Chapter 9 : The Nuclear Factor-κB Signaling Network: Insights from Systems Approaches

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in

The Nuclear Factor-κB Signaling Network: Insights from Systems Approaches, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555815561/9781555814366_Chap09-1.gif /docserver/preview/fulltext/10.1128/9781555815561/9781555814366_Chap09-2.gif


This chapter reviews the nature of bipartite nuclear factor-κB (NF-κB) regulatory pathways activated in response to monokines produced as a consequence of viral infection, and those involved in mediating RNA viral infection. The chapter discusses work using mRNA profiling studies to determine the genetic networks downstream of NF-κB in response to monokines and RNA virus replication. Inhibition of reactive oxygen species (ROS) formation blocks Ser-276 phosphorylation and NF-κB-dependent gene expression without affecting NF-κB translocation. It was also found that RelA Ser-276 phosphorylation allows complex formation with the cyclin-dependent kinases (CDK)-9/Ccn T1, known as positive transcription elongation factor-b (PTEF-b). Reovirus is a segmented double-stranded RNA (dsRNA) virus that induces cellular apoptosis in an NF-κB-dependent manner. In a study, the tTA-IκB-α Mut cell system was exposed to reovirus for various times from 0 to 10 h in the presence or absence of functional NF-κB signaling. The major pathways are now understood to be composed of bipartite signaling modules whose actions affect nuclear translocation and, separately, transcription factor activation. The chapter also reviews systematic approaches to understanding the signaling pathway, including proteomics, mathematical modeling, real-time imaging, and gene network analyses.

Citation: Brasier A. 2009. The Nuclear Factor-κB Signaling Network: Insights from Systems Approaches, p 119-135. In Brasier A, García-Sastre A, Lemon S (ed), Cellular Signaling and Innate Immune Responses to RNA Virus Infections. ASM Press, Washington, DC. doi: 10.1128/9781555815561.ch9

Key Concept Ranking

Liquid Chromatography-Tandem Mass Spectrometry
Highlighted Text: Show | Hide
Loading full text...

Full text loading...


Image of Figure 1
Figure 1

The canonical NF-κB activation pathway induced by the TNF-α monokine. A schematic view of the canonical NF-κB signaling pathway coupled to the TNFR. Ligation with TNF-α induces receptor trimerization and recruitment of signaling adaptors. The two modules controlling NF-κB translocation (IKK–IκB-α) and NF-κB activation/phosphorylation (ROS-PKAc) are shown. The sites of the NF-κB–IκB-α and NF-κB–TNFAIP3/A20 negative autoregulatory “feedback loops” are diagrammed.

Citation: Brasier A. 2009. The Nuclear Factor-κB Signaling Network: Insights from Systems Approaches, p 119-135. In Brasier A, García-Sastre A, Lemon S (ed), Cellular Signaling and Innate Immune Responses to RNA Virus Infections. ASM Press, Washington, DC. doi: 10.1128/9781555815561.ch9
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2
Figure 2

The viral-induced canonical NF-κB activation pathway downstream of the RIG-I/ MAVS complex. Schematic view of the RIG-I/MAVS-induced NF-κB activation pathway and the nuclear translocation (IKK–IκB-α) and activation (TLR3-RelA Ser-276 kinase) modules. Caspase recruitment domains are shown in dark gray; MAVS-TRAF interaction domains are shaded light gray. vRNA, viral (ds) RNA.

Citation: Brasier A. 2009. The Nuclear Factor-κB Signaling Network: Insights from Systems Approaches, p 119-135. In Brasier A, García-Sastre A, Lemon S (ed), Cellular Signaling and Innate Immune Responses to RNA Virus Infections. ASM Press, Washington, DC. doi: 10.1128/9781555815561.ch9
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 3
Figure 3

The viral-induced noncanonical NF-κB activation pathway. Schematic view of the noncanonical and cross-talk pathways leading to RelB•NF-κB2 and RelA•NF-κB1 nuclear translocation. The mechanisms of viral replication coupling to NIK–IKK-α and the role of RelA/RelB phosphorylation have not yet been elucidated.

Citation: Brasier A. 2009. The Nuclear Factor-κB Signaling Network: Insights from Systems Approaches, p 119-135. In Brasier A, García-Sastre A, Lemon S (ed), Cellular Signaling and Innate Immune Responses to RNA Virus Infections. ASM Press, Washington, DC. doi: 10.1128/9781555815561.ch9
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 4
Figure 4

Dynamics of NF-κB: “oscillations.” In certain cells with appropriate cytoplasmic:nuclear volumes, chronic stimulation with TNF-α induces NF-κB oscillatory behavior, where RelA cycles in and out of the nucleus. This diagram shows the control of NF-κB subcellular localization, IKK kinase activity, RelA nuclear abundance, and cytoplasmic IκB-α levels during a single oscillation of the IKK–IκB-α module. (Top) Timing of the TNF-α stimulus.

Citation: Brasier A. 2009. The Nuclear Factor-κB Signaling Network: Insights from Systems Approaches, p 119-135. In Brasier A, García-Sastre A, Lemon S (ed), Cellular Signaling and Innate Immune Responses to RNA Virus Infections. ASM Press, Washington, DC. doi: 10.1128/9781555815561.ch9
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 5
Figure 5

Ingenuity Pathways networks of NF-κB-dependent gene networks. The NF-κB-dependent genes determined from mRNA profiling studies in response to TNF-α, RSV, and reovirus (REO) were mapped onto the IPKB (http://www.ingenuity.com/). Shown are labeled nodes representing individual protein functions and their relationship represented by edges. Nodes are colored by identification, with gray shapes indicating upregulation of the gene in the input dataset. Squares indicate cytokines, circles indicate chemokines, and ovals indicate transcription factors. For the edges, an arrow indicates “acts on”; straight lines indicate binding interactions.

Citation: Brasier A. 2009. The Nuclear Factor-κB Signaling Network: Insights from Systems Approaches, p 119-135. In Brasier A, García-Sastre A, Lemon S (ed), Cellular Signaling and Innate Immune Responses to RNA Virus Infections. ASM Press, Washington, DC. doi: 10.1128/9781555815561.ch9
Permissions and Reprints Request Permissions
Download as Powerpoint


1. Akira, S.,, S. Uematsu, and, O. Takeuchi. 2006. Pathogen recognition and innate immunity. Cell 124:783801.
2. Basak, S.,, H. Kim,, J. D. Kearns,, V. Tergaonkar,, E. O’Dea,, S. L. Werner,, C. A. Benedict,, C. F. Ware,, G. Ghosh,, I. M. Verma, and, A. Hoffmann. 2007. A fourth IκB protein within the NF-κB signaling module. Cell 128:369381.
3. Beg, A. A. and, A. S. Baldwin, Jr. 1993. The IκB proteins: multifunctional regulators of Rel/NF-κB transcription factors. Genes Dev. 7:20642070.
4. Beyaert, R.,, K. Heyninck, and, S. VanHuffel. 2000. A20 and A20-binding proteins as cellular inhibitors of nuclear factor-κB-dependent gene expression and apoptosis. Biochem. Pharmacol. 60:11431151.
5. Bonizzi, G.,, M. Bebien,, D. C. Otero,, K. Johnson-Vroom,, Y. Cao,, D. Vu,, A. G. Jegga,, B. Aronow,, G. Ghosh,, R. Rickert, and, M. Karin. 2004. Activation of IKKalpha target genes depends on recognition of specific kappaB binding sites by RelB:p52 dimers. EMBO J. 23:42024210.
6. Bonizzi, G., and, M. Karin. 2004. The two NF-κB activation pathways and their role in innate and adaptive immunity. Trends Immunol. 25:280288.
7. Bosisio, D.,, I. Marazzi,, A. Agresti,, N. Shimizu,, M. E. Bianchi, and, G. Natoli. 2006. A hyper-dynamic equilibrium between promoter-bound and nucleoplasmic dimers controls NF-kappaB-dependent gene activity. EMBO J. 25:798810.
8. Bouwmeester, T.,, A. Bauch,, H. Ruffner,, P. O. Angrand,, G. Bergamini,, K. Croughton,, C. Cruciat,, D. Eberhard,, J. Gagneur,, S. Ghidelli,, C. Hopf,, B. Huhse,, R. Mangano,, A. M. Michon,, M. Schirle,, J. Schlegl,, M. Schwab,, M. A. Stein,, A. Bauer,, G. Casari,, G. Drewes,, A. C. Gavin,, D. B. Jackson,, G. Joberty,, G. Neubauer,, J. Rick,, B. Kuster, and, G. Superti-Furga. 2004. A physical and functional map of the human TNF-α/NF-κB signal transduction pathway. Nat. Cell. Biol. 6:97105.
9. Brasier, A. R.,, M. Lu,, T. Hai,, Y. Lu, and, I. Boldogh. 2001. NF-κB-inducible BCL-3 expression is an autoregulatory loop controlling nuclear p50/NF-κB1 residence. J. Biol. Chem. 276:3208032093.
10. Carlotti, F.,, S. K. Dower, and, E. E. Qwarnstrom. 2000. Dynamic shuttling of nuclear factor kappa B between the nucleus and cytoplasm as a consequence of inhibitor dissociation. J. Biol. Chem. 275:4102841034.
11. Chen, L. F.,, S. A. Williams,, Y. Mu,, H. Nakano,, J. M. Duerr,, L. Buckbinder, and, W. C. Greene. 2005. NF-κB RelA phosphorylation regulates RelA acetylation. Mol. Cell. Biol. 25:79667975.
12. Choudhary, S.,, S. Boldogh,, R. P. Garofalo,, M. Jamaluddin, and, A. R. Brasier. 2005. RSV influences NF-κB dependent gene expression through a novel pathway involving MAP3K14/NIK expression and nuclear complex formation with NF-κB2. J. Virol. 79:89488959.
13. Delhase, M.,, M. Hayakawa,, Y. Chen, and, M. Karin. 1999. Positive and negative regulation of IκB kinase activity through IKKβ subunit phosphorylation. Science 284:309313.
14. Deng, L.,, C. Wang,, E. Spencer,, L. Yang,, A. Braun,, J. You,, C. Slaughter,, C. Pickart, and, Z. J. Cheng. 2000. Activation of the IκB kinase complex by TRAF6 requires a dimeric ubiquitin-conjugating enzyme complex and a unique polyubiquitin chain. Cell 103:351361.
15. Gitlin, L.,, W. Barchet,, S. Gilfillan,, M. Cella,, B. Beutler,, R. A. Flavell,, M. S. Diamond, and, M. Colonna. 2006. Essential role of mda-5 in type I IFN responses to polyriboinosinic:polyribocytidylic acid and encephalomyocarditis picornavirus. Proc. Nat. Acad. Sci. USA 103:84598464.
16. Goshe, M. B.,, T. P. Conrads,, E. A. Panisko,, N. H. Angell,, T. D. Veenstra, and, R. D. Smith. 2001. Phosphoprotein isotope-coded affinity tag approach for isolating and quantitating phosphopeptides in proteome-wide analysis. Anal. Chem. 73:25782586.
17. Haeberle, H.,, A. Casola,, Z. Gatalica,, S. Petronella,, H.-J. Dieterich,, P. B. Ernst,, A. R. Brasier, and, R. P. Garofalo. 2004. IκB kinase is a critical regulator of chemokine expression and lung inflammation in respiratory syncytial virus infection. J. Virol. 78:22322241.
18. Hall, C. B. 2001. Respiratory syncytial virus and parainfluenza virus. N. Engl. J. Med. 344:19171928.
19. Han, Y., and, A. R. Brasier. 1997. Mechanism for biphasic Rel A:NF-κB1 nuclear translocation in tumor necrosis factor α-stimulated hepatocytes. J. Biol. Chem. 272:98239830.
20. Han, Y.,, T. Meng,, N. R. Murray,, A. P. Fields, and, A. R. Brasier. 1999. IL-1 Induced NF-κB-IκBα autoregulatory feedback loop in hepatocytes. A role for PKCα in post-transcriptional regulation of IkBa resynthesis. J. Biol. Chem. 274:939947.
21. Han, Y.,, S. Weinman,, I. Boldogh,, R. K. Walker, and, A. R. Brasier. 1999. Tumor necrosis factor-α-inducible IκBα proteolysis mediated by cytosolic m-calpain. A mechanism parallel to the ubiquitin-proteasome pathway for nuclear factor-κB activation. J. Biol. Chem. 274:787794.
22. Hansberger, M. W.,, J. A. Campbell,, P. Danthi,, P. Arrate,, K. N. Pennington,, K. B. Marcu,, D. W. Ballard, and, T. S. Dermody. 2007. IκB kinase subunits α and γ are required for activation of NF-κB and induction of apoptosis by mammalian reovirus. J. Virol. 81:13601371.
23. Harhaj, E. W., and, S.-C. Sun. 1999. Regulation of RelA subcellular localization by a putative nuclear export signal and p50. Mol. Cell. Biol. 19:70887095.
24. He, K.-L., and, A. T. Ting. 2002. A20 inhibits tumor necrosis factor (TNF) alpha-induced apoptosis by disrupting recruitment of TRADD and RIP to the TNF receptor 1 complex in Jurkat T cells. Mol. Cell. Biol. 22:60346045.
25. Heyninck, K.,, D. De Valck,, W. Vanden Berghe,, W. Van Criekinge,, R. Contreras,, W. Fiers,, G. Haegeman, and, R. Beyaert. 1999. The zinc finger protein A20 inhibits TNF-induced NF-κB dependent gene expression by interfering with an RIP or TRAF2-mediated transactivation signal and directly binds to a novel NF-κB inhibiting protein ABIN. J. Cell. Biol. 145:14711482.
26. Hoffmann, A.,, A. Levchenko,, M. L. Scott, and, D. Baltimore. 2002. The Ikappa B-NF-kappa B signaling module: temporal control and selective gene activation. Science 298:12411245.
27. Hsu, H.,, J. Huang,, H. B. Shu,, V. Baichwal, and, D. V. Goeddel. 1996. TNF-dependent recruitment of the protein kinase RIP to the TNF receptor-1 signaling complex. Immunity 4:387396.
28. Hsu, H.,, H.-B. Shu,, M.-G. Pan, and, D. V. Goeddel. 1996. TRADD-TRAF2 and TRADD-FADD interactions define two distinct TNF receptor 1 signal transduction pathways. Cell 84:299308.
29. Hu, Y.,, V. Baud,, M. Delhase,, P. Zhang,, T. Deerinck,, M. Ellisman,, R. Johnson, and, M. Karin. 1999. Abnormal morphogenesis but intact IKK activation in mice lacking the IKKalpha subunit of IkappaB kinase. Science 284:316320.
30. Huynh, Q. K.,, H. Boddupalli,, S. A. Rouw,, C. M. Koboldt,, T. Hall,, C. Sommers,, S. D. Hauser,, J. L. Pierce,, R. G. Combs,, B. A. Reitz,, J. A. Diaz-Collier,, R. A. Weinberg,, B. L. Hood,, B. F. Kilpatrick, and, C. S. Tripp. 2000. Characterization of the recombinant IKK1/IKK2 heterodimer. Mechanisms regulating kinase activity. J. Biol. Chem. 275:2588325891.
31. Iyer, V. R.,, M. B. Eisen,, D. T. Ross,, G. Schuler,, T. Moore,, J. C. F. Lee,, J. M. Trent,, L. M. Staudt,, J. Hudson,, M. S. Boguski,, D. Lashkari,, D. Shalon,, D. Botstein, and, P. O. Brown. 1999. The transcriptional program in the response of human fibroblasts to serum. Science 283:8387.
32. Jamaluddin, M.,, S. Wang,, I. Boldogh,, B. Tian, and, A. R. Brasier. 2007. TNF-α-induced NF-κB/Rel A Ser 276 phosphorylation and enhanceosome formation on the IL-8 promoter is mediated by a reactive oxygen species (ROS)-dependent pathway. Cell. Signal. 9:14191433.
33. Jamaluddin, M.,, A. Casola,, R. P. Garofalo,, Y. Han,, T. Elliott,, P. L. Ogra, and, A. R. Brasier. 1998. The major component of IκBα proteolysis occurs independently of the proteasome pathway in respiratory syncytial virus-infected pulmonary epithelial cells. J. Virol. 72:48494857.
34. Jian, Z.,, J. Ninomiya-Tsuji,, Y. Qian,, K. Matsumoto, and, X. Li. 2002. Interleukin-1 receptor-associated kinase-dependent IL-1 induced signaling complexes phosphorylate TAK1 and TAB2 at the plasma membrane and activate TAK1 in the cytosol. Mol. Cell. Biol. 22:71587167.
35. Jiang, X.,, N. Takahashi,, N. Matsui,, T. Tetsuka, and, T. Okamoto. 2003. The NF-kappa B activation in lymphotoxin beta receptor signaling depends on the phosphorylation of p65 at serine 536. J. Biol. Chem. 278:919926.
36. Karin, M. 1999. The beginning of the end: IκB kinase (IKK) and NF-κB activation. J. Biol. Chem. 274:2733927342.
37. Karin, M., and, Y. Ben Neriah. 2000. Phosphorylation meets ubiquitination: the control of NF-κB activity. Annu. Rev. Immunol. 18:621663.
38. Karin, M., and, A. Lin. 2005. NF-κB at the crossroads of life and death. Nat. Immunol. 3:221227.
39. Kato, H.,, S. Sato,, M. Yoneyama,, M. Yamamoto,, S. Uematsu,, K. Matsui,, T. Tsujimura,, K. Takeda,, T. Fujita,, O. Takeuchi, and, S. Akira. 2005. Cell type-specific involvement of RIG-I in antiviral response. Immunity 23:1928.
40. Kato, H.,, O. Takeuchi,, S. Sato,, M. Yoneyama,, M. Yamamoto,, K. Matsui,, S. Uematsu,, A. Jung,, T. Kawai,, K. J. Ishii,, O. Yamaguchi,, K. Otsu,, T. Tsujimura,, C. S. Koh,, C. Reis e Sousa,, Y. Matsuura,, T. Fujita, and, S. Akira. 2006. Differential roles of MDA5 and RIG-I helicases in the recognition of RNA viruses. Nature 441:101105.
41. Krikos, A.,, C. D. Laherty, and, V. M. Dixit. 1992. Transcriptional activation of the tumor necrosis factor alpha-inducible zinc finger protein, A20, is mediated by kappa B elements. J. Biol. Chem. 267:1797117976.
42. Kumar, H.,, T. Kawai,, H. Kato,, S. Sato,, K. Takahashi,, C. Coban,, M. Yamamoto,, S. Uematsu,, K. J. Ishii,, O. Takeuchi, and, S. Akira. 2006. Essential role of IPS-1 in innate immune responses against RNA viruses. J. Exp. Med. 203:17951803.
43. Li, Y.,, J. Kang,, J. Frieman,, L. Tarassishin,, J. Ye,, A. Kovalenko,, D. Wallach, and, M. S. Horwitz. 1999. Identification of a cell protein (FIP-3) as a modulator of NF-κB activity and as a target of an adenovirus inhibitor of tumor necrosis factor α-induced apoptosis. Proc. Natl. Acad. Sci. USA 96:10421047.
44. Lipniacki, T.,, P. Paszek,, A. R. Brasier,, B. Luxon, and, M. Kimmel. 2004. Mathematical model of NF-κB regulatory module. J. Theor. Biol. 228:195215.
45. Lipniacki, T.,, K. Puszynski,, P. Paszek,, A. R. Brasier, and, M. Kimmel. 2006. Stochastic robustness of NF-kappaB signalling: low dose TNF stimulation. Bioinformatics 8:376.
46. Lipniacki, T.,, P. Paszek,, A. R. Brasier,, B. A. Luxon, and, M. Kimmel. 2006. Stochastic regulation in early immune response. Biophys. J. 90:725742.
47. Liu, P.,, S. Choudhary,, M. Jamaluddin,, K. Li,, R. Garofalo,, A. Casola, and, A. R. Brasier. 2006. Respiratory syncytial virus activates interferon regulatory factor-3 in airway epithelial cells by upregulating a RIG-I-Toll like receptor-3 pathway. J. Virol. 81:14011411.
48. Lu, R.,, P. A. Moore, and, P. M. Pitha. 2002. Stimulation of IRF-7 gene expression by tumor necrosis factor alpha: requirement for NF-κB transcription factor and gene accessibility. J. Biol. Chem. 277:1659216598.
49. Maniatis, T. 1997. Catalysis by a multiprotein IκB kinase complex. Science 278:818819.
50. Mercurio, F.,, B. W. Murray,, A. Shevchenko,, B. L. Bennett,, D. B. Young,, J. W. Li,, G. Pascual,, A. Motiwala,, H. Zhu,, M. Mann, and, A. M. Manning. 1999. IκB kinase (IKK)-associated protein 1, a common component of the heterogeneous IKK complex. Mol. & Cell. Biol. 19:15261538.
51. Mercurio, F.,, H. Zhu,, B. W. Murray,, A. Shevchenko,, B. L. Bennett,, J. Li,, D. B. Young,, M. Barbosa,, M. Mann,, A. Manning, and, A. Rao. 1997. IKK-1 and IKK-2: cytokine-activated IκB kinases essential for NF-κB activation. Science 278:818819.
52. Mizukami, J.,, G. Takaesu,, H. Akatsuka,, H. Sakurai,, J. Ninomiya-Tsuji,, K. Matsumoto, and, N. Sakurai. 2002. Receptor activator of NF-κB ligand (RANKL) activates TAK1 mitogen-activated protein kinase kinase kinase through a signaling complex containing RANK, TAB2, and TRAF6. Mol. Cell. Biol. 22:9921000.
53. Mordmuller, B.,, D. Krappmann,, M. Esen,, M. Wegener, and, C. Scheidereit. 2003. Lymphotoxin and lipopolysaccharide induce NF-kappaB-p52 generation by a co-translational mechanism. EMBO Rep. 4:8287.
54. Morrison, M. D.,, W. Reiley,, M. Zhang, and, S. C. Sun. 2005. An atypical tumor necrosis factor (TNF) receptor-associated factor-binding motif of B cell-activating factor belonging to the TNF family (BAFF) receptor mediates induction of the noncanonical NF-κB signaling pathway. J. Biol. Chem. 280:1001810024.
55. Nelson, D. E.,, A. E. C. Ihekwaba,, M. Elliott,, J. R. Johnson,, C. A. Gibney,, B. E. Foreman,, G. Nelson,, V. See,, C. A. Horton,, D. G. Spiller,, S. W. Edwards,, H. P. McDowell,, J. F. Unitt,, E. Sullivan,, R. Grimley,, N. Benson,, D. Broomhead,, D. B. Kell, and, M. R. H. White. 2004. Oscillations in NF-κB signaling control the dynamics of gene expression. Science 306:704708.
56. Ninomiya-Tsuhi, J.,, K. Kishimoto,, A. Hiyama,, J.-I. Inoue,, Z. Cao, and, K. Matsumoto. 1999. The kinase TAK1 can activate the NIK-IκB as well as the MAP kinase cascade in the IL–1 signalling pathway. Nature 398:252256.
57. Nowak, D.,, B. Tian,, M. Jamaluddin,, I. Boldogh,, L. Vergara,, J. S. Choudhary, and, A. R. Brasier. 2008. RelA Ser276 phosphorylation is required for activation of a subset of NF-κB dependent genes by recruiting Cdk-9/cyclin T1 complexes. Mol. Cell. Biol. 28:36233638.
58. Nowak, D. E.,, B. Tian, and, A. R. Brasier. 2005. Two-step cross-linking method for identification of NF-κB gene network by chromatin immunoprecipitation. Biotechniques 39:715725.
59. O’Donnell, S. M.,, G. Holm,, J. M. Pierce,, B. Tian,, R. S. Chari,, D. W. Ballard,, A. R. Brasier, and, T. S. Dermody. 2006. Identification of an NF-κB-dependent gene network in cells infected by mammalian reovirus. J. Virol. 80:10771086.
60. Pahl, H. 1999. Activators and target genes of Rel/NF-κB transcription factors. Oncogene 18:68536866.
61. Phillips, K.,, N. Kedersha,, L. Shen,, P. J. Blackshear, and, P. Anderson. 2004. Arthritis suppressor genes TIA-1 and TTP dampen the expression of tumor necrosis factor α, cyclooxygenase 2, and inflammatory arthritis. Proc. Nat. Acad. Sci. USA 101:20112016.
62. Poyet, J.-L.,, S. M. Srinivasula,, J.-H. Lin,, T. Fernandes-Alnemri,, S. Yamaoka,, P. N. Tsichlis, and, E. S. Alnemri. 2000. Activation of the IκB kinases by RIP via IKK-γ/NEMO-mediated oligomerization. J. Biol. Chem. 275:3796637977.
63. Price, D. H. 2000. P-TEFb, a cyclin-dependent kinase controlling elongation by RNA polymerase II. Mol. Cell. Biol. 20:26292634.
64. Puig, O.,, F. Caspary,, G. Riguat,, B. Rutz,, E. Bouveret,, E. Bragado-Nilsson,, M. Wilm, and, B. Seraphin. 2001. The tandem affinity purification (TAP) method: a general procedure of protein complex purification. Methods 24:218229.
65. Rothwarf, D. M.,, E. Zandi,, G. Natoli, and, M. Karin. 1998. IKK-gamma is an essential regulatory subunit of the IkappaB kinase complex. Nature 395:297300.
66. Rudolph, D.,, W. C. Yeh,, A. Wakeham,, B. Rudolph,, D. Nallainathan,, J. Potter,, A. J. Elia, and, T. W. Mak. 2000. Severe liver degeneration and lack of NF-kappaB activation in NEMO/IKKgamma-deficient mice. Genes Dev. 14:854862.
67. Saha, S. K.,, E. M. Pietras,, J. Q. He,, J. R. Kang,, S.-Y. Liu,, G. Oganesyan,, A. Shahangian,, B. Zarnegar,, T. L. Shiba,, Y. Wang, and, G. Cheng. 2006. Regulation of antiviral responses by a direct and specific interaction between TRAF3 and Cardif. EMBO J. 25:32573263.
68. Sakurai, H.,, H. Chiba,, H. Miyoshi,, T. Sugita, and, W. Toriumi. 1999. IkappaB kinases phosphorylate NF-kappaB p65 subunit on serine 536 in the transactivation domain. J. Biol. Chem. 274:3035330366.
69. Sakurai, H.,, H. Miyoshi,, W. Toriumi, and, T. Sugita. 1999. Functional interactions of transforming growth factor β-activated kinase 1 with IκB kinases to stimulate NF-κB activation. J. Biol. Chem. 274:1064110648.
70. Senftleben, U.,, Y. Cao,, G. Xiao,, F. R. Greten,, G. Krahn,, G. Bonizzi,, Y. Chen,, Y. Hu,, A. Fong,, S. C. Sun, and, M. Karin. 2001. Activation by IKKalpha of a second, evolutionary conserved, NF-kappa B signaling pathway. Science 293:14951499.
71. Seth, R. B.,, L. Sun,, C. K. Ea, and, Z. J. Chen. 2005. Identification and characterization of MAVS, a mitochondrial antiviral signaling protein that activates NF-κB and IRF3. Cell 122:669682.
72. Sizemore, N.,, S. Leung, and, G. R. Stark. 1999. Activation of phosphatidylinositol 3-kinase in response to interleukin-1 leads to phosphorylation and activation of the NF-kappa B p65/RelA subunit. Mol. Cell. Biol. 19:47984805.
73. Sun, S. C.,, P. A. Ganchi,, C. Beraud,, D. W. Ballard, and, W. C. Greene. 1994. Autoregulation of the NF-kappa B transactivator RelA (p65) by multiple cytoplasmic inhibitors containing ankyrin motifs. Proc. Natl. Acad. Sci. USA 91:13461350.
74. Takaesu, G.,, R. M. Surabhi,, K. J. Park,, J. Ninomiya-Tsuji,, K. Matsumoto, and, R. B. Gaynor. 2003. TAK1 is critical for IkappaB kinase-mediated activation of the NF-kappaB pathway. J. Mol. Biol. 326:105115.
75. Tian, B.,, D. Nowak, and, A. R. Brasier. 2005. A TNF induced gene expression program under oscillatory NF-κB control. BMC Genomics 6:137.
76. Tian, B.,, Y. Zhang,, B. A. Luxon,, R. P. Garofalo,, A. Casola,, M. Sinha, and, A. R. Brasier. 2002. Identification of NF-κB dependent gene networks in respiratory syncytial virus-infected cells. J. Virol. 76:68006814.
77. Tian, B.,, D. E. Nowak,, M. Jamaluddin,, S. Wang, and, A. R. Brasier. 2005. Identification of direct genomic targets downstream of the NF-kappa B transcription factor mediating TNF signaling. J. Biol. Chem. 280:1743517448.
78. Vlahopoulos, S.,, I. Boldogh, and, A. R. Brasier. 1999. NF-κB dependent induction of interleukin-8 gene expression by tumor necrosis factor α: evidence for an antioxidant sensitive activating pathway distinct from nuclear translocation. Blood 94:18781889.
79. Wang, C.-Y.,, M. W. Mayo,, R. G. Korneluk,, D. B. Goeddel, and, A. S. Baldwin, Jr. 1998. NF-κB antiapoptosis: induction of TRAF1 and TRAF2 and C-IAP1 and C-IAP2 to suppress caspase-8 activation. Science 281:16801683.
80. Werner, S. L.,, D. Barken, and, A. Hoffmann. 2005. Stimulus specificity of gene expression programs determined by temporal control of IKK activity. Science 309:18571861.
81. Wertz, I.,, K. M. O’Rourke,, H. Zhou,, M. Eby,, L. Aravind,, S. Seshagiri,, P. Wu,, C. Wiesmann,, R. Baker,, D. Boone,, A. Ma,, E. V. Koonin, and, V. M. Dixit. 2004. De-ubiquitination and ubiquitin ligase domains of A20 downregulate NF-κB signalling. Nature 430:694699.
82. Whiteside, S. T.,, J.-C. Epinat,, N. R. Rice, and, A. Israel. 1997. IκB epsilon, a novel member of the IκB family, controls RelA and cRel NF-κB activity. EMBO J. 16:14131426.
83. Woronicz, J.,, X. Gao,, Z. Cao,, M. Rothe, and, D. V. Goeddel. 1997. IκB kinase-β: NF-κB activation and complex formation with IκB kinase-α and NIK. Science 278:866869.
84. Wu, C. J.,, D. B. Conze,, T. Li,, S. M. Srinivasula, and, J. D. Ashwell. 2006. Sensing of Lys 63-linked polyubiquitination by NEMO is a key event in NF-κB activation. Nat. Cell. Biol. 8:398406.
85. Wu, M. X.,, Z. Ao,, K. V. Prasad,, R. Wu, and, S. F. Schlossman. 1998. IEX-1L, an apoptosis inhibitor involved in NF-kappaB-mediated cell survival. Science 281:9981001.
86. Xiao, G.,, A. Fong, and, S. C. Sun. 2004. Induction of p100 processing by NF-κB-inducing kinase involves docking IκB kinase (IKKα) to p100 and IKKα-mediated phosphorylation. J. Biol. Chem. 279:3009930105.
87. Xu, L. G.,, Y. Y. Wang,, K. J. Han,, L. Y. Li,, Z. Zhai, and, H. B. Shu. 2005. VISA is an adapter protein required for virus-triggered IFN-β signaling. Mol. Cell 19:727740.
88. Yamamoto, Y.,, D. W. Kim,, Y. T. Kwak,, S. Prajapati,, U. Verma, and, R. B. Gaynor. 2001. IKKgamma/NEMO facilitates the recruitment of the IkappaB proteins into the IkappaB kinase complex. J. Biol. Chem. 276:3632736336.
89. Yamaoka, S.,, G. Courtois,, C. Bessia,, S. T. Whiteside,, R. Weil,, F. Agou,, H. E. Kirk,, R. J. Kay, and, A. Israel. 1998. Complementation cloning of NEMO, a component of the IκB kinase complex essential for NF-κB activation. Cell 93:12311240.
90. Ye, J.,, X. Xie,, L. Tarassishin, and, M. S. Horwitz. 2000. Regulation of the NF-kappaB activation pathway by isolated domains of FIP3/IKKgamma, a component of the IkappaB-alpha kinase complex. J. Biol. Chem. 275:98829889.
91. Zhang, S. Q.,, A. Kovalenko,, G. Cantarella, and, D. Wallach. 2000. Recruitment of the IKK signalosome to the p55 TNF receptor: RIP and A20 bind to NEMO (IKKgamma) upon receptor stimulation. Immunity 12:301311.
92. Zhang, Y.,, B. A. Luxon,, A. Casola,, R. P. Garofalo,, M. Jamaluddin, and, A. R. Brasier. 2001. Expression of RSV-induced chemokine gene networks in lower airway epithelial cells revealed by cDNA microarrays. J. Virol. 75:90449058.
93. Zhao, T.,, L. Yang,, Q. Sun,, M. Arguello,, D. W. Ballard,, J. Hiscott, and, R. Lin. 2007. The NEMO adaptor bridges the nuclear factor-κB and interferon regulatory factor signaling pathways. Nat. Immunol. 8:592600.
94. Zhong, H.,, H. SuYang,, H. Erdjument-Bromage,, P. Tempst, and, S. Ghosh. 1997. The transcriptional activity of NF-κB is regulated by the IκB-associated PKAc subunit through a cyclic AMP-independent mechanism. Cell 89:413424.
95. Zhong, H.,, R. E. Voll, and, S. Ghosh. 1998. Phosphorylation of NF-κB p65 by PKA stimulates transcriptional activity by promoting a novel bivalent interaction with the coactivator CBP/p300. Mol. Cell 1:661671.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error