Chapter 7 : Interferons and Antiviral Action

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in

Interferons and Antiviral Action, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555815561/9781555814366_Chap07-1.gif /docserver/preview/fulltext/10.1128/9781555815561/9781555814366_Chap07-2.gif


Viruses and their hosts have evolved to coexist by maintaining viral homeostasis. At the organism level, the immune system of the host plays a major role in clearing the infection or driving the viruses to enter a latent phase. In addition to the direct action of the cells of the immune system, various cytokines, most importantly the interferons (IFNs) system, produced by them are critically important in this process. The majority of the interferon-stimulated genes (ISGs) that are induced by IFN, double-stranded RNA (dsRNA), and viruses contain IFN-stimulated response elements (ISREs) in their promoters. The usual mechanism calls for inhibition of several steps of viral gene expression through the actions of several ISG products. ISG-encoded proteins have been chosen because of the diversity of their functions and their perceived importance in mediating antiviral actions. Protein kinase RNA regulated (PKR) was one of the earliest antiviral ISGs identified and is one of the most thoroughly investigated to date. PKR has been implicated in regulation of apoptosis both in the presence and absence of viral infection. The importance of PKR in mediating antiviral actions of IFN is manifested by the variety of strategies used by different viruses to evade PKR’s activation or action. The common structural features of adenosine deaminase acting on RNA (ADAR) family proteins include a dsRNA-binding domain and a conserved cytidine deaminase domain at the carboxyl terminus that contains highly conserved residues thought to be involved in catalysis.

Citation: White C, Sen G. 2009. Interferons and Antiviral Action, p 91-106. In Brasier A, García-Sastre A, Lemon S (ed), Cellular Signaling and Innate Immune Responses to RNA Virus Infections. ASM Press, Washington, DC. doi: 10.1128/9781555815561.ch7

Key Concept Ranking

Human respiratory syncytial virus
Human immunodeficiency virus 1
Herpes simplex virus 1
Highlighted Text: Show | Hide
Loading full text...

Full text loading...


Image of Figure 1
Figure 1

PKR structure and activation. (A) PKR contains two dsRNA-binding domains at its amino terminus and a kinase domain at its carboxyl terminus ( ). (B) Binding of dsRNA facilitates dimerization and autophosphorylation of PKR on Thr-446 and Thr-451. Autophosphorylation activates PKR, allowing it to phosphorylate eIF2α, thereby preventing protein translation ( ).

Citation: White C, Sen G. 2009. Interferons and Antiviral Action, p 91-106. In Brasier A, García-Sastre A, Lemon S (ed), Cellular Signaling and Innate Immune Responses to RNA Virus Infections. ASM Press, Washington, DC. doi: 10.1128/9781555815561.ch7
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2
Figure 2

PACT structure and activation. (A) PACT contains two dsRNA-binding domains that also bind PKR and a third domain that is only involved in interaction with PKR. Numbers indicate amino acid sequence number ( ). (B) Interaction of PACT-domain 3 with the PACT-binding motif present in the kinase domain of PKR disrupts the intramolecular interaction maintaining PKR in a latent state and leads to its activation ( ).

Citation: White C, Sen G. 2009. Interferons and Antiviral Action, p 91-106. In Brasier A, García-Sastre A, Lemon S (ed), Cellular Signaling and Innate Immune Responses to RNA Virus Infections. ASM Press, Washington, DC. doi: 10.1128/9781555815561.ch7
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 3
Figure 3

Arrangement of TPR motifs in p56 proteins. Corresponding members of the p56 family in different species have similar numbers of TPR motifs located in similar locations in the linear amino acid sequence of the protein ( ).

Citation: White C, Sen G. 2009. Interferons and Antiviral Action, p 91-106. In Brasier A, García-Sastre A, Lemon S (ed), Cellular Signaling and Innate Immune Responses to RNA Virus Infections. ASM Press, Washington, DC. doi: 10.1128/9781555815561.ch7
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 4
Figure 4

Inhibition of protein translation by p56 family members. Human and mouse p56 and p54 bind to different subunits of eIF3, inhibiting different points of the protein translation initiation process. Human p56 and human p54 bind to eIF3e and prevent formation of the ternary complex required for translation, while murine p54 and p56 bind to eIF3c and prevent assembly of the 48S preinitiation complex. Human p54 can bind to both eIF3c and eIF3e. (Adapted from reference .)

Citation: White C, Sen G. 2009. Interferons and Antiviral Action, p 91-106. In Brasier A, García-Sastre A, Lemon S (ed), Cellular Signaling and Innate Immune Responses to RNA Virus Infections. ASM Press, Washington, DC. doi: 10.1128/9781555815561.ch7
Permissions and Reprints Request Permissions
Download as Powerpoint


1. Abraham, N.,, D. F. Stojdl,, P. I. Duncan,, N. Methot,, T. Ishii,, M. Dube,, B. C. Vanderhyden,, H. L. Atkins,, D. A. Gray,, M. W. McBurney,, A. E. Koromilas,, E. G. Brown,, N. Sonenberg, and, J. C. Bell. 1999. Characterization of transgenic mice with targeted disruption of the catalytic domain of the double-stranded RNA-dependent protein kinase, PKR. J. Biol. Chem. 274:59535962.
2. Asefa, B.,, K. D. Klarmann,, N. G. Copeland,, D. J. Gilbert,, N. A. Jenkins, and, J. R. Keller. 2004. The interferon-inducible p200 family of proteins: a perspective on their roles in cell cycle regulation and differentiation. Blood Cells Mol. Dis. 32:155167.
3. Baglioni, C.,, M. A. Minks, and, P. A. Maroney. 1978. Interferon action may be mediated by activation of a nuclease by pppA2′p5′A2′p5′A. Nature 273:684687.
4. Baltzis, D.,, L. K. Qu,, S. Papadopoulou,, J. D. Blais,, J. C. Bell,, N. Sonenberg, and, A. E. Koromilas. 2004. Resistance to vesicular stomatitis virus infection requires a functional cross talk between the eukaryotic translation initiation factor 2alpha kinases PERK and PKR. J. Virol. 78:1274712761.
5. Bass, B. L., and, H. Weintraub. 1987. A developmentally regulated activity that unwinds RNA duplexes. Cell 48:607613.
6. Bennett, R. L.,, W. L. Blalock,, D. M. Abtahi,, Y. Pan,, S. A. Moyer, and, W. S. May. 2006. RAX, the PKR activator, sensitizes cells to inflammatory cytokines, serum withdrawal, chemotherapy and viral infection. Blood 108:821829.
7. Beretta, L.,, M. Gabbay,, R. Berger,, S. M. Hanash, and, N. Sonenberg. 1996. Expression of the protein kinase PKR in modulated by IRF-1 and is reduced in 5q-associated leukemias. Oncogene 12:15931596.
8. Bisbal, C., and, R. H. Silverman. 2007. Diverse functions of RNase L and implications in pathology. Biochimie 89:789798.
9. Bluyssen, H. A.,, R. J. Vlietstra,, P. W. Faber,, E. M. Smit,, A. Hagemeijer, and, J. Trapman. 1994. Structure, chromosome localization, and regulation of expression of the interferon-regulated mouse Ifi54/Ifi56 gene family. Genomics 24:137148.
10. Castelli, J. C.,, B. A. Hassel,, A. Maran,, J. Paranjape,, J. A. Hewitt,, X. L. Li,, Y. T. Hsu,, R. H. Silverman, and, R. J. Youle. 1998. The role of 2′-5′ oligoadenylate-activated ribonuclease L in apoptosis. Cell Death Differ. 5:313320.
11. Chang, K. S.,, Z. Cai,, C. Zhang,, G. C. Sen,, B. R. Williams, and, G. Luo. 2006. Replication of hepatitis C virus (HCV) RNA in mouse embryonic fibroblasts: protein kinase R (PKR)-dependent and PKR-independent mechanisms for controlling HCV RNA replication and mediating interferon activities. J. Virol. 80:73647374.
12. Chen, C. X.,, D. S. Cho,, Q. Wang,, F. Lai,, K. C. Carter, and, K. Nishikura. 2000. A third member of the RNA-specific adenosine deaminase gene family, ADAR3, contains both single- and double-stranded RNA binding domains. RNA 6:755767.
13. Chen, G.,, C. Ma,, K. A. Bower,, Z. Ke, and, J. Luo. 2006. Interaction between RAX and PKR modulates the effect of ethanol on protein synthesis and survival of neurons. J. Biol. Chem. 281:1590915915.
14. Chieux, V.,, W. Chehadeh,, J. Harvey,, O. Haller,, P. Wattre, and, D. Hober. 2001. Inhibition of coxsackievirus B4 replication in stably transfected cells expressing human MxA protein. Virology 283:8492.
15. Choubey, D., and, J. U. Gutterman. 1997. Inhibition of E2F-4/DP-1-stimulated transcription by p202. Oncogene 15:291301.
16. Choubey, D., and, P. Lengyel. 1993. Interferon action: cytoplasmic and nuclear localization of the interferon-inducible 52-kD protein that is encoded by the Ifi 200 gene from the gene 200 cluster. J. Interferon Res. 13:4352.
17. Clemens, M. J., and, C. M. Vaquero. 1978. Inhibition of protein synthesis by double-stranded RNA in reticulocyte lysates: evidence for activation of an endoribonuclease. Biochem. Biophys. Res. Commun. 83:5968.
18. D’Andrea, L. D., and, L. Regan. 2003. TPR proteins: the versatile helix. Trends Biochem. Sci. 28:655662.
19. Dastur, A.,, S. Beaudenon,, M. Kelley,, R. M. Krug, and, J. M. Huibregtse. 2006. Herc5, an interferon-induced HECT E3 enzyme, is required for conjugation of ISG15 in human cells. J. Biol. Chem. 281:43344338.
20. Dawson, M. J.,, N. J. Elwood,, R. W. Johnstone, and, J. A. Trapani. 1998. The IFN-inducible nucleoprotein IFI 16 is expressed in cells of the monocyte lineage, but is rapidly and markedly down-regulated in other myeloid precursor populations. J. Leukoc. Biol. 64:546554.
21. Dawson, M. J., and, J. A. Trapani. 1995. IFI 16 gene encodes a nuclear protein whose expression is induced by interferons in human myeloid leukaemia cell lines. J. Cell. Biochem. 57:3951.
22. D’Cunha, J.,, E. Knight, Jr.,, A. L. Haas,, R. L. Truitt, and, E. C. Borden. 1996. Immunoregulatory properties of ISG15, an interferon-induced cytokine. Proc. Natl. Acad. Sci. USA 93:211215.
23. D’Cunha, J.,, S. Ramanujam,, R. J. Wagner,, P. L. Witt,, E. Knight, Jr., and, E. C. Borden. 1996. In vitro and in vivo secretion of human ISG15, an IFN-induced immunomodulatory cytokine. J. Immunol. 157:41004108.
24. Degols, G.,, P. Eldin, and, N. Mechti. 2007. ISG20, an actor of the innate immune response. Biochimie 89:831835.
25. Desterro, J. M.,, L. P. Keegan,, M. Lafarga,, M. T. Berciano,, M. O’Connell, and, M. Carmo-Fonseca. 2003. Dynamic association of RNA-editing enzymes with the nucleolus. J. Cell Sci. 116:18051818.
26. de Veer, M. J.,, M. Holko,, M. Frevel,, E. Walker,, S. Der,, J. M. Paranjape,, R. H. Silverman, and, B. R. Williams. 2001. Functional classification of interferon-stimulated genes identified using microarrays. J. Leukoc. Biol. 69:912920.
27. Durbin, R. K.,, S. E. Mertz,, A. E. Koromilas, and, J. E. Durbin. 2002. PKR protection against intranasal vesicular stomatitis virus infection is mouse strain dependent. Viral Immunol. 15:4151.
28. Eckert, M.,, S. E. Meek, and, K. L. Ball. 2006. A novel repressor domain is required for maximal growth inhibition by the IRF-1 tumor suppressor. J. Biol. Chem. 281:2309223102.
29. Espert, L.,, G. Degols,, C. Gongora,, D. Blondel,, B. R. Williams,, R. H. Silverman, and, N. Mechti. 2003. ISG20, a new interferon-induced RNase specific for single-stranded RNA, defines an alternative antiviral pathway against RNA genomic viruses. J. Biol. Chem. 278:1615116158.
30. Espert, L.,, G. Degols,, Y. L. Lin,, T. Vincent,, M. Benkirane, and, N. Mechti. 2005. Interferon-induced exonuclease ISG20 exhibits an antiviral activity against human immunodeficiency virus type 1. J. Gen. Virol. 86:22212229.
31. Farrell, P. J.,, R. J. Broeze, and, P. Lengyel. 1979. Accumulation of an mRNA and protein in interferon-treated Ehrlich ascites tumour cells. Nature 279:523525.
32. Fasciano, S.,, A. Kaufman, and, R. C. Patel. 2007. Expression of PACT is regulated by Sp1 transcription factor. Gene 388:7482.
33. Flati, V.,, L. Frati,, A. Gulino,, S. Martinotti, and, E. Toniato. 2001. The murine p202 protein, an IFN-inducible modulator of transcription, is activated by the mitogen platelet-derived growth factor. J. Interferon Cytokine Res. 21:99103.
34. Floyd-Smith, G.,, E. Slattery, and, P. Lengyel. 1981. Interferon action: RNA cleavage pattern of a (2′-5′)oligoadenylate-dependent endonuclease. Science 212:10301032.
35. Gabel, F.,, D. Wang,, D. Madern,, A. Sadler,, K. Dayie,, M. Z. Daryoush,, D. Schwahn,, G. Zaccai,, X. Lee, and, B. R. Williams. 2006. Dynamic flexibility of double-stranded RNA activated PKR in solution. J. Mol. Biol. 359:610623.
36. Garcia, M. A.,, E. F. Meurs, and, M. Esteban. 2007. The dsRNA protein kinase PKR: virus and cell control. Biochimie 89:799811.
37. Gariglio, M.,, E. Cinato,, S. Panico,, G. Cavallo, and, S. Landolfo. 1991. Activation of interferon-inducible genes in mice by poly rI:rC or alloantigens. J. Immunother. 10:2027.
38. Geiss, G.,, G. Jin,, J. Guo,, R. Bumgarner,, M. G. Katze, and, G. C. Sen. 2001. A comprehensive view of regulation of gene expression by double-stranded RNA-mediated cell signaling. J. Biol. Chem. 276:3017830182.
39. Ghosh, A.,, S. N. Sarkar,, W. Guo,, S. Bandyopadhyay, and, G. C. Sen. 1997. Enzymatic activity of 2′-5′-oligoadeny-late synthetase is impaired by specific mutations that affect oligomerization of the protein. J. Biol. Chem. 272:3322033226.
40. Ghosh, A.,, S. N. Sarkar,, T. M. Rowe, and, G. C. Sen. 2001. A specific isozyme of 2’-5’ oligoadenylate synthetase is a dual function proapoptotic protein of the Bcl-2 family. J. Biol. Chem. 276:2544725455.
41. Giannakopoulos, N. V.,, J. K. Luo,, V. Papov,, W. Zou,, D. J. Lenschow,, B. S. Jacobs,, E. C. Borden,, J. Li,, H. W. Virgin, and, D. E. Zhang. 2005. Proteomic identification of proteins conjugated to ISG15 in mouse and human cells. Biochem. Biophys. Res. Commun. 336:496506.
42. Gordien, E.,, O. Rosmorduc,, C. Peltekian,, F. Garreau,, C. Brechot, and, D. Kremsdorf. 2001. Inhibition of hepatitis B virus replication by the interferon-inducible MxA protein. J. Virol. 75:26842691.
43. Haas, A. L.,, P. Ahrens,, P. M. Bright, and, H. Ankel. 1987. Interferon induces a 15-kilodalton protein exhibiting marked homology to ubiquitin. J. Biol. Chem. 262:1131511323.
44. Haller, O.,, H. Arnheiter,, J. Lindenmann, and, I. Gresser. 1980. Host gene influences sensitivity to interferon action selectively for influenza virus. Nature 283:660662.
45. Haller, O.,, M. Frese,, D. Rost,, P. A. Nuttall, and, G. Kochs. 1995. Tick-borne Thogoto virus infection in mice is inhibited by the orthomyxovirus resistance gene product Mx1. J. Virol. 69:25962601.
46. Haller, O.,, P. Staeheli, and, G. Kochs. 2007. Interferon-induced Mx proteins in antiviral host defense. Biochimie 89:812818.
47. Hamilton, T. A.,, N. Bredon,, Y. Ohmori, and, C. S. Tannenbaum. 1989. IFN-gamma and IFN-beta independently stimulate the expression of lipopolysaccharide-inducible genes in murine peritoneal macrophages. J. Immunol. 142:23252331.
48. Hartmann, R.,, J. Justesen,, S. N. Sarkar,, G. C. Sen, and, V. C. Yee. 2003. Crystal structure of the 2′-specific and double-stranded RNA-activated interferon-induced antiviral protein 2’-5’-oligoadenylate synthetase. Mol. Cell 12:11731185.
49. Hartmann, R.,, H. S. Olsen,, S. Widder,, R. Jorgensen, and, J. Justesen. 1998. p59OASL, a 2’-5’ oligoadenylate synthetase like protein: a novel human gene related to the 2′-5′ oligoadenylate synthetase family. Nucleic Acids Res. 26:41214128.
50. Hartner, J. C.,, C. Schmittwolf,, A. Kispert,, A. M. Muller,, M. Higuchi, and, P. H. Seeburg. 2004. Liver disintegration in the mouse embryo caused by deficiency in the RNA-editing enzyme ADAR1. J. Biol. Chem. 279:48944902.
51. Hertel, L.,, M. De Andrea,, B. Azzimonti,, A. Rolle,, M. Gariglio, and, S. Landolfo. 1999. The interferon-inducible 204 gene, a member of the Ifi 200 family, is not involved in the antiviral state induction by IFN-alpha, but is required by the mouse cytomegalovirus for its replication. Virology 262:18.
52. Higuchi, M.,, S. Maas,, F. N. Single,, J. Hartner,, A. Rozov,, N. Burnashev,, D. Feldmeyer,, R. Sprengel, and, P. H. Seeburg. 2000. Point mutation in an AMPA receptor gene rescues lethality in mice deficient in the RNA-editing enzyme ADAR2. Nature 406:7881.
53. Higuchi, M.,, F. N. Single,, M. Kohler,, B. Sommer,, R. Sprengel, and, P. H. Seeburg. 1993. RNA editing of AMPA receptor subunit GluR-B: a base-paired intronexon structure determines position and efficiency. Cell 75:13611370.
54. Hofmann, K., and, P. Bucher. 1998. The PCI domain: a common theme in three multiprotein complexes. Trends Biochem. Sci. 23:204205.
55. Horisberger, M. A.,, P. Staeheli, and, O. Haller. 1983. Interferon induces a unique protein in mouse cells bearing a gene for resistance to influenza virus. Proc. Natl. Acad. Sci. USA 80:19101914.
56. Hovanessian, A. G.,, R. E. Brown, and, I. M. Kerr. 1977. Synthesis of low molecular weight inhibitor of protein synthesis with enzyme from interferon-treated cells. Nature 268:537540.
57. Hovnanian, A.,, D. Rebouillat,, M. G. Mattei,, E. R. Levy,, I. Marie,, A. P. Monaco, and, A. G. Hovanessian. 1998. The human 2′, 5′-oligoadenylate synthetase locus is composed of three distinct genes clustered on chromosome 12q24.2 encoding the 100-, 69-, and 40-kDa forms. Genomics 52:267277.
58. Huang, X.,, B. Hutchins, and, R. C. Patel. 2002. The C-terminal, third conserved motif of the protein activator PACT plays an essential role in the activation of double-stranded-RNA-dependent protein kinase (PKR). Biochem. J. 366:175186.
59. Ito, T.,, M. Yang, and, W. S. May. 1999. RAX, a cellular activator for double-stranded RNA-dependent protein kinase during stress signaling. J. Biol. Chem. 274:1542715432.
60. Johnstone, R. W., and, J. A. Trapani. 1999. Transcription and growth regulatory functions of the HIN-200 family of proteins. Mol. Cell. Biol. 19:58335838.
61. Kawahara, Y.,, K. Ito,, M. Ito,, S. Tsuji, and, S. Kwak. 2005. Novel splice variants of human ADAR2 mRNA: skipping of the exon encoding the dsRNA-binding domains, and multiple C-terminal splice sites. Gene 363:193201.
62. Kawakubo, K., and, C. E. Samuel. 2000. Human RNA-specific adenosine deaminase (ADAR1) gene specifies transcripts that initiate from a constitutively active alternative promoter. Gene 258:165172.
63. Kerr, I. M.,, R. E. Brown, and, A. G. Hovanessian. 1977. Nature of inhibitor of cell-free protein synthesis formed in response to interferon and double-stranded RNA. Nature 268:540542.
64. Kim, K. I.,, N. V. Giannakopoulos,, H. W. Virgin, and, D. E. Zhang. 2004. Interferon-inducible ubiquitin E2, Ubc8, is a conjugating enzyme for protein ISGylation. Mol. Cell. Biol. 24:95929600.
65. Knight, E., Jr.,, D. Fahey,, B. Cordova,, M. Hillman,, R. Kutny,, N. Reich, and, D. Blomstrom. 1988. A 15-kDa interferon-induced protein is derived by COOH-terminal processing of a 17-kDa precursor. J. Biol. Chem. 263:45204522.
66. Kochs, G., and, O. Haller. 1999. Interferon-induced human MxA GTPase blocks nuclear import of Thogoto virus nucleocapsids. Proc. Natl. Acad. Sci. USA 96:20822086.
67. Kochs, G.,, C. Janzen,, H. Hohenberg, and, O. Haller. 2002. Antivirally active MxA protein sequesters La Crosse virus nucleocapsid protein into perinuclear complexes. Proc. Natl. Acad. Sci. USA 99:31533158.
68. Kolb, E.,, E. Laine,, D. Strehler, and, P. Staeheli. 1992. Resistance to influenza virus infection of Mx transgenic mice expressing Mx protein under the control of two constitutive promoters. J. Virol. 66:17091716.
69. Landolfo, S.,, M. Gariglio,, G. Gribaudo, and, D. Lembo. 1998. The Ifi 200 genes: an emerging family of IFN-inducible genes. Biochimie 80:721728.
70. Lehmann, K. A., and, B. L. Bass. 1999. The importance of internal loops within RNA substrates of ADAR1. J. Mol. Biol. 291:113.
71. Lemaire, P. A.,, J. Lary, and, J. L. Cole. 2005. Mechanism of PKR activation: dimerization and kinase activation in the absence of double-stranded RNA. J. Mol. Biol. 345:8190.
72. Lembo, M.,, C. Sacchi,, C. Zappador,, G. Bellomo,, M. Gaboli,, P. P. Pandolfi,, M. Gariglio, and, S. Landolfo. 1998. Inhibition of cell proliferation by the interferon-inducible 204 gene, a member of the Ifi 200 cluster. Oncogene 16:15431551.
73. Lenschow, D. J.,, C. Lai,, N. Frias-Staheli,, N. V. Giannakopoulos,, A. Lutz,, T. Wolff,, A. Osiak,, B. Levine,, R. E. Schmidt,, A. Garcia-Sastre,, D. A. Leib,, A. Pekosz,, K. P. Knobeloch,, I. Horak, and, H. W. Virgin IV. 2007. IFN-stimulated gene 15 functions as a critical antiviral molecule against influenza, herpes, and Sindbis viruses. Proc. Natl. Acad. Sci. USA 104:13711376.
74. Li, S.,, G. A. Peters,, K. Ding,, X. Zhang,, J. Qin, and, G. C. Sen. 2006. Molecular basis for PKR activation by PACT or dsRNA. Proc. Natl. Acad. Sci. USA 103:1000510010.
75. Lindenmann, J. 1964. Inheritance of resistance to influenza virus in mice. Proc. Soc. Exp. Biol. Med. 116:506509.
76. Liu, C. J.,, H. Wang, and, P. Lengyel. 1999. The interferon-inducible nucleolar p204 protein binds the ribosomal RNA-specific UBF1 transcription factor and inhibits ribosomal RNA transcription. EMBO J. 18:28452854.
77. Ludlow, L. E.,, R. W. Johnstone, and, C. J. Clarke. 2005. The HIN-200 family: more than interferon-inducible genes? Exp. Cell Res. 308:117.
78. Malathi, K.,, B. Dong,, M. Gale, Jr., and, R. H. Silverman. 2007. Small self-RNA generated by RNase L amplifies antiviral innate immunity. Nature 448:816819.
79. Malathi, K.,, J. M. Paranjape,, E. Bulanova,, M. Shim,, J. M. Guenther-Johnson,, P. W. Faber,, T. E. Eling,, B. R. Williams, and, R. H. Silverman. 2005. A transcriptional signaling pathway in the IFN system mediated by 2′-5′-oligoadenylate activation of RNase L. Proc. Natl. Acad. Sci. USA 102:1453314538.
80. Martinez, I., and, J. A. Melero. 2002. A model for the generation of multiple A to G transitions in the human respiratory syncytial virus genome: predicted RNA secondary structures as substrates for adenosine deaminases that act on RNA. J. Gen. Virol. 83:14451455.
81. Mashimo, T.,, M. Lucas,, D. Simon-Chazottes,, M. P. Frenkiel,, X. Montagutelli,, P. E. Ceccaldi,, V. Deubel,, J. L. Guenet, and, P. Despres. 2002. A nonsense mutation in the gene encoding 2’-5’-oligoadenylate synthetase/L1 iso-form is associated with West Nile virus susceptibility in laboratory mice. Proc. Natl. Acad. Sci. USA 99:1131111316.
82. McKenna, S. A.,, D. A. Lindhout,, I. Kim,, C. W. Liu,, V. M. Gelev,, G. Wagner, and, J. D. Puglisi. 2007. Molecular framework for the activation of RNA-dependent protein kinase. J. Biol. Chem. 282:1147411486.
83. Meurs, E.,, K. Chong,, J. Galabru,, N. S. Thomas,, I. M. Kerr,, B. R. Williams, and, A. G. Hovanessian. 1990. Molecular cloning and characterization of the human double-stranded RNA-activated protein kinase induced by interferon. Cell 62:379390.
84. Miranda, R. N.,, R. C. Briggs,, K. Shults,, M. C. Kinney,, R. A. Jensen, and, J. B. Cousar. 1999. Immunocytochemical analysis of MNDA in tissue sections and sorted normal bone marrow cells documents expression only in maturing normal and neoplastic myelomonocytic cells and a subset of normal and neoplastic B lymphocytes. Hum. Pathol. 30:10401049.
85. Nanduri, S.,, F. Rahman,, B. R. Williams, and, J. Qin. 2000. A dynamically tuned double-stranded RNA binding mechanism for the activation of antiviral kinase PKR. EMBO J. 19:55675574.
86. Nguyen, L. H.,, L. Espert,, N. Mechti, and, D. M. Wilson III. 2001. The human interferon- and estrogen-regulated ISG20/HEM45 gene product degrades single-stranded RNA and DNA in vitro. Biochemistry 40:71747179.
87. Niikura, T.,, R. Hirata, and, S. C. Weil. 1997. A novel interferon-inducible gene expressed during myeloid differentiation. Blood Cells Mol. Dis. 23:337349.
88. Nishikura, K.,, C. Yoo,, U. Kim,, J. M. Murray,, P. A. Estes,, F. E. Cash, and, S. A. Liebhaber. 1991. Substrate specificity of the dsRNA unwinding/modifying activity. EMBO J. 10:35233532.
89. Onuki, R.,, Y. Bando,, E. Suyama,, T. Katayama,, H. Kawasaki,, T. Baba,, M. Tohyama, and, K. Taira. 2004. An RNA-dependent protein kinase is involved in tunicamycin-induced apoptosis and Alzheimer’s disease. EMBO J. 23:959968.
90. Osiak, A.,, O. Utermohlen,, S. Niendorf,, I. Horak, and, K. P. Knobeloch. 2005. ISG15, an interferon-stimulated ubiquitin-like protein, is not essential for STAT1 signaling and responses against vesicular stomatitis and lymphocytic choriomeningitis virus. Mol. Cell. Biol. 25:63386345.
91. Patel, C. V.,, I. Handy,, T. Goldsmith, and, R. C. Patel. 2000. PACT, a stress-modulated cellular activator of interferon-induced double-stranded RNA-activated protein kinase, PKR. J. Biol. Chem. 275:3799337998.
92. Patterson, J. B., and, C. E. Samuel. 1995. Expression and regulation by interferon of a double-stranded-RNA-specific adenosine deaminase from human cells: evidence for two forms of the deaminase. Mol. Cell. Biol. 15:53765388.
93. Pavlovic, J.,, H. A. Arzet,, H. P. Hefti,, M. Frese,, D. Rost,, B. Ernst,, E. Kolb,, P. Staeheli, and, O. Haller. 1995. Enhanced virus resistance of transgenic mice expressing the human MxA protein. J. Virol. 69:45064510.
94. Peng, P. L.,, X. Zhong,, W. Tu,, M. M. Soundarapandian,, P. Molner,, D. Zhu,, L. Lau,, S. Liu,, F. Liu, and, Y. Lu. 2006. ADAR2-dependent RNA editing of AMPA receptor subunit GluR2 determines vulnerability of neurons in forebrain ischemia. Neuron 49:719733.
95. Pentecost, B. T. 1998. Expression and estrogen regulation of the HEM45 MRNA in human tumor lines and in the rat uterus. J. Steroid Biochem. Mol. Biol. 64:2533.
96. Peters, G. A.,, R. Hartmann,, J. Qin, and, G. C. Sen. 2001. Modular structure of PACT: distinct domains for binding and activating PKR. Mol. Cell. Biol. 21:19081920.
97. Peters, G. A.,, S. Li, and, G. C. Sen. 2006. Phosphorylation of specific serine residues in the PKR activation domain of PACT is essential for its ability to mediate apoptosis. J. Biol. Chem. 281:3512935136.
98. Pickart, C. M. 2001. Mechanisms underlying ubiquiti-nation. Annu. Rev. Biochem. 70:503533.
99. Polson, A. G.,, B. L. Bass, and, J. L. Casey. 1996. RNA editing of hepatitis delta virus antigenome by dsRNA-adenosine deaminase. Nature 380:454456.
100. Pramanik, R.,, T. N. Jorgensen,, H. Xin,, B. L. Kotzin, and, D. Choubey. 2004. Interleukin-6 induces expression of Ifi202, an interferon-inducible candidate gene for lupus susceptibility. J. Biol. Chem. 279:1612116127.
101. Rebouillat, D., and, A. G. Hovanessian. 1999. The human 2′, 5′-oligoadenylate synthetase family: interferon-induced proteins with unique enzymatic properties. J. Interferon Cytokine Res. 19:295308.
102. Reichelt, M.,, S. Stertz,, J. Krijnse-Locker,, O. Haller, and, G. Kochs. 2004. Missorting of LaCrosse virus nucleocapsid protein by the interferon-induced MxA GTPase involves smooth ER membranes. Traffic 5:772784.
103. Roberts, W. K.,, A. Hovanessian,, R. E. Brown,, M. J. Clemens, and, I. M. Kerr. 1976. Interferon-mediated protein kinase and low-molecular-weight inhibitor of protein synthesis. Nature 264:477480.
104. Rolle, S.,, M. De Andrea,, D. Gioia,, D. Lembo,, L. Hertel,, S. Landolfo, and, M. Gariglio. 2001. The interferon-inducible 204 gene is transcriptionally activated by mouse cytomegalovirus and is required for its replication. Virology 286:249255.
105. Rowe, T. M.,, M. Rizzi,, K. Hirose,, G. A. Peters, and, G. C. Sen. 2006. A role of the double-stranded RNA-binding protein PACT in mouse ear development and hearing. Proc. Natl. Acad. Sci. USA 103:58235828.
106. Rusch, L.,, A. Zhou, and, R. H. Silverman. 2000. Caspase-dependent apoptosis by 2′, 5′-oligoadenylate activation of RNase L is enhanced by IFN-beta. J. Interferon Cytokine Res. 20:10911100.
107. Samuel, M. A.,, K. Whitby,, B. C. Keller,, A. Marri,, W. Barchet,, B. R. Williams,, R. H. Silverman,, M. Gale, Jr., and, M. S. Diamond. 2006. PKR and RNase L contribute to protection against lethal West Nile virus infection by controlling early viral spread in the periphery and replication in neurons. J. Virol. 80:70097019.
108. Sansam, C. L.,, K. S. Wells, and, R. B. Emeson. 2003. Modulation of RNA editing by functional nucleolar sequestration of ADAR2. Proc. Natl. Acad. Sci. USA 100:1401814023.
109. Sarkar, S. N.,, S. Pal, and, G. C. Sen. 2002. Crisscross enzymatic reaction between the two molecules in the active dimeric P69 form of the 2′-5′ oligodenylate synthetase. J. Biol. Chem. 277:4476044764.
110. Sarkar, S. N., and, G. C. Sen. 2004. Novel functions of proteins encoded by viral stress-inducible genes. Pharmacol. Ther. 103:245259.
111. Schumacher, B., and, P. Staeheli. 1998. Domains mediating intramolecular folding and oligomerization of MxA GTPase. J. Biol. Chem. 273:2836528370.
112. Schwemmle, M.,, M. F. Richter,, C. Herrmann,, N. Nassar, and, P. Staeheli. 1995. Unexpected structural requirements for GTPase activity of the interferon-induced MxA protein. J. Biol. Chem. 270:1351813523.
113. Sen, G. C., and, G. A. Peters. 2007. Viral stress-inducible genes. Adv. Virus Res. 70:233263.
114. Staub, E.,, E. Dahl, and, A. Rosenthal. 2001. The DAPIN family: a novel domain links apoptotic and interferon response proteins. Trends Biochem. Sci. 26:8385.
115. Stefl, R.,, M. Xu,, L. Skrisovska,, R. B. Emeson, and, F. H. Allain. 2006. Structure and specific RNA binding of ADAR2 double-stranded RNA binding motifs. Structure 14:345355.
116. Terenzi, F.,, D. J. Hui,, W. C. Merrick, and, G. C. Sen. 2006. Distinct induction patterns and functions of two closely related interferon-inducible human genes, ISG54 and ISG56. J. Biol. Chem. 281:3406434071.
117. Terenzi, F.,, C. White,, S. Pal,, B. R. Williams, and, G. C. Sen. 2007. Tissue-specific and inducer-specific differential induction of ISG56 and ISG54 in mice. J. Virol. 81:86568665.
118. Truve, E.,, M. Kelve,, A. Aaspollu,, H. C. Schroder, and, W. E. Muller. 1994. Homologies between different forms of 2–5A synthetases. Prog. Mol. Subcell. Biol. 14:139149.
119. Urisman, A.,, R. J. Molinaro,, N. Fischer,, S. J. Plummer,, G. Casey,, E. A. Klein,, K. Malathi,, C. Magi-Galluzzi,, R. R. Tubbs,, D. Ganem,, R. H. Silverman, and, J. L. DeRisi. 2006. Identification of a novel gammaretrovirus in prostate tumors of patients homozygous for R462Q RNASEL variant. PLoS Pathog. 2:e25.
120. van Hoof, A.,, P. Lennertz, and, R. Parker. 2000. Three conserved members of the RNase D family have unique and overlapping functions in the processing of 5S, 5. 8S, U4, U5, RNase MRP and RNase P RNAs in yeast. EMBO J. 19:13571365.
121. Wang, C.,, J. Pflugheber,, R. Sumpter, Jr.,, D. L. Sodora,, D. Hui,, G. C. Sen, and, M. Gale, Jr. 2003. Alpha interferon induces distinct translational control programs to suppress hepatitis C virus RNA replication. J. Virol. 77:38983912.
122. Wang, H.,, G. Chatterjee,, J. J. Meyer,, C. J. Liu,, N. A. Manjunath,, P. Bray-Ward, and, P. Lengyel. 1999. Characteristics of three homologous 202 genes (Ifi202a, Ifi202b, and Ifi202c) from the murine interferon-activatable gene 200 cluster. Genomics 60:281294.
123. Wang, Q.,, M. Miyakoda,, W. Yang,, J. Khillan,, D. L. Stachura,, M. J. Weiss, and, K. Nishikura. 2004. Stress-induced apoptosis associated with null mutation of ADAR1 RNA editing deaminase gene. J. Biol. Chem. 279:49524961.
124. Wang, Q.,, P. J. O’Brien,, C. X. Chen,, D. S. Cho,, J. M. Murray, and, K. Nishikura. 2000. Altered G protein-coupling functions of RNA editing isoform and splicing variant serotonin2C receptors. J. Neurochem. 74:12901300.
125. Weiler, S. R.,, J. M. Gooya,, M. Ortiz,, S. Tsai,, S. J. Collins, and, J. R. Keller. 1999. D3: a gene induced during myeloid cell differentiation of Linlo c-Kit+ Sca-1+ progenitor cells. Blood 93:527536.
126. Williams, B. R. 1999. PKR; a sentinel kinase for cellular stress. Oncogene 18:61126120.
127. Wreschner, D. H.,, J. W. McCauley,, J. J. Skehel, and, I. M. Kerr. 1981. Interferon action—sequence specificity of the ppp(A2′p)nA-dependent ribonuclease. Nature 289:414417.
128. Yang, Y. L.,, L. F. Reis,, J. Pavlovic,, A. Aguzzi,, R. Schafer,, A. Kumar,, B. R. Williams,, M. Aguet, and, C. Weissmann. 1995. Deficient signaling in mice devoid of double-stranded RNA-dependent protein kinase. EMBO J. 14:60956106.
129. Yu, M.,, J. H. Tong,, M. Mao,, L. X. Kan,, M. M. Liu,, Y. W. Sun,, G. Fu,, Y. K. Jing,, L. Yu,, D. Lepaslier,, M. Lanotte,, Z. Y. Wang,, Z. Chen,, S. Waxman,, Y. X. Wang,, J. Z. Tan, and, S. J. Chen. 1997. Cloning of a gene (RIG-G) associated with retinoic acid-induced differentiation of acute promyelocytic leukemia cells and representing a new member of a family of interferon-stimulated genes. Proc. Natl. Acad. Sci. USA 94:74067411.
130. Yuan, W., and, R. M. Krug. 2001. Influenza B virus NS1 protein inhibits conjugation of the interferon (IFN)-induced ubiquitin-like ISG15 protein. EMBO J. 20:362371.
131. Zhao, C.,, C. Denison,, J. M. Huibregtse,, S. Gygi, and, R. M. Krug. 2005. Human ISG15 conjugation targets both IFN-induced and constitutively expressed proteins functioning in diverse cellular pathways. Proc. Natl. Acad. Sci. USA 102:1020010205.
132. Zheng, X.,, R. H. Silverman,, A. Zhou,, T. Goto,, B. S. Kwon,, H. E. Kaufman, and, J. M. Hill. 2001. Increased severity of HSV-1 keratitis and mortality in mice lacking the 2-5A-dependent RNase L gene. Invest. Ophthalmol. Vis. Sci. 42:120126.
133. Zhou, A.,, J. M. Paranjape,, B. A. Hassel,, H. Nie,, S. Shah,, B. Galinski, and, R. H. Silverman. 1998. Impact of RNase L overexpression on viral and cellular growth and death. J. Interferon Cytokine Res. 18:953961.
134. Zou, W., and, D. E. Zhang. 2006. The interferon-inducible ubiquitin-protein isopeptide ligase (E3) EFP also functions as an ISG15 E3 ligase. J. Biol. Chem. 281:39893994.
135. Zuo, Y., and, M. P. Deutscher. 2001. Exoribonuclease superfamilies: structural analysis and phylogenetic distribution. Nucleic Acids Res. 29:10171026.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error