, C. Coban,, S. Uematsu,, T. Kawai, and, S. Akira. 2007. Differential role of TLR- and RLR-signaling in the immune responses to influenza A virus infection and vaccination. J. Immunol. 179:47114720.
34. Kumagai, Y.,, O. Takeuchi,, H. Kato,, H. Kumar,, K. Matsui,, E. Morii,, K. Aozasa,, T. Kawai, and, S. Akira. 2007. Alveolar macrophages are the primary interferon-alpha producer in pulmonary infection with RNA viruses. Immunity 27:240252.
35. Kumar, H.,, T. Kawai,, H. Kato,, S. Sato,, K. Takahashi,, C. Coban,, M. Yamamoto,, S. Uematsu,, K. J. Ishii,, O. Takeuchi, and, S. Akira. 2006. Essential role of IPS-1 in innate immune responses against RNA viruses. J. Exp. Med. 203:17951803.
36. Kumar, H.,, S. Koyama,, K. J. Ishii,, T. Kawai, and, S. Akira. 2008. Cutting edge: cooperation of IPS-1- and TRIF-dependent pathways in poly IC-enhanced antibody production and cytotoxic T cell responses. J. Immunol. 180:683687.
37. Lee, H. K.,, J. M. Lund,, B. Ramanathan,, N. Mizushima, and, A. Iwasaki. 2007. Autophagy-dependent viral recognition by plasmacytoid dendritic cells. Science 315:13981401.
38. Loo, Y. M.,, J. Fornek,, N. Crochet,, G. Bajwa,, O. Perwitasari,, L. Martinez-Sobrido,, S. Akira,, M. A. Gill,, A. Garcia-Sastre,, M. G. Katze, and, M. Gale, Jr. 2008. Distinct RIG-I and MDA5 signaling by RNA viruses in innate immunity. J. Virol. 82:335345.
39. Malathi, K.,, B. Dong,, M. Gale, Jr., and, R. H. Silverman. 2007. Small self-RNA generated by RNase L amplifies antiviral innate immunity. Nature 448:816819.
40. Marques, J. T.,, T. Devosse,, D. Wang,, M. Zamanian-Daryoush,, P. Serbinowski,, R. Hartmann,, T. Fujita,, M. A. Behlke, and, B. R. Williams. 2006. A structural basis for discriminating between self and nonself double-stranded RNAs in mammalian cells. Nat. Biotechnol. 24:559565.
41. Matsui, K.,, Y. Kumagai,, H. Kato,, S. Sato,, T. Kawagoe,, S. Uematsu,, O. Takeuchi, and, S. Akira. 2006. Cutting edge: role of TANK-binding kinase 1 and inducible IκB kinase in IFN responses against viruses in innate immune cells. J. Immunol. 177:57855789.
42. Medzhitov, R. 2007. Recognition of microorganisms and activation of the immune response. Nature 449:819826.
43. Meylan, E.,, K. Burns,, K. Hofmann,, V. Blancheteau,, F. Martinon,, M. Kelliher, and, J. Tschopp. 2004. RIP1 is an essential mediator of Toll-like receptor 3-induced NF-kappa B activation. Nat. Immunol. 5:503507.
44. Meylan, E.,, J. Curran,, K. Hofmann,, D. Moradpour,, M. Binder,, R. Bartenschlager, and, J. Tschopp. 2005. Cardif is an adaptor protein in the RIG-I antiviral pathway and is targeted by hepatitis C virus. Nature 437:11671172.
45. Moore, C. B.,, D. T. Bergstralh,, J. A. Duncan,, Y. Lei,, T. E. Morrison,, A. G. Zimmermann,, M. A. Accavitti-Loper,, V. J. Madden,, L. Sun,, Z. Ye,, J. D. Lich,, M. T. Heise,, Z. Chen, and, J. P. Ting. 2008. NLRX1 is a regulator of mitochondrial antiviral immunity. Nature 451:573577.
46. Nallagatla, S. R.,, J. Hwang,, R. Toroney,, X. Zheng,, C. E. Cameron, and, P. C. Bevilacqua. 2007. 5′-triphosphate-dependent activation of PKR by RNAs with short stem-loops. Science 318:14551458.
47. Negishi, H.,, Y. Fujita,, H. Yanai,, S. Sakaguchi,, X. Ouyang,, M. Shinohara,, H. Takayanagi,, Y. Ohba,, T. Taniguchi, and, K. Honda. 2006. Evidence for licensing of IFN-gamma-induced IFN regulatory factor 1 transcription factor by MyD88 in Toll-like receptor-dependent gene induction program. Proc. Natl. Acad. Sci. USA 103:1513615141.
48. Oganesyan, G.,, S. K. Saha,, B. Guo,, J. Q. He,, A. Shahangian,, B. Zarnegar,, A. Perry, and, G. Cheng. 2006. Critical role of TRAF3 in the Toll-like receptor-dependent and -independent antiviral response. Nature 439:208211.
49. Perry, A. K.,, E. K. Chow,, J. B. Goodnough,, W. C. Yeh, and, G. Cheng. 2004. Differential requirement for TANK-binding kinase-1 in type I interferon responses to Toll-like receptor activation and viral infection. J. Exp. Med. 199:16511658.
50. Pichlmair, A.,, O. Schulz,, C. P. Tan,, T. I. Naslund,, P. Liljestrom,, F. Weber, and, C. Reis e Sousa. 2006. RIG-I-mediated antiviral responses to single-stranded RNA bearing 5′-phosphates. Science 314:9971001.
51. Rothenfusser, S.,, N. Goutagny,, G. DiPerna,, M. Gong,, B. G. Monks,, A. Schoenemeyer,, M. Yamamoto,, S. Akira, and, K. A. Fitzgerald. 2005. The RNA helicase Lgp2 inhibits TLR-independent sensing of viral replication by retinoic acid-inducible gene-I. J. Immunol. 175:52605268.
52. Ryzhakov, G., and, F. Randow. 2007. SINTBAD, a novel component of innate antiviral immunity, shares a TBK1-binding domain with NAP1 and TANK. EMBO J. 26:31803190.
53. Saha, S. K.,, E. M. Pietras,, J. Q. He,, J. R. Kang,, S. Y. Liu,, G. Oganesyan,, A. Shahangian,, B. Zarnegar,, T. L. Shiba,, Y. Wang, and, G. Cheng. 2006. Regulation of antiviral responses by a direct and specific interaction between TRAF3 and Cardif. EMBO J. 25:32573263.
54. Saito, T.,, R. Hirai,, Y. M. Loo,, D. Owen,, C. L. Johnson,, S. C. Sinha,, S. Akira,, T. Fujita, and, M. Gale. Jr. 2007. Regulation of innate antiviral defenses through a shared repressor domain in RIG-I and LGP2. Proc. Natl. Acad. Sci. USA 104:582587.
55. Sasai, M.,, M. Shingai,, K. Funami,, M. Yoneyama,, T. Fujita,, M. Matsumoto, and, T. Seya. 2006. NAK-associated protein 1 participates in both the TLR3 and the cytoplasmic pathways in type I IFN induction. J. Immunol. 177:86768683.
56. Sato, S.,, M. Sugiyama,, M. Yamamoto,, Y. Watanabe,, T. Kawai,, K. Takeda, and, S. Akira. 2003. Toll/IL-1 receptor domain-containing adaptor inducing IFN-beta (TRIF) associates with TNF receptor-associated factor 6 and TANK-binding kinase 1, and activates two distinct transcription factors, NF-kappa B and IFN-regulatory factor-3, in the Toll-like receptor signaling. J. Immunol. 171:43044310.
57. Schmitz, F.,, A. Heit,, S. Guggemoos,, A. Krug,, J. Mages,, M. Schiemann,, H. Adler,, I. Drexler,, T. Haas,, R. Lang, and, H. Wagner. 2007. Interferon-regulatory-factor 1 controls Toll-like receptor 9-mediated IFN-beta production in myeloid dendritic cells. Eur. J. Immunol. 37:315327.
58. Seth, R. B.,, L. Sun,, C. K. Ea, and, Z. J. Chen. 2005. Identification and characterization of MAVS, a mitochondrial antiviral signaling protein that activates NF-kappaB and IRF 3. Cell 122:669682.
59. Sharma, S.,, B. R. tenOever,, N. Grandvaux,, G. P. Zhou,, R. Lin, and, J. Hiscott. 2003. Triggering the interferon antiviral response through an IKK-related pathway. Science 300:11481151.
60. Shingai, M.,, T. Ebihara,, N. A. Begum,, A. Kato,, T. Honma,, K. Matsumoto,, H. Saito,, H. Ogura,, M. Matsumoto, and, T. Seya. 2007. Differential type I IFN-inducing abilities of wild-type versus vaccine strains of measles virus. J. Immunol. 179:61236133.
61. Shortman, K., and, Y. J. Liu. 2002. Mouse and human dendritic cell subtypes. Nat. Rev. Immunol. 2:151161.
62. Stark, G. R.,, I. M. Kerr,, B. R. Williams,, R. H. Silverman, and, R. D. Schreiber. 1998. How cells respond to interferons. Annu. Rev. Biochem. 67:227264.
63. Stetson, D. B., and, R. Medzhitov. 2006. Recognition of cytosolic DNA activates an IRF3-dependent innate immune response. Immunity 24:93103.
64. Sumpter, R., Jr.,, Y. M. Loo,, E. Foy,, K. Li,, M. Yoneyama,, T. Fujita,, S. M. Lemon, and, M. Gale, Jr. 2005. Regulating intracellular antiviral defense and permissiveness to hepatitis C virus RNA replication through a cellular RNA helicase, RIG-I. J. Virol. 79:26892699.
65. Sun, Q.,, L. Sun,, H. H. Liu,, X. Chen,, R. B. Seth,, J. Forman, and, Z. J. Chen. 2006. The specific and essential role of MAVS in antiviral innate immune responses. Immunity 24:633642.
66. Tabeta, K.,, K. Hoebe,, E. M. Janssen,, X. Du,, P. Georgel,, K. Crozat,, S. Mudd,, N. Mann,, S. Sovath,, J. Goode,, L. Shamel,, A. A. Herskovits,, D. A. Portnoy,, M. Cooke,, L. M. Tarantino,, T. Wiltshire,, B. E. Steinberg,, S. Grinstein, and, B. Beutler. 2006. The Unc93b1 mutation 3d disrupts exogenous antigen presentation and signaling via Toll-like receptors 3, 7 and 9. Nat. Immunol. 7:156164.
67. Takahashi, K.,, T. H. Kawai,, S. Sato,, S. Yonehara, and, S. Akira. 2006. Roles of caspase-8 and caspase-10 in innate immune responses to double-stranded RNA. J. Immunol. 176:45204524.
68. Takaoka, A.,, Z. Wang,, M. K. Choi,, H. Yanai,, H. Negishi,, T. Ban,, Y. Lu,, M. Miyagishi,, T. Kodama,, K. Honda,, Y. Ohba, and, T. Taniguchi. 2007. DAI (DLM-1/ZBP1) is a cytosolic DNA sensor and an activator of innate immune response. Nature 448:501505.
69. tenOever, B. R.,, S. L. Ng,, M. A. Chua,, S. M. McWhirter,, A. Garcia-Sastre, and, T. Maniatis. 2007. Multiple functions of the IKK-related kinase IKKepsilon in interferon-mediated antiviral immunity. Science 315:12741278.
70. Uematsu, S.,, S. Sato,, M. Yamamoto,, T. Hirotani,, H. Kato,, F. Takeshita,, M. Matsuda,, C. Coban,, K. J. Ishii,, T. Kawai,, O. Takeuchi, and, S. Akira. 2005. Interleukin-1 receptor-associated kinase-1 plays an essential role for Toll-like receptor (TLR)7- and TLR9-mediated interferon-α induction. J. Exp. Med. 201:915923.
71. Venkataraman, T.,, M. Valdes,, R. Elsby,, S. Kakuta,, G. Caceres,, S. Saijo,, Y. Iwakura, and, G. N. Barber. 2007. Loss of DExD/H box RNA helicase LGP2 manifests disparate antiviral responses. J. Immunol. 178:64446455.
72. Xu, L. G.,, Y. Y. Wang,, K. J. Han,, L. Y. Li,, Z. Zhai, and, H. B. Shu. 2005. VISA is an adapter protein required for virus-triggered IFN-beta signaling. Mol. Cell 19:727740.
73. Yamamoto, M.,, S. Sato,, H. Hemmi,, K. Hoshino,, T. Kaisho,, H. Sanjo,, O. Takeuchi,, M. Sugiyama,, M. Okabe,, K. Takeda, and, S. Akira. 2003. Role of adaptor TRIF in the MyD88-independent Toll-like receptor signaling pathway. Science 301:640643.
74. Yoneyama, M.,, M. Kikuchi,, T. Natsukawa,, N. Shinobu,, T. Imaizumi,, M. Miyagishi,, K. Taira,, S. Akira, and, T. Fujita. 2004. The RNA helicase RIG-I has an essential function in double-stranded RNA-induced innate antiviral responses. Nat. Immunol. 5:730737.
75. Yoneyama, M.,, M. Kikuchi,, K. Matsumoto,, T. Imaizumi,, M. Miyagishi,, K. Taira,, E. Foy,, Y. M. Loo,, M. Gale, Jr.,, S. Akira,, S. Yonehara,, A. Kato, and, T. Fujita. 2005. Shared and unique functions of the DExD/H-box heli-cases RIG-I, MDA-5, and LGP2 in antiviral innate immunity. J. Immunol. 175:28512858.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error