Chapter 15 : Filoviruses

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in

Filoviruses, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555815561/9781555814366_Chap15-1.gif /docserver/preview/fulltext/10.1128/9781555815561/9781555814366_Chap15-2.gif


Filoviruses—Ebola viruses (EBOVs) and Marburg viruses (MBGVs)—are infamous for their ability to cause a highly lethal viral hemorrhagic fever. Nonhuman primates experimentally infected with Zaire EBOV exhibit a disease that resembles human EBOV infection, although these infections progress more rapidly and are almost invariably lethal. The ability of filoviruses to elicit pathological host responses is likely coupled with the ability of these viruses to replicate systemically to high titers. The ability of the virus to suppress adaptive immunity both by impairing dendritic cells (DCs) function and promoting lymphocyte apoptosis may also contribute to uncontrolled virus replication. Understanding how filoviruses overcome these early host responses may therefore lead to effective therapies targeting virus-encoded antagonists of innate immunity. Infection of cells with filoviruses impairs the capacity of cells to either produce interferon (IFN)-α/β or to respond to IFNs. Separately, microarray studies support the view that filoviruses suppress IFN responses. These observations demonstrate that different filoviruses influence cellular signaling pathways in similar but not identical ways. One major way in which EBOVs modulate host-cell signaling pathways is by antagonizing the IFN response, inhibiting both IFN-α/β production and IFN-α/β and IFN-γ-induced signaling. It will also be important to carefully assess whether the VP35 and VP24 proteins of other filoviruses function with similar efficiency as the Zaire EBOV VP35 and VP24. Identification of the triggers of potent cytokine responses with the aim of devising strategies to mitigate damaging host responses to infection is yet to be carried out.

Citation: Basler C. 2009. Filoviruses, p 229-246. In Brasier A, García-Sastre A, Lemon S (ed), Cellular Signaling and Innate Immune Responses to RNA Virus Infections. ASM Press, Washington, DC. doi: 10.1128/9781555815561.ch15
Highlighted Text: Show | Hide
Loading full text...

Full text loading...


Image of Figure 1
Figure 1

Structure of the EBOV genome. Each box represents an individual gene. The proteins produced from each gene are indicated above the boxes. (Note that MBGV has a similar genome but does not encode an sGP protein.) The viral proteins shown have the following functions: NP, RNA synthesis, structural role; VP35, RNA synthesis, inhibits IFNα/β production; VP40, viral budding, structural role; GP, viral attachment and entry, induces cell rounding; sGP, uncertain function, nonstructural secreted protein; VP30, viral transcription factor; VP24, inhibits IFN signaling, role in assembly; L, RNA polymerase.

Citation: Basler C. 2009. Filoviruses, p 229-246. In Brasier A, García-Sastre A, Lemon S (ed), Cellular Signaling and Innate Immune Responses to RNA Virus Infections. ASM Press, Washington, DC. doi: 10.1128/9781555815561.ch15
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2
Figure 2

Viral induction of the host IFN system. A simplified schematic diagram of the signaling pathways leading to IFN-α/β synthesis following virus infection (left-side pathway) and the signaling pathways activated by IFN-α/β (center pathway) or by IFN-γ (right-side pathway). Virus infection can activate cellular transcription factors including the AP-1 transcription factor complex ATF-2/c-Jun, IRF3, and NF-κB. These transcription factors cooperate to activate transcription of the IFN-β gene. Expressed IFN-β is secreted and binds to the IFN-α/β receptor (IFNAR), triggering the activation of IFNAR-associated Jak family tyrosine kinases Jak1 and Tyk2. Tyrosine-phosphorylate Stat1 and Stat2, which form heterodimers, further interact with IRF9, forming the transcription factor complex ISGF3. ISGF3, when in the nucleus, activates transcription of genes with ISREs. IFN-γ binds to a distinct receptor, the IFN-γ receptor (IFNGR), leading to the activation of Jak1 and Jak2 and the formation of Stat1-Stat1 heterodimers, which move to the nucleus and activate promoters with gamma-activated sequence (GAS) elements.

Citation: Basler C. 2009. Filoviruses, p 229-246. In Brasier A, García-Sastre A, Lemon S (ed), Cellular Signaling and Innate Immune Responses to RNA Virus Infections. ASM Press, Washington, DC. doi: 10.1128/9781555815561.ch15
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 3
Figure 3

Model of EBOV VP35’s IFN-antagonist function. Depicted are the basic components of the pathways that lead from detection of viral replication products by the cellular RNA helicases RIG-I or MDA-5 to the production of IFN-β. RIG-I and MDA-5 signal in an IPS-1-dependent manner and activate the IRF3 kinases IKK-ε or TBK1. These participate in the activation of transcription factors, including IRF3, required for IFN-β promoter activity. Present data suggest that VP35 inhibits these pathways at or near the level of the IRF3 kinases.

Citation: Basler C. 2009. Filoviruses, p 229-246. In Brasier A, García-Sastre A, Lemon S (ed), Cellular Signaling and Innate Immune Responses to RNA Virus Infections. ASM Press, Washington, DC. doi: 10.1128/9781555815561.ch15
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 4
Figure 4

Model of EBOV VP24 inhibition of Stat1 nuclear accumulation. (A) Tyrosine phosphorylation of Stat1 by Jak family kinases results in dimerization of Stat1 with itself or other Stat proteins. In the case of Stat1-Stat1 homodimers, such as are activated by IFN-γ (depicted here) or Stat1-Stat2 heterodimers such as are activated by IFN-α/β, Stat1 nuclear accumulation is mediated by karyopherin α1 (K-α1). (B) VP24 binds to K-α1, preventing Stat1 from interacting with K-α1. This results in a failure of Stat1 to enter the nucleus and activate gene expression.

Citation: Basler C. 2009. Filoviruses, p 229-246. In Brasier A, García-Sastre A, Lemon S (ed), Cellular Signaling and Innate Immune Responses to RNA Virus Infections. ASM Press, Washington, DC. doi: 10.1128/9781555815561.ch15
Permissions and Reprints Request Permissions
Download as Powerpoint


1. Alazard-Dany, N.,, M. Ottmann Terrangle, and, V. Volchkov. 2006. [Ebola and Marburg viruses: the humans strike back]. Med. Sci. (Paris) 22:405410.
2. Baize, S.,, E. M. Leroy,, M. C. Georges-Courbot,, M. Capron,, J. Lansoud-Soukate,, P. Debre,, S. P. Fisher-Hoch,, J. B. McCormick, and, A. J. Georges. 1999. Defective humoral responses and extensive intravascular apoptosis are associated with fatal outcome in Ebola virus-infected patients. Nat. Med. 5:423426.
3. Baize, S.,, E. M. Leroy,, A. J. Georges,, M. C. Georges-Courbot,, M. Capron,, I. Bedjabaga,, J. Lansoud-Soukate, and, E. Mavoungou. 2002. Inflammatory responses in Ebola virus-infected patients. Clin. Exp. Immunol. 128:163168.
4. Baize, S.,, E. M. Leroy,, E. Mavoungou, and, S. P. Fisher-Hoch. 2000. Apoptosis in fatal Ebola infection. Does the virus toll the bell for immune system? Apoptosis 5:57.
5. Bamberg, S.,, L. Kolesnikova,, P. Moller,, H. D. Klenk, and, S. Becker. 2005. VP24 of Marburg virus influences formation of infectious particles. J. Virol. 79:1342113433.
6. Basler, C. F.,, A. Mikulasova,, L. Martinez-Sobrido,, J. Paragas,, E. Muhlberger,, M. Bray,, H. D. Klenk,, P. Palese, and, A. Garcia-Sastre. 2003. The Ebola virus VP35 protein inhibits activation of interferon regulatory factor 3. J. Virol. 77:79457956.
7. Basler, C. F.,, X. Wang,, E. Muhlberger,, V. Volchkov,, J. Paragas,, H. D. Klenk,, A. Garcia-Sastre, and, P. Palese. 2000. The Ebola virus VP35 protein functions as a type I IFN antagonist. Proc. Natl. Acad. Sci. USA 97:1228912294.
8. Bennasser, Y.,, S. Y. Le,, M. Benkirane, and, K. T. Jeang. 2005. Evidence that HIV-1 encodes an siRNA and a suppressor of RNA silencing. Immunity 22:607619.
9. Biron, C. A. 2001. Interferons alpha and beta as immune regulators—a new look. Immunity 14:661664.
10. Bosio, C. M.,, M. J. Aman,, C. Grogan,, R. Hogan,, G. Ruthel,, D. Negley,, M. Mohamadzadeh,, S. Bavari, and, A. Schmaljohn. 2003. Ebola and Marburg viruses replicate in monocyte-derived dendritic cells without inducing the production of cytokines and full maturation. J. Infect. Dis. 188:16301638.
11. Bosio, C. M.,, B. D. Moore,, K. L. Warfield,, G. Ruthel,, M. Mohamadzadeh,, M. J. Aman, and, S. Bavari. 2004. Ebola and Marburg virus-like particles activate human myeloid dendritic cells. Virology 326:280287.
12. Bradfute, S. B.,, D. R. Braun,, J. D. Shamblin,, J. B. Geisbert,, J. Paragas,, A. Garrison,, L. E. Hensley, and, T. W. Geisbert. 2007. Lymphocyte death in a mouse model of Ebola virus infection. J. Infect. Dis. 196(Suppl 2):S296S304.
13. Bray, M. 2001. The role of the type I interferon response in the resistance of mice to filovirus infection. J. Gen. Virol. 82:13651373.
14. Bray, M.,, K. Davis,, T. Geisbert,, C. Schmaljohn, and, J. Huggins. 1998. A mouse model for evaluation of prophylaxis and therapy of Ebola hemorrhagic fever. J. Infect. Dis. 178:651661.
15. Bray, M., and, T. W. Geisbert. 2005. Ebola virus: the role of macrophages and dendritic cells in the pathogenesis of Ebola hemorrhagic fever. Int. J. Biochem. Cell. Biol. 37:15601566.
16. Bray, M.,, J. L. Raymond,, T. Geisbert, and, R. O. Baker. 2002. 3-Deazaneplanocin A induces massively increased interferon-alpha production in Ebola virus-infected mice. Antiviral Res. 55:151159.
17. Bucher, E.,, H. Hemmes,, P. de Haan,, R. Goldbach, and, M. Prins. 2004. The influenza A virus NS1 protein binds small interfering RNAs and suppresses RNA silencing in plants. J. Gen. Virol. 85:983991.
18. Cardenas, W. B.,, Y. M. Loo,, M. Gale, Jr.,, A. L. Hartman,, C. R. Kimberlin,, L. Martinez-Sobrido,, E. O. Saphire, and, C. F. Basler. 2006. Ebola virus VP35 protein binds double-stranded RNA and inhibits alpha/beta interferon production induced by RIG-I signaling. J. Virol. 80:51685178.
19. Centers for Disease Control and Prevention. 2005. Outbreak of Marburg virus hemorrhagic fever—Angola, October 1, 2004-March 29, 2005. Morb. Mortal. Wkly. Rep. 54:308309.
20. Centers for Disease Control and Prevention, Special Pathogens Branch. 2002, posting date. Ebola hemorrhagic fever. http://www.cdc.gov/ncidod/dvrd/spb/mnpages/ dispages/filoviruses.htm. [Online.]
21. Chang, H. W.,, J. C. Watson, and, B. L. Jacobs. 1992. The E3L gene of vaccinia virus encodes an inhibitor of the interferon-induced, double-stranded RNA-dependent protein kinase. Proc. Natl. Acad. Sci. USA 89:48254829.
22. Connolly, B. M.,, K. E. Steele,, K. J. Davis,, T. W. Geisbert,, W. M. Kell,, N. K. Jaax, and, P. B. Jahrling. 1999. Pathogenesis of experimental Ebola virus infection in guinea pigs. J. Infect. Dis. 179 (Suppl. 1):S203S217.
23. Cortes, P.,, Z. S. Ye, and, D. Baltimore. 1994. RAG-1 interacts with the repeated amino acid motif of the human homologue of the yeast protein SRP1. Proc. Natl. Acad. Sci. USA 91:76337637.
24. Cuomo, C. A.,, S. A. Kirch,, J. Gyuris,, R. Brent, and, M. A. Oettinger. 1994. Rch1, a protein that specifically interacts with the RAG-1 recombination-activating protein. Proc. Natl. Acad. Sci. USA 91:61566160.
25. Dalgard, D. W.,, R. J. Hardy,, S. L. Pearson,, G. J. Pucak,, R. V. Quander,, P. M. Zack,, C. J. Peters, and, P. B. Jahrling. 1992. Combined simian hemorrhagic fever and Ebola virus infection in cynomolgus monkeys. Lab. Anim. Sci. 42:152157.
26. Donelan, N. R.,, C. F. Basler, and, A. Garcia-Sastre. 2003. A recombinant influenza A virus expressing an RNA-binding-defective NS1 protein induces high levels of beta interferon and is attenuated in mice. J. Virol. 77:1325713266.
27. Ebihara, H.,, A. Takada,, D. Kobasa,, S. Jones,, G. Neumann,, S. Theriault,, M. Bray,, H. Feldmann, and, Y. Kawaoka. 2006. Molecular determinants of Ebola virus virulence in mice. PLoS Pathog 2:e73.
28. Elliott, L. H.,, M. P. Kiley, and, J. B. McCormick. 1985. Descriptive analysis of Ebola virus proteins. Virology 147:169176.
29. Feldmann, H.,, H. Bugany,, F. Mahner,, H. D. Klenk,, D. Drenckhahn, and, H. J. Schnittler. 1996. Filovirus-induced endothelial leakage triggered by infected monocytes/macrophages. J. Virol. 70:22082214.
30. Feldmann, H.,, V. E. Volchkov,, V. A. Volchkova,, U. Stroher, and, H. D. Klenk. 2001. Biosynthesis and role of filoviral glycoproteins. J. Gen. Virol. 82:28392848.
31. Feng, Z.,, M. Cerveny,, Z. Yan, and, B. He. 2007. The VP35 protein of Ebola virus inhibits the antiviral effect mediated by double-stranded RNA-dependent protein kinase PKR. J. Virol. 81:182192.
32. Fisher-Hoch, S. P.,, G. S. Platt,, G. H. Neild,, T. Southee,, A. Baskerville,, R. T. Raymond,, G. Lloyd, and, D. I. Simpson. 1985. Pathophysiology of shock and hemorrhage in a fulminating viral infection (Ebola). J. Infect. Dis. 152:887894.
33. Fitzgerald, K. A.,, S. M. McWhirter,, K. L. Faia,, D. C. Rowe,, E. Latz,, D. T. Golenbock,, A. J. Coyle,, S. M. Liao, and, T. Maniatis. 2003. IKKepsilon and TBK1 are essential components of the IRF3 signaling pathway. Nat. Immunol. 4:491496.
34. Gale, M., Jr., and, M. G. Katze. 1998. Molecular mechanisms of interferon resistance mediated by viral-directed inhibition of PKR, the interferon-induced protein kinase. Pharmacol. Ther. 78:2946.
35. Geisbert, T. W., and, L. E. Hensley. 2004. Ebola virus: new insights into disease aetiopathology and possible therapeutic interventions. Expert Rev. Mol. Med. 6:124.
36. Geisbert, T. W.,, L. E. Hensley,, T. R. Gibb,, K. E. Steele,, N. K. Jaax, and, P. B. Jahrling. 2000. Apoptosis induced in vitro and in vivo during infection by Ebola and Marburg viruses. Lab. Invest. 80:171186.
37. Geisbert, T. W.,, L. E. Hensley,, P. B. Jahrling,, T. Larsen,, J. B. Geisbert,, J. Paragas,, H. A. Young,, T. M. Fredeking,, W. E. Rote, and, G. P. Vlasuk. 2003. Treatment of Ebola virus infection with a recombinant inhibitor of factor VIIa/tissue factor: a study in rhesus monkeys. Lancet362:19531958.
38. Geisbert, T. W.,, L. E. Hensley,, T. Larsen,, H. A. Young,, D. S. Reed,, J. B. Geisbert,, D. P. Scott,, E. Kagan,, P. B. Jahrling, and, K. J. Davis. 2003. Pathogenesis of Ebola hemorrhagic fever in cynomolgus macaques: evidence that dendritic cells are early and sustained targets of infection. Am. J. Pathol. 163:23472370.
39. Geisbert, T. W.,, H. A. Young,, P. B. Jahrling,, K. J. Davis,, E. Kagan, and, L. E. Hensley. 2003. Mechanisms underlying coagulation abnormalities in Ebola hemorrhagic fever: overexpression of tissue factor in primate monocytes/ macrophages is a key event. J. Infect. Dis. 188:16181629.
40. Gibb, T. R.,, M. Bray,, T. W. Geisbert,, K. E. Steele,, W. M. Kell,, K. J. Davis, and, N. K. Jaax. 2001. Pathogenesis of experimental Ebola Zaire virus infection in BALB/c mice. J. Comp. Pathol. 125:233242.
41. Gorlich, D.,, P. Henklein,, R. A. Laskey, and, E. Hartmann. 1996. A 41 amino acid motif in importin-alpha confers binding to importin-beta and hence transit into the nucleus. EMBO J. 15:18101817.
42. Gupta, M.,, S. Mahanty,, R. Ahmed, and, P. E. Rollin. 2001. Monocyte-derived human macrophages and peripheral blood mononuclear cells infected with Ebola virus secrete MIP-1alpha and TNF-alpha and inhibit poly-IC-induced IFN-alpha in vitro. Virology 284:2025.
43. Gupta, M.,, C. Spiropoulou, and, P. E. Rollin. 2007. Ebola virus infection of human PBMCs causes massive death of macrophages, CD4 and CD8 T cell sub-populations in vitro. Virology 364:4554.
44. Haasnoot, J.,, W. de Vries,, E. J. Geutjes,, M. Prins,, P. de Haan, and, B. Berkhout. 2007. The Ebola virus VP35 protein is a suppressor of RNA silencing. PLoS Pathog. 3:e86.
45. Han, Z.,, H. Boshra,, J. O. Sunyer,, S. H. Zwiers,, J. Paragas, and, R. N. Harty. 2003. Biochemical and functional characterization of the Ebola virus VP24 protein: implications for a role in virus assembly and budding. J. Virol. 77:17931800.
46. Harcourt, B. H.,, A. Sanchez, and, M. K. Offermann. 1998. Ebola virus inhibits induction of genes by double-stranded RNA in endothelial cells. Virology 252:179188.
47. Harcourt, B. H.,, A. Sanchez, and, M. K. Offermann. 1999. Ebola virus selectively inhibits responses to interferons, but not to interleukin-1beta, in endothelial cells. J. Virol. 73:34913496.
48. Hartman, A. L.,, B. H. Bird,, J. S. Towner,, Z. A. Antoniadou,, S. R. Zaki, and, S. T. Nichol. 2008. Inhibition of IRF-3 activation by VP35 is critical for the high virulence of Ebola virus. J. Virol. 82:26992704.
49. Hartman, A. L.,, J. E. Dover,, J. S. Towner, and, S. T. Nichol. 2006. Reverse genetic generation of recombinant Zaire Ebola viruses containing disrupted IRF-3 inhibitory domains results in attenuated virus growth in vitro and higher levels of IRF-3 activation without inhibiting viral transcription or replication. J. Virol. 80:64306440.
50. Hartman, A. L.,, L. Ling,, S. T. Nichol, and, M. L. Hibberd. 2008. Whole-genome profiling reveals that inhibition of host innate immune response pathways by Ebola virus can be reversed by a single amino acid change in the VP35 protein. J. Virol. 82:53485358.
51. Hartman, A. L.,, J. S. Towner, and, S. T. Nichol. 2004. A C-terminal basic amino acid motif of Zaire ebolavirus VP35 is essential for type I interferon antagonism and displays high identity with the RNA-binding domain of another interferon antagonist, the NS1 protein of influenza A virus. Virology 328:177184.
52. Harty, R. N.,, M. E. Brown,, G. Wang,, J. Huibregtse, and, F. P. Hayes. 2000. A PPxY motif within the VP40 protein of Ebola virus interacts physically and functionally with a ubiquitin ligase: implications for filovirus budding. Proc. Natl.Acad. Sci. USA 97:1387113876.
53. Hensley, L. E.,, E. L. Stevens,, S. B. Yan,, J. B. Geisbert,, W. L. Macias,, T. Larsen,, K. M. Daddario-DiCaprio,, G. H. Cassell,, P. B. Jahrling, and, T. W. Geisbert. 2007. Recombinant human activated protein C for the postexposure treatment of Ebola hemorrhagic fever. J. Infect. Dis. 196 (Suppl. 2):S390S399.
54. Hensley, L. E.,, H. A. Young,, P. B. Jahrling, and, T. W. Geisbert. 2002. Proinflammatory response during Ebola virus infection of primate models: possible involvement of the tumor necrosis factor receptor superfamily. Immunol. Lett. 80:169179.
55. Hiscott, J. 2007. Triggering the innate antiviral response through IRF-3 activation. J. Biol. Chem. 282:1532515329.
56. Hoebe, K., and, B. Beutler. 2004. LPS, dsRNA and the interferon bridge to adaptive immune responses: Trif, Tram, and other TIR adaptor proteins. J. Endotoxin Res. 10:130136.
57. Hornung, V.,, J. Ellegast,, S. Kim,, K. Brzozka,, A. Jung,, H. Kato,, H. Poeck,, S. Akira,, K. K. Conzelmann,, M. Schlee,, S. Endres, and, G. Hartmann. 2006. 5′-Triphosphate RNA is the ligand for RIG-I. Science 314:994997.
58. Huang, Y.,, L. Xu,, Y. Sun, and, G. Nabel. 2002. The assembly of Ebola virus nucleocapsid requires virion-associated proteins 35 and 24 and posttranslational modification of nucleoprotein. Mol. Cell 10:307.
59. Huggins, J. W.,, Z. X. Zhang, and, T. I. Monath. 1995. Inhibition of Ebola virus replication in vitro and in vivo in a SCID mouse model by S-adenosylhomocysteine hydrolase inhibitors. Antiviral Research Suppl. 1:122.
60. Hutchinson, K. L., and, P. E. Rollin. 2007. Cytokine and chemokine expression in humans infected with Sudan Ebola virus. J. Infect. Dis. 196(Suppl. 2):S357S363.
61. Jahrling, P. B.,, T. W. Geisbert,, D. W. Dalgard,, E. D. Johnson,, T. G. Ksiazek,, W. C. Hall, and, C. J. Peters. 1990. Preliminary report: isolation of Ebola virus from monkeys imported to USA. Lancet 335:502505.
62. Kash, J. C.,, T. M. Tumpey,, S. C. Proll,, V. Carter,, O. Perwitasari,, M. J. Thomas,, C. F. Basler,, P. Palese,, J. K. Taubenberger,, A. Garcia-Sastre,, D. E. Swayne, and, M. G. Katze. 2006. Genomic analysis of increased host immune and cell death responses induced by 1918 influenza virus. Nature 443:578581.
63. Kato, H.,, O. Takeuchi,, S. Sato,, M. Yoneyama,, M. Yamamoto,, K. Matsui,, S. Uematsu,, A. Jung,, T. Kawai,, K. J. Ishii,, O. Yamaguchi,, K. Otsu,, T. Tsujimura,, C. S. Koh,, C. Reis e Sousa,, Y. Matsuura,, T. Fujita, and, S. Akira. 2006. Differential roles of MDA5 and RIG-I helicases in the recognition of RNA viruses. Nature 441:101105.
64. Kawai, T., and, S. Akira. 2007. Antiviral signaling through pattern recognition receptors. J. Biochem. (Tokyo) 141:137145.
65. Kawai, T., and, S. Akira. 2006. TLR signaling. Cell. Death Differ. 13:816825.
66. Kawai, T.,, K. Takahashi,, S. Sato,, C. Coban,, H. Kumar,, H. Kato,, K. J. Ishii,, O. Takeuchi, and, S. Akira. 2005. IPS-1, an adaptor triggering RIG-I- and Mda5-mediated type I interferon induction. Nat. Immunol. 6:981988.
67. Kindzelskii, A. L.,, Z. Yang,, G. J. Nabel,, R. F. Todd III, and, H. R. Petty. 2000. Ebola virus secretory glycoprotein (sGP) diminishes FcγRIIIB-to-CR3 proximity on neutrophils. J. Immunol. 164:953958.
68. Kitajewski, J.,, R. J. Schneider,, B. Safer,, S. M. Munemitsu,, C. E. Samuel,, B. Thimmappaya, and, T. Shenk. 1986. Adenovirus VAI RNA antagonizes the antiviral action of interferon by preventing activation of the interferon-induced eIF-2 alpha kinase. Cell 45:195200.
69. Kohler, M.,, S. Ansieau,, S. Prehn,, A. Leutz,, H. Haller, and, E. Hartmann. 1997. Cloning of two novel human importin-alpha subunits and analysis of the expression pattern of the importin-alpha protein family. FEBS Lett. 417:104108.
70. Kohler, M.,, C. Speck,, M. Christiansen,, F. R. Bischoff,, S. Prehn,, H. Haller,, D. Gorlich, and, E. Hartmann. 1999. Evidence for distinct substrate specificities of importin alpha family members in nuclear protein import. Mol. Cell. Biol. 19:77827791.
71. Lenschow, D. J.,, C. Lai,, N. Frias-Staheli,, N. V. Giannakopoulos,, A. Lutz,, T. Wolff,, A. Osiak,, B. Levine,, R. E. Schmidt,, A. Garcia-Sastre,, D. A. Leib,, A. Pekosz,, K. P. Knobeloch,, I. Horak, and, H. W. Virgin IV. 2007. IFN-stimulated gene 15 functions as a critical antiviral molecule against influenza, herpes, and Sindbis viruses. Proc. Natl. Acad. Sci. USA 104:13711376.
72. Leroy, E. M.,, S. Baize,, V. E. Volchkov,, S. P. Fisher-Hoch,, M. C. Georges-Courbot,, J. Lansoud-Soukate,, M. Capron,, P. Debre,, J. B. McCormick, and, A. J. Georges. 2000. Human asymptomatic Ebola infection and strong inflammatory response. Lancet 355:22102215.
73. Leroy, E. M.,, B. Kumulungui,, X. Pourrut,, P. Rouquet,, A. Hassanin,, P. Yaba,, A. Delicat,, J. T. Paweska,, J. P. Gonzalez, and, R. Swanepoel. 2005. Fruit bats as reservoirs of Ebola virus. Nature 438:575576.
74. Levy, D. E., and, A. Garcia-Sastre. 2001. The virus battles: IFN induction of the antiviral state and mechanisms of viral evasion. Cytokine Growth Factor Rev. 12:143156.
75. Li, W. X.,, H. Li,, R. Lu,, F. Li,, M. Dus,, P. Atkinson,, E. W. Brydon,, K. L. Johnson,, A. Garcia-Sastre,, L. A. Ball,, P. Palese, and, S. W. Ding. 2004. Interferon antagonist proteins of influenza and vaccinia viruses are suppressors of RNA silencing. Proc. Natl. Acad. Sci. USA 101:13501355.
76. Licata, J. M.,, R. F. Johnson,, Z. Han, and, R. N. Harty. 2004. Contribution of Ebola virus glycoprotein, nucleo-protein, and VP24 to budding of VP40 virus-like particles. J. Virol. 78:73447351.
77. Lofts, L. L.,, M. S. Ibrahim,, D. L. Negley,, M. C. Hevey, and, A. L. Schmaljohn. 2007. Genomic differences between guinea pig lethal and nonlethal Marburg virus variants. J. Infect. Dis. 196 (Suppl. 2):S305S312.
78. Lu, S., and, B. R. Cullen. 2004. Adenovirus VA1 noncoding RNA can inhibit small interfering RNA and microRNA biogenesis. J. Virol. 78:1286812876.
79. Lu, Y.,, M. Wambach,, M. G. Katze, and, R. M. Krug. 1995. Binding of the influenza virus NS1 protein to double-stranded RNA inhibits the activation of the protein kinase that phosphorylates the elF-2 translation initiation factor. Virology 214:222228.
80. Macara, I. G. 2001. Transport into and out of the nucleus. Microbiol. Mol. Biol. Rev. 65:570594.
81. Mahanty, S., and, M. Bray. 2004. Pathogenesis of filoviral haemorrhagic fevers. Lancet Infect. Dis. 4:487498.
82. Mahanty, S.,, M. Gupta,, J. Paragas,, M. Bray,, R. Ahmed, and, P. E. Rollin. 2003. Protection from lethal infection is determined by innate immune responses in a mouse model of Ebola virus infection. Virology 312:415424.
83. Mahanty, S.,, K. Hutchinson,, S. Agarwal,, M. McRae,, P. E. Rollin, and, B. Pulendran. 2003. Cutting edge: impairment of dendritic cells and adaptive immunity by Ebola and Lassa viruses. J. Immunol. 170:27972801.
84. Malmgaard, L. 2004. Induction and regulation of IFNs during viral infections. J. Interferon Cytokine Res. 24:439454.
85. Martinez, O.,, C. Valmas, and, C. F. Basler. 2007. Ebola virus-like particle-induced activation of NF-kappaB and Erk signaling in human dendritic cells requires the glyco-protein mucin domain. Virology 364:342354.
86. McBride, K. M.,, G. Banninger,, C. McDonald, and, N. C. Reich. 2002. Regulated nuclear import of the Stat1 transcription factor by direct binding of importin-alpha. EMBO J. 21:17541763.
87. Melen, K.,, R. Fagerlund,, J. Franke,, M. Kohler,, L. Kinnunen, and, I. Julkunen. 2003. Importin alpha nuclear localization signal binding sites for Stat1, Stat2, and influenza A virus nucleoprotein. J. Biol. Chem. 278:2819328200.
88. Meylan, E.,, J. Curran,, K. Hofmann,, D. Moradpour,, M. Binder,, R. Bartenschlager, and, J. Tschopp. 2005. Cardif is an adaptor protein in the RIG-I antiviral pathway and is targeted by hepatitis C virus. Nature 437:11671172.
89. Min, J. Y., and, R. M. Krug. 2006. The primary function of RNA binding by the influenza A virus NS1 protein in infected cells: inhibiting the 2′-5′ oligo (A)synthetase/ RNase L pathway. Proc. Natl. Acad. Sci. USA 103:71007105.
90. Miranda, M. E.,, T. G. Ksiazek,, T. J. Retuya,, A. S. Khan,, A. Sanchez,, C. F. Fulhorst,, P. E. Rollin,, A. B. Calaor,, D. L. Manalo,, M. C. Roces,, M. M. Dayrit, and, C. J. Peters. 1999. Epidemiology of Ebola (subtype Reston) virus in the Philippines, 1996. J. Infect. Dis. 179 (Suppl. 1):S115S119.
91. Miyamoto, Y.,, N. Imamoto,, T. Sekimoto,, T. Tachibana,, T. Seki,, S. Tada,, T. Enomoto, and, Y. Yoneda. 1997. Differential modes of nuclear localization signal (NLS) recognition by three distinct classes of NLS receptors. J. Biol. Chem. 272:2637526381.
92. Moroianu, J.,, G. Blobel, and, A. Radu. 1995. Previously identified protein of uncertain function is karyopherin alpha and together with karyopherin beta docks import substrate at nuclear pore complexes. Proc. Natl. Acad. Sci. USA 92:20082011.
93. Muhlberger, E.,, B. Lotfering,, H. D. Klenk, and, S. Becker. 1998. Three of the four nucleocapsid proteins of Marburg virus, NP, VP35, and L, are sufficient to mediate replication and transcription of Marburg virus-specific monocistronic minigenomes. J. Virol. 72:87568764.
94. Muhlberger, E.,, M. Weik,, V. E. Volchkov,, H. D. Klenk, and, S. Becker. 1999. Comparison of the transcription and replication strategies of Marburg virus and Ebola virus by using artificial replication systems. J. Virol. 73:23332342.
95. Nachury, M. V.,, U. W. Ryder,, A. I. Lamond, and, K. Weis. 1998. Cloning and characterization of hSRP1 gamma, a tissue-specific nuclear transport factor. Proc. Natl. Acad. Sci. USA 95:582587.
96. Noda, T.,, H. Sagara,, E. Suzuki,, A. Takada,, H. Kida, and, Y. Kawaoka. 2002. Ebola virus VP40 drives the formation of virus-like filamentous particles along with GP. J. Virol. 76:48554865.
97. O’Neill, R. E., and, P. Palese. 1995. NPI-1, the human homolog of SRP-1, interacts with influenza virus nucleoprotein. Virology 206:116125.
98. Peterson, A. T.,, D. S. Carroll,, J. N. Mills, and, K. M. Johnson. 2004. Potential mammalian filovirus reservoirs. Emerg. Infect. Dis. 10:20732081.
99. Pichlmair, A.,, O. Schulz,, C. P. Tan,, T. I. Naslund,, P. Liljestrom,, F. Weber, and, C. Reis e Sousa. 2006. RIG-I-mediated antiviral responses to single-stranded RNA bearing 5′-phosphates. Science 314:9971001.
100. Platanias, L. C. 2005. Mechanisms of type-I- and type-II-interferon-mediated signalling. Nat. Rev. Immunol. 5:375386.
101. Ray, R. B.,, A. Basu,, R. Steele,, A. Beyene,, J. McHowat,, K. Meyer,, A. K. Ghosh, and, R. Ray. 2004. Ebola virus glycoprotein-mediated anoikis of primary human cardiac microvascular endothelial cells. Virology 321:181188.
102. Reed, D. S.,, L. E. Hensley,, J. B. Geisbert,, P. B. Jahrling, and, T. W. Geisbert. 2004. Depletion of peripheral blood T lymphocytes and NK cells during the course of Ebola hemorrhagic fever in cynomolgus macaques. Viral Immunol. 17:390400.
103. Reid, S. P.,, L. W. Leung,, A. L. Hartman,, O. Martinez,, M. L. Shaw,, C. Carbonnelle,, V. E. Volchkov,, S. T. Nichol, and, C. F. Basler. 2006. Ebola virus VP24 binds karyopherin alpha1 and blocks Stat1 nuclear accumulation. J. Virol. 80:51565167.
104. Reid, S. P.,, C. Valmas,, O. Martinez,, F. M. Sanchez, and, C. F. Basler. 2007. Ebola virus VP24 proteins inhibit the interaction of NPI-1 subfamily karyopherin alpha proteins with activated Stat1. J. Virol. 81:1346913477.
105. Rollin, P. E.,, R. J. Williams,, D. S. Bressler,, S. Pearson,, M. Cottingham,, G. Pucak,, A. Sanchez,, S. G. Trappier,, R. L. Peters,, P. W. Greer,, S. Zaki,, T. Demarcus,, K. Hendricks,, M. Kelley,, D. Simpson,, T. W. Geisbert,, P. B. Jahrling,, C. J. Peters, and, T. G. Ksiazek. 1999. Ebola (subtype Reston) virus among quarantined nonhuman primates recently imported from the Philippines to the United States. J. Infect. Dis. 179 (Suppl. 1):S108S114.
106. Rubins, K. H.,, L. E. Hensley,, V. Wahl-Jensen,, K. M. Daddario Dicaprio,, H. A. Young,, D. S. Reed,, P. B. Jahrling,, P. O. Brown,, D. A. Relman, and, T. W. Geisbert. 2007. The temporal program of peripheral blood gene expression in the response of nonhuman primates to Ebola hemorrhagic fever. Genome Biol. 8:R174.
107. Ruf, W. 2004. Emerging roles of tissue factor in viral hemorrhagic fever. Trends Immunol. 25:461464.
108. Sanchez, A.,, T. W. Geisbert, and, H. Feldmann. 2007. Filoviridae: Marburg and Ebola viruses, p. 1410–1448. In D. M. Knipe and, P. M. Howley (ed.), Fields Virology, 5th ed. Lippincott Williams and Wilkins, Philadelphia, PA.
109. Sanchez, A.,, A. S. Khan,, S. R. Zaki,, G. J. Nabel,, T. G. Ksiazek, and, C. J. Peters. 2001. Filoviridae: Marburg and Ebola viruses, p. 1279–1304. In D. M. Knipe and, P. M. Howley (ed.), Fields Virology, 4th ed., vol. 1. Lippincott Williams and Wilkins, Philadelphia, PA.
110. Seki, T.,, S. Tada,, T. Katada, and, T. Enomoto. 1997. Cloning of a cDNA encoding a novel importin-alpha homologue, Qip1: discrimination of Qip1 and Rch1 from hSrp1 by their ability to interact with DNA heli-case Q1/RecQL. Biochem. Biophys. Res. Commun. 234:4853.
111. Sekimoto, T.,, N. Imamoto,, K. Nakajima,, T. Hirano, and, Y. Yoneda. 1997. Extracellular signal-dependent nuclear import of Stat1 is mediated by nuclear pore-targeting complex formation with NPI-1, but not Rch1. EMBO J. 16:70677077.
112. Seth, R. B.,, L. Sun,, C. K. Ea, and, Z. J. Chen. 2005. Identification and characterization of MAVS, a mitochondrial antiviral signaling protein that activates NFkappaB and IRF 3. Cell 122:669682.
113. Sharma, S.,, B. R. tenOever,, N. Grandvaux,, G. P. Zhou,, R. Lin, and, J. Hiscott. 2003. Triggering the interferon antiviral response through an IKK-related pathway. Science 300:11481151.
114. Simmons, G.,, R. J. Wool-Lewis,, F. Baribaud,, R. C. Netter, and, P. Bates. 2002. Ebola virus glycoproteins induce global surface protein down-modulation and loss of cell adherence. J. Virol. 76:25182528.
115. Stewart, M. 2007. Molecular mechanism of the nuclear protein import cycle. Nat. Rev. Mol. Cell Biol. 8:195208.
116. Stroher, U.,, E. West,, H. Bugany,, H. D. Klenk,, H. J. Schnittler, and, H. Feldmann. 2001. Infection and activation of monocytes by Marburg and Ebola viruses. J. Virol. 75:1102511033.
117. Sullivan, N. J.,, M. Peterson,, Z. Y. Yang,, W. P. Kong,, H. Duckers,, E. Nabel, and, G. J. Nabel. 2005. Ebola virus glycoprotein toxicity is mediated by a dynamin-dependent protein-trafficking pathway. J. Virol. 79:547553.
118. Takada, A.,, S. Watanabe,, H. Ito,, K. Okazaki,, H. Kida, and, Y. Kawaoka. 2000. Downregulation of beta1 inte-grins by Ebola virus glycoprotein: implication for virus entry. Virology 278:2026.
119. Timmins, J.,, S. Scianimanico,, G. Schoehn, and, W. Weissenhorn. 2001. Vesicular release of Ebola virus matrix protein VP40. Virology 283:16.
120. Towner, J. S.,, X. Pourrut,, C. G. Albarino,, C. N. Nkogue,, B. H. Bird,, G. Grard,, T. G. Ksiazek,, J. P. Gonzalez,, S. T. Nichol, and, E. M. Leroy. 2007. Marburg virus infection detected in a common African bat. PLoS ONE 2:e764.
121. Villinger, F.,, P. E. Rollin,, S. S. Brar,, N. F. Chikkala,, J. Winter,, J. B. Sundstrom,, S. R. Zaki,, R. Swanepoel,, A. A. Ansari, and, C. J. Peters. 1999. Markedly elevated levels of interferon (IFN)-gamma, IFN-alpha, interleukin (IL)-2, IL-10, and tumor necrosis factor-alpha associated with fatal Ebola virus infection. J. Infect. Dis. 179(Suppl. 1):S188S191.
122. Voinnet, O. 2005. Induction and suppression of RNA silencing: insights from viral infections. Nat. Rev. Genet. 6:206220.
123. Volchkov, V. E.,, S. Becker,, V. A. Volchkova,, V. A. Ternovoj,, A. N. Kotov,, S. V. Netesov, and, H. D. Klenk. 1995. GP mRNA of Ebola virus is edited by the Ebola virus polymerase and by T7 and vaccinia virus polymerases. Virology 214:421430.
124. Volchkov, V. E.,, A. A. Chepurnov,, V. A. Volchkova,, V. A. Ternovoj, and, H. D. Klenk. 2000. Molecular characterization of guinea pig-adapted variants of Ebola virus. Virology 277:147155.
125. Volchkov, V. E.,, V. A. Volchkova,, E. Muhlberger,, L. V. Kolesnikova,, M. Weik,, O. Dolnik, and, H. D. Klenk. 2001. Recovery of infectious Ebola virus from complementary DNA: RNA editing of the GP gene and viral cytotoxicity. Science 291:19651969.
126. Wahl-Jensen, V.,, S. K. Kurz,, P. R. Hazelton,, H. J. Schnittler,, U. Stroher,, D. R. Burton, and, H. Feldmann. 2005. Role of Ebola virus secreted glycoproteins and virus-like particles in activation of human macrophages. J. Virol. 79:24132419.
127. Wahl-Jensen, V. M.,, T. A. Afanasieva,, J. Seebach,, U. Stroher,, H. Feldmann, and, H. J. Schnittler. 2005. Effects of Ebola virus glycoproteins on endothelial cell activation and barrier function. J. Virol. 79:1044210450.
128. Wang, X.,, E. R. Hinson, and, P. Cresswell. 2007. The interferon-inducible protein viperin inhibits influenza virus release by perturbing lipid rafts. Cell Host Microbe2:96105.
129. Warfield, K. L.,, C. M. Bosio,, B. C. Welcher,, E. M. Deal,, M. Mohamadzadeh,, A. Schmaljohn,, M. J. Aman, and, S. Bavari. 2003. Ebola virus-like particles protect from lethal Ebola virus infection. Proc. Natl. Acad. Sci. USA 100:1588915894.
130. Watanabe, S.,, T. Noda, and, Y. Kawaoka. 2006. Functional mapping of the nucleoprotein of Ebola virus. J. Virol. 80:37433751.
131. Watanabe, S.,, T. Watanabe,, T. Noda,, A. Takada,, H. Feldmann,, L. D. Jasenosky, and, Y. Kawaoka. 2004. Production of novel Ebola virus-like particles from cDNAs: an alternative to Ebola virus generation by reverse genetics. J. Virol. 78:9991005.
132. Weis, K.,, I. W. Mattaj, and, A. I. Lamond. 1995. Identification of hSRP1 alpha as a functional receptor for nuclear localization sequences. Science 268:10491053.
133. Weis, K.,, U. Ryder, and, A. I. Lamond. 1996. The conserved amino-terminal domain of hSRP1 alpha is essential for nuclear protein import. EMBO J. 15:18181825.
134. Xu, L. G.,, Y. Y. Wang,, K. J. Han,, L. Y. Li,, Z. Zhai, and, H. B. Shu. 2005. VISA is an adapter protein required for virus-triggered IFN-beta signaling. Mol. Cell 19:727740.
135. Yaddanapudi, K.,, G. Palacios,, J. S. Towner,, I. Chen,, C. A. Sariol,, S. T. Nichol, and, W. I. Lipkin. 2006. Implication of a retrovirus-like glycoprotein peptide in the immunopathogenesis of Ebola and Marburg viruses. FASEB J. 20:25192530.
136. Yang, Z.,, R. Delgado,, L. Xu,, R. F. Todd,, E. G. Nabel,, A. Sanchez, and, G. J. Nabel. 1998. Distinct cellular interactions of secreted and transmembrane Ebola virus glycoproteins. Science 279:10341037.
137. Yang, Z. Y.,, H. J. Duckers,, N. J. Sullivan,, A. Sanchez,, E. G. Nabel, and, G. J. Nabel. 2000. Identification of the Ebola virus glycoprotein as the main viral determinant of vascular cell cytotoxicity and injury. Nat. Med. 6:886889.
138. Ye, L.,, J. Lin,, Y. Sun,, S. Bennouna,, M. Lo,, Q. Wu,, Z. Bu,, B. Pulendran,, R. W. Compans, and, C. Yang. 2006. Ebola virus-like particles produced in insect cells exhibit dendritic cell stimulating activity and induce neutralizing antibodies. Virology 351:260270.
139. Yoneyama, M.,, M. Kikuchi,, T. Natsukawa,, N. Shinobu,, T. Imaizumi,, M. Miyagishi,, K. Taira,, S. Akira, and, T. Fujita. 2004. The RNA helicase RIG-I has an essential function in double-stranded RNA-induced innate antiviral responses. Nat. Immunol. 5:730737.
140. Zampieri, C. A.,, J. F. Fortin,, G. P. Nolan, and, G. J. Nabel. 2007. The ERK mitogen-activated protein kinase pathway contributes to Ebola virus glycoprotein-induced cytotoxicity. J. Virol. 81:12301240.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error