1887

Chapter 13 : RNA Virus Families: Distinguishing Characteristics, Differences, and Similarities

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in
Zoomout

RNA Virus Families: Distinguishing Characteristics, Differences, and Similarities, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555815561/9781555814366_Chap13-1.gif /docserver/preview/fulltext/10.1128/9781555815561/9781555814366_Chap13-2.gif

Abstract:

This chapter deals with RNA viruses that infect vertebrates, and highlights how differences between the biology of DNA and RNA viruses and differences among RNA viruses may help to determine how they can be detected by their hosts. Genetic material restricts the way in which RNA viruses can be maintained within infected individuals. The chapter briefly describes general concepts of viral replication that depend on the nature of the RNA genome. Much effort has recently been focused on further characterizing the nature of the nucleic acid ligands and how they are produced in the viral life cycle. Pattern recognition receptors (PRRs) and their ligands and how they relate to the life cycle of different RNA virus families are briefly reviewed in the chapter. Viruses that establish a chronic infection will need to combat a sustained offense provided by the host’s antiviral immune response. The chapter also reviews two remarkably different RNA virus pathogens, foot-and-mouth disease virus (FMDV) and hepatitis C virus (HCV), to contrast alternate and effective strategies to counteract the innate immune responses of their host.

Citation: Mason P, Scholle F. 2009. RNA Virus Families: Distinguishing Characteristics, Differences, and Similarities, p 197-210. In Brasier A, García-Sastre A, Lemon S (ed), Cellular Signaling and Innate Immune Responses to RNA Virus Infections. ASM Press, Washington, DC. doi: 10.1128/9781555815561.ch13

Key Concept Ranking

Viral Life Cycle
0.5436804
0.5436804
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of Figure 1
Figure 1

Replication cycle of viruses with an ssRNA genome of positive polarity. Viral genomic RNA is translated after uncoating to produce the viral proteins. Viral proteins then transcribe the genome into the minus-sense antigenome that, in turn, serves as a template for progeny genome synthesis. Progeny genomes and viral structural proteins assemble into progeny virions.

Citation: Mason P, Scholle F. 2009. RNA Virus Families: Distinguishing Characteristics, Differences, and Similarities, p 197-210. In Brasier A, García-Sastre A, Lemon S (ed), Cellular Signaling and Innate Immune Responses to RNA Virus Infections. ASM Press, Washington, DC. doi: 10.1128/9781555815561.ch13
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2
Figure 2

Replication cycle of viruses with an ssRNA genome of negative polarity. Viral genomes remain associated with the nucleocapsid protein (N) and are transcribed into mRNAs by the RdRP, which is carried into the host cell by the virion. Viral structural and nonstructural proteins are translated from the mRNAs. Nonstructural proteins serve to replicate the genome into its plus-sense antigenomic complement, which serves as a template for more genome synthesis. Nucleocapsid-associated genomes and viral structural proteins (including the RdRP) then assemble into progeny virions.

Citation: Mason P, Scholle F. 2009. RNA Virus Families: Distinguishing Characteristics, Differences, and Similarities, p 197-210. In Brasier A, García-Sastre A, Lemon S (ed), Cellular Signaling and Innate Immune Responses to RNA Virus Infections. ASM Press, Washington, DC. doi: 10.1128/9781555815561.ch13
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 3
Figure 3

Replication cycle of viruses with an ssRNA genome of ambisense polarity. Nucleocapsid-associated genomes are transcribed into mRNAs for the nucleocapsid protein (N) and the RdRP. N and RdRP are involved in synthesis of the antigenome and progeny genomes. Antigenomes serve as templates for the transcription of mRNAs for structural and other viral proteins. Structural proteins and progeny genomes then assemble into progeny virions.

Citation: Mason P, Scholle F. 2009. RNA Virus Families: Distinguishing Characteristics, Differences, and Similarities, p 197-210. In Brasier A, García-Sastre A, Lemon S (ed), Cellular Signaling and Innate Immune Responses to RNA Virus Infections. ASM Press, Washington, DC. doi: 10.1128/9781555815561.ch13
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 4
Figure 4

Replication cycle of viruses with dsRNA genomes. dsRNA genomes are transcribed into viral mRNAs within subviral core-particles by the core-associated RdRP. mRNAs are then extruded into the cytoplasm of the host cell and translated into viral proteins. mRNAs and viral proteins assemble into subviral particles, where synthesis of the minus-strand RNA occurs to yield replicated dsRNA. Subviral particles then initiate a secondary round of transcription, translation, packaging, and replication, producing newly formed cores that combine with structural proteins to form progeny virions.

Citation: Mason P, Scholle F. 2009. RNA Virus Families: Distinguishing Characteristics, Differences, and Similarities, p 197-210. In Brasier A, García-Sastre A, Lemon S (ed), Cellular Signaling and Innate Immune Responses to RNA Virus Infections. ASM Press, Washington, DC. doi: 10.1128/9781555815561.ch13
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555815561.ch13
1. Ahmad-Nejad, P.,, H. Hacker,, M. Rutz,, S. Bauer,, R. M. Vabulas, and, H. Wagner. 2002. Bacterial CpG-DNA and lipopolysaccharides activate Toll-like receptors at distinct cellular compartments. Eur. J. Immunol. 32:19581968.
2. Alexopoulou, L.,, A. C. Holt,, R. Medzhitov, and, R. A. Flavell. 2001. Recognition of double-stranded RNA and activation of NF-kappaB by Toll-like receptor 3. Nature 413:732738.
3. Andrejeva, J.,, K. S. Childs,, D. F. Young,, T. S. Carlos,, N. Stock,, S. Goodbourn, and, R. E. Randall. 2004. The V proteins of paramyxoviruses bind the IFN-inducible RNA helicase, mda-5, and inhibit its activation of the IFN-β promoter. Proc. Natl. Acad. Sci. USA 101:1726417269.
4. Barral, P. M.,, J. M. Morrison,, J. Drahos,, P. Gupta,, D. Sarkar,, P. B. Fisher, and, V. R. Racaniello. 2007. MDA-5 is cleaved in poliovirus-infected cells. J. Virol. 81:36773684.
5. Carpentier, P. A.,, B. R. Williams, and, S. D. Miller. 2007. Distinct roles of protein kinase R and Toll-like receptor 3 in the activation of astrocytes by viral stimuli. Glia 55:239252.
6. Chinsangaram, J.,, M. E. Piccone, and, M. J. Grubman. 1999. Ability of foot-and-mouth disease virus to form plaques in cell culture is associated with suppression of alpha/beta interferon. J. Virol. 73:98919898.
7. Crotty, S.,, C. E. Cameron, and, R. Andino. 2001. RNA virus error catastrophe: direct molecular test by using ribavirin. Proc. Natl. Acad. Sci. USA 98:68956900.
8. Diebold, S. S.,, T. Kaisho,, H. Hemmi,, S. Akira, and, C. Reis e Sousa. 2004. Innate antiviral responses by means of TLR7-mediated recognition of single-stranded RNA. Science 303:15291531.
9. Diebold, S. S.,, M. Montoya,, H. Unger,, L. Alexopoulou,, P. Roy,, L. E. Haswell,, A. Al-Shamkhani,, R. Flavell,, P. Borrow, and, C. Reis e Sousa. 2003. Viral infection switches non-plasmacytoid dendritic cells into high interferon producers. Nature 424:324328.
10. Edelmann, K. H.,, S. Richardson-Burns,, L. Alexopoulou,, K. L. Tyler,, R. A. Flavell, and, M. B. Oldstone. 2004. Does Toll-like receptor 3 play a biological role in virus infections? Virology 322:231238.
11. Edwards, M. R.,, C. A. Hewson,, V. Laza-Stanca,, H. T. Lau,, N. Mukaida,, M. B. Hershenson, and, S. L. Johnston. 2007. Protein kinase R, IkappaB kinase-beta and NF-kappaB are required for human rhinovirus induced pro-inflammatory cytokine production in bronchial epithelial cells. Mol. Immunol. 44:15871597.
12. Fenner, F. 1953. Changes in the mortality-rate due to myxomatosis in the Australian wild rabbit. Nature 172:228230.
13. Gilfoy, F. D., and, P. W. Mason. 2007. West Nile virus-induced interferon production is mediated by the double-stranded RNA-dependent protein kinase PKR. J. Virol. 81:1114811158.
14. Gitlin, L.,, W. Barchet,, S. Gilfillan,, M. Cella,, B. Beutler,, R. A. Flavell,, M. S. Diamond, and, M. Colonna. 2006. Essential role of mda-5 in type I IFN responses to polyriboinosinic:polyribocytidylic acid and encephalomyocarditis picornavirus. Proc. Natl. Acad. Sci. USA 103:84598464.
15. Gowen, B. B.,, J. D. Hoopes,, M. H. Wong,, K. H. Jung,, K. C. Isakson,, L. Alexopoulou,, R. A. Flavell, and, R. W. Sidwell. 2006. TLR3 deletion limits mortality and disease severity due to phlebovirus infection. J. Immunol. 177:63016307.
16. Heil, F.,, H. Hemmi,, H. Hochrein,, F. Ampenberger,, C. Kirschning,, S. Akira,, G. Lipford,, H. Wagner, and, S. Bauer. 2004. Species-specific recognition of single-stranded RNA via Toll-like receptor 7 and 8. Science 303:15261529.
17. Holmes, E. C. 2003. Error thresholds and the constraints to RNA virus evolution. Trends Microbiol. 11:543546.
18. Hornung, V.,, J. Ellegast,, S. Kim,, K. Brzozka,, A. Jung,, H. Kato,, H. Poeck,, S. Akira,, K. K. Conzelmann,, M. Schlee,, S. Endres, and, G. Hartmann. 2006. 5′-Triphosphate RNA is the ligand for RIG-I. Science 314:994997.
19. Hornung, V.,, J. Schlender,, M. Guenthner-Biller,, S. Rothenfusser,, S. Endres,, K. K. Conzelmann, and, G. Hartmann. 2004. Replication-dependent potent IFN-alpha induction in human plasmacytoid dendritic cells by a single-stranded RNA virus. J. Immunol. 173:59355943.
20. Kato, H.,, S. Sato,, M. Yoneyama,, M. Yamamoto,, S. Uematsu,, K. Matsui,, T. Tsujimura,, K. Takeda,, T. Fujita,, O. Takeuchi, and, S. Akira. 2005. Cell type-specific involvement of RIG-I in antiviral response. Immunity 23:1928.
21. Kato, H.,, O. Takeuchi,, S. Sato,, M. Yoneyama,, M. Yamamoto,, K. Matsui,, S. Uematsu,, A. Jung,, T. Kawai,, K. J. Ishii,, O. Yamaguchi,, K. Otsu,, T. Tsujimura,, C. S. Koh,, C. Reis e Sousa,, Y. Matsuura,, T. Fujita, and, S. Akira. 2006. Differential roles of MDA5 and RIG-I helicases in the recognition of RNA viruses. Nature 441:101105.
22. Kawai, T.,, K. Takahashi,, S. Sato,, C. Coban,, H. Kumar,, H. Kato,, K. J. Ishii,, O. Takeuchi, and, S. Akira. 2005. IPS-1, an adaptor triggering RIG-I- and Mda5-mediated type I interferon induction. Nat. Immunol. 6:981988.
23. Koonin, E. V. 1991. The phylogeny of RNA-dependent RNA polymerases of positive-strand RNA viruses. J. Gen. Virol. 72(Pt. 9):21972206.
24. Koonin, E. V.,, T. G. Senkevich, and, V. V. Dolja. 2006. The ancient Virus World and evolution of cells. Biol. Direct. 1:29.
25. Kumar, H.,, T. Kawai,, H. Kato,, S. Sato,, K. Takahashi,, C. Coban,, M. Yamamoto,, S. Uematsu,, K. J. Ishii,, O. Takeuchi, and, S. Akira. 2006. Essential role of IPS-1 in innate immune responses against RNA viruses. J. Exp. Med. 203:17951803.
26. Lee, H. K.,, J. M. Lund,, B. Ramanathan,, N. Mizushima, and, A. Iwasaki. 2007. Autophagy-dependent viral recognition by plasmacytoid dendritic cells. Science 315:13981401.
27. Lee, Y. F.,, A. Nomoto,, B. M. Detjen, and, E. Wimmer. 1977. A protein covalently linked to poliovirus genome RNA. Proc. Natl. Acad. Sci. USA 74:5963.
28. Le Goffic, R.,, V. Balloy,, M. Lagranderie,, L. Alexopoulou,, N. Escriou,, R. Flavell,, M. Chignard, and, M. Si-Tahar. 2006. Detrimental contribution of the Toll-like receptor (TLR)3 to influenza A virus-induced acute pneumonia. PLoS Pathog. 2:e53.
29. Li, K.,, E. Foy,, J. C. Ferreon,, M. Nakamura,, A. C. Ferreon,, M. Ikeda,, S. C. Ray,, M. Gale, Jr., and, S. M. Lemon. 2005. Immune evasion by hepatitis C virus NS3/4A protease-mediated cleavage of the Toll-like receptor 3 adaptor protein TRIF. Proc. Natl. Acad. Sci. USA 102:29922997.
30. Loo, Y. M.,, J. Fornek,, N. Crochet,, G. Bajwa,, O. Perwitasari,, L. Martinez-Sobrido,, S. Akira,, M. A. Gill,, A. Garcia-Sastre,, M. G. Katze, and, M. Gale, Jr. 2008. Distinct RIG-I and MDA5 signaling by RNA viruses in innate immunity. J. Virol. 82:335345.
31. Loo, Y. M.,, D. M. Owen,, K. Li,, A. K. Erickson,, C. L. Johnson,, P. M. Fish,, D. S. Carney,, T. Wang,, H. Ishida,, M. Yoneyama,, T. Fujita,, T. Saito,, W. M. Lee,, C. H. Hagedorn,, D. T. Lau,, S. A. Weinman,, S. M. Lemon, and, M. Gale, Jr. 2006. Viral and therapeutic control of IFN-beta promoter stimulator 1 during hepatitis C virus infection. Proc. Natl. Acad. Sci. USA 103:60016006.
32. Lund, J. M.,, L. Alexopoulou,, A. Sato,, M. Karow,, N. C. Adams,, N. W. Gale,, A. Iwasaki, and, R. A. Flavell. 2004. Recognition of single-stranded RNA viruses by Toll-like receptor 7. Proc. Natl. Acad. Sci. USA 101:55985603.
33. Malathi, K.,, B. Dong,, M. Gale, Jr., and, R. H. Silverman. 2007. Small self-RNA generated by RNase L amplifies antiviral innate immunity. Nature 448:816819.
34. Matsumoto, M.,, K. Funami,, M. Tanabe,, H. Oshiumi,, M. Shingai,, Y. Seto,, A. Yamamoto, and, T. Seya. 2003. Subcellular localization of Toll-like receptor 3 in human dendritic cells. J. Immunol. 171:31543162.
35. Matsumoto, M.,, S. Kikkawa,, M. Kohase,, K. Miyake, and, T. Seya. 2002. Establishment of a monoclonal antibody against human Toll-like receptor 3 that blocks double-stranded RNA-mediated signaling. Biochem. Biophys. Res. Commun. 293:13641369.
36. Meylan, E.,, J. Curran,, K. Hofmann,, D. Moradpour,, M. Binder,, R. Bartenschlager, and, J. Tschopp. 2005. Cardif is an adaptor protein in the RIG-I antiviral pathway and is targeted by hepatitis C virus. Nature 437:11671172.
37. Piccone, M. E.,, E. Rieder,, P. W. Mason, and, M. J. Grubman. 1995. The foot-and-mouth disease virus leader proteinase gene is not required for viral replication. J. Virol. 69:53765382.
38. Rudd, B. D.,, J. J. Smit,, R. A. Flavell,, L. Alexopoulou,, M. A. Schaller,, A. Gruber,, A. A. Berlin, and, N. W. Lukacs. 2006. Deletion of TLR3 alters the pulmonary immune environment and mucus production during respiratory syncytial virus infection. J. Immunol. 176:19371942.
39. Schulz, O.,, S. S. Diebold,, M. Chen,, T. I. Naslund,, M. A. Nolte,, L. Alexopoulou,, Y. T. Azuma,, R. A. Flavell,, P. Liljestrom, and, C. Reis e Sousa. 2005. Toll-like receptor 3 promotes cross-priming to virus-infected cells. Nature 433:887892.
40. Seth, R. B.,, L. Sun,, C. K. Ea, and, Z. J. Chen. 2005. Identification and characterization of MAVS, a mitochondrial antiviral signaling protein that activates NF-kappaB and IRF 3. Cell 122:669682.
41. Silva, M. C.,, A. Guerrero-Plata,, F. D. Gilfoy,, R. P. Garofalo, and, P. W. Mason. 2007. Differential activation of human monocyte-derived and plasmacytoid dendritic cells by West Nile virus generated in different host cells. J. Virol. 81:1364013648.
42. Ucci, J. W.,, Y. Kobayashi,, G. Choi,, A. T. Alexandrescu, and, J. L. Cole. 2007. Mechanism of interaction of the double-stranded RNA (dsRNA) binding domain of protein kinase R with short dsRNA sequences. Biochemistry 46:5565.
43. Wang, J. P.,, P. Liu,, E. Latz,, D. T. Golenbock,, R. W. Finberg, and, D. H. Libraty. 2006. Flavivirus activation of plasmacytoid dendritic cells delineates key elements of TLR7 signaling beyond endosomal recognition. J. Immunol. 177:71147121.
44. Wang, T.,, T. Town,, L. Alexopoulou,, J. F. Anderson,, E. Fikrig, and, R. A. Flavell. 2004. Toll-like receptor 3 mediates West Nile virus entry into the brain causing lethal encephalitis. Nat. Med. 10:13661373.
45. Yang, Y.,, Y. Liang,, L. Qu,, Z. Chen,, M. Yi,, K. Li, and, S. M. Lemon. 2007. Disruption of innate immunity due to mitochondrial targeting of a picornaviral protease precursor. Proc. Natl. Acad. Sci. USA 104:72537258.
46. Yoneyama, M.,, M. Kikuchi,, T. Natsukawa,, N. Shinobu,, T. Imaizumi,, M. Miyagishi,, K. Taira,, S. Akira, and, T. Fujita. 2004. The RNA helicase RIG-I has an essential function in double-stranded RNA-induced innate antiviral responses. Nat. Immunol. 5:730737.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error