1887

Chapter 19 : Arenaviruses

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in
Zoomout

Arenaviruses, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555815561/9781555814366_Chap19-1.gif /docserver/preview/fulltext/10.1128/9781555815561/9781555814366_Chap19-2.gif

Abstract:

The elucidation of the mechanisms underlying the interactions between arenaviruses and the host innate immune response is essential for a better understanding of arenavirus pathogenesis and development of antiviral therapies to combat human arenaviral diseases. The significance of arenaviruses in human health together with the very limited existing armamentarium to combat the infections underscore the importance of developing novel effective antiarenavirus therapies and vaccines, tasks that will be helped by a better understanding of the mechanisms by which arenaviruses counteract the early host innate immune response. Many arenaviruses appear to use an alternative receptor. The mechanisms by which arenaviruses disrupt the host innate immune response are little understood. The family consists of one unique genus (Arenavirus) with more than 20 recognized virus species that are classified into two distinct groups: Old World and New World arenaviruses. Genetically, Old World arenaviruses constitute a single lineage, while New World arenaviruses segregate into clades A, B, and C. The viral genetic determinants contributing to pathogenesis in humans associated with some arenaviral infections remain largely unknown, but evidence suggests that virus-induced impairment of the host innate immune response is a contributing factor. The fact that nucleoprotein (NP) is the gene product with the highest degree of conservation among arenaviruses raised the question of whether the interferon (IFN)-antagonistic activity of the lymphocytic choriomeningitis virus (LCMV) NP was shared by other arenaviruses, including those involved in human disease.

Citation: de la Torre J. 2009. Arenaviruses, p 301-315. In Brasier A, García-Sastre A, Lemon S (ed), Cellular Signaling and Innate Immune Responses to RNA Virus Infections. ASM Press, Washington, DC. doi: 10.1128/9781555815561.ch19

Key Concept Ranking

Lymphocytic choriomeningitis virus
0.4490584
Severe Acute Respiratory Syndrome
0.4489159
0.4490584
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of Figure 1
Figure 1

Scheme of the LCMV genome organization. LCMV has a bisegmented, negative-strand RNA genome. Each segment uses an ambisense strategy to direct the synthesis of two viral gene products. The S (small, ca. 3.5 kb) segment codes for the viral nucleoprotein (NP) and precursor surface viral glycoprotein (GPC), which is posttranslationally cleaved by the cellular protease S1P to generate GP1 and GP2. GP1/GP2 complexes form the spikes that decorate the surface of the virions. The L (large, ca. 7.5 kb) segment codes for the viral RdRp (L protein) and a small (ca. 12 kDa) RING finger protein called Z.

Citation: de la Torre J. 2009. Arenaviruses, p 301-315. In Brasier A, García-Sastre A, Lemon S (ed), Cellular Signaling and Innate Immune Responses to RNA Virus Infections. ASM Press, Washington, DC. doi: 10.1128/9781555815561.ch19
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2
Figure 2

Basic aspects of RNA replication and gene transcription illustrated for the S segment. Once the virus RNP is delivered into the cytoplasm of the infected cell, the polymerase associated with the virus RNP initiates transcription from the genome promoter located at the genome 3′ end. Primary transcription results in synthesis of NP and L mRNA from the S and L segments, respectively. Subsequently, the virus polymerase can adopt a replicase mode and moves across the IGR to generate a copy of the full-length antigenome RNA (agRNA). This agRNA will serve as a template for the synthesis of the GP (agS) and Z (agL) mRNAs. The agRNA species also serve as templates for the amplification of the corresponding genome RNA species.

Citation: de la Torre J. 2009. Arenaviruses, p 301-315. In Brasier A, García-Sastre A, Lemon S (ed), Cellular Signaling and Innate Immune Responses to RNA Virus Infections. ASM Press, Washington, DC. doi: 10.1128/9781555815561.ch19
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555815561.ch19
1. Ahmed, R., and, M. B. Oldstone. 1988. Organ-specific selection of viral variants during chronic infection. J. Exp. Med. 167:17191724.
2. Ahmed, R.,, A. Salmi,, L. D. Butler,, J. M. Chiller, and, M. B. Oldstone. 1984. Selection of genetic variants of lymphocytic choriomeningitis virus in spleens of persistently infected mice. Role in suppression of cytotoxic T lymphocyte response and viral persistence. J. Exp. Med. 160:521540.
3. Ahmed, R.,, R. S. Simon,, M. Matloubian,, S. R. Kolhekar,, P. J. Southern, and, D. M. Freedman. 1988. Genetic analysis of in vivo-selected viral variants causing chronic infection: importance of mutation in the L RNA segment of lymphocytic choriomeningitis virus. J. Virol. 62:33013308.
4. Akira, S., and, H. Hemmi. 2003. Recognition of pathogen-associated molecular patterns by TLR family. Immunol. Lett. 85:8595.
5. Asselin-Paturel, C., and, G. Trinchieri. 2005. Production of type I interferons: plasmacytoid dendritic cells and beyond. J. Exp. Med. 202:461465.
6. Barber, D. L.,, E. J. Wherry,, D. Masopust,, B. Zhu,, J. P. Allison,, A. H. Sharpe,, G. J. Freeman, and, R. Ahmed. 2006. Restoring function in exhausted CD8 T cells during chronic viral infection. Nature 439:682687.
7. Basler, C. F.,, A. Mikulasova,, L. Martinez-Sobrido,, J. Paragas,, E. Muhlberger,, M. Bray,, H. D. Klenk,, P. Palese, and, A. Garcia-Sastre. 2003. The Ebola virus VP35 protein inhibits activation of interferon regulatory factor 3. J. Virol. 77:79457956.
8. Beyer, W. R.,, D. Popplau,, W. Garten,, D. von Laer, and, O. Lenz. 2003. Endoproteolytic processing of the lymphocytic choriomeningitis virus glycoprotein by the subtilase SKI-1/S1P. J. Virol. 77:28662872.
9. Biron, C. A.,, L. P. Cousens,, M. C. Ruzek,, H. C. Su, and, T. P. Salazar-Mather. 1998. Early cytokine responses to viral infections and their roles in shaping endogenous cellular immunity. Adv. Exp. Med. Biol. 452:143149.
10. Bonjardim, C. A. 2005. Interferons (IFNs) are key cytokines in both innate and adaptive antiviral immune responses—and viruses counteract IFN action. Microbes Infect. 7:569578.
11. Borden, K. L.,, E. J. Campbell Dwyer, and, M. S. Salvato. 1998. An arenavirus RING (zinc-binding) protein binds the oncoprotein promyelocyte leukemia protein (PML) and relocates PML nuclear bodies to the cytoplasm. J. Virol. 72:758766.
12. Borrow, P., and, M. B. Oldstone. 1994. Mechanism of lymphocytic choriomeningitis virus entry into cells. Virology 198:19.
13. Brooks, D. G.,, M. J. Trifilo,, K. H. Edelmann,, L. Teyton,, D. B. McGavern, and, M. B. Oldstone. 2006. Interleukin-10 determines viral clearance or persistence in vivo. Nat. Med. 12:13011309.
14. Buchmeier, M. J., and, A. J. Zajac. 1999. Lymphocytic choriomeningitis virus, p. 575–605. In R. Ahmed and, I. Chen (ed.), Persistent Viral Infections. John Wiley & Sons, Inc., New York, NY.
15. Buchmeier, M. J.,, C. J. Peters, and, J. C. de la Torre. 2007. Arenaviridae: the viruses and their replication, p. 1792–1827. In D. M. Knipe, and, P. M. Howley (ed.), Fields Virology, 5th ed., vol. 2. Lippincott, Williams & Wilkins, Philadelphia, PA.
16. Buchmeier, M. J.,, R. M. Welsh,, F. J. Dutko, and, M. B. Oldstone. 1980. The virology and immunobiology of lymphocytic choriomeningitis virus infection. Adv. Immunol. 30:275331.
17. Bukowski, J. F.,, C. A. Biron, and, R. M. Welsh. 1983. Elevated natural killer cell-mediated cytotoxicity, plasma interferon, and tumor cell rejection in mice persistently infected with lymphocytic choriomeningitis virus. J. Immunol. 131:991996.
18. Campbell Dwyer, E. J.,, H. Lai,, R. C. MacDonald,, M. S. Salvato, and, K. L. Borden. 2000. The lymphocytic choriomeningitis virus RING protein Z associates with eukaryotic initiation factor 4E and selectively represses translation in a RING-dependent manner. J. Virol. 74:32933300.
19. Cardenas, W. B.,, Y. M. Loo,, M. Gale, Jr.,, A. L. Hartman,, C. R. Kimberlin,, L. Martinez-Sobrido,, E. O. Saphire, and, C. F. Basler. 2006. Ebola virus VP35 protein binds double-stranded RNA and inhibits alpha/beta interferon production induced by RIG-I signaling. J. Virol. 80:51685178.
20. Cella, M.,, D. Jarrossay,, F. Facchetti,, O. Alebardi,, H. Nakajima,, A. Lanzavecchia, and, M. Colonna. 1999. Plasmacytoid monocytes migrate to inflamed lymph nodes and produce large amounts of type I interferon. Nat. Med. 5:919923.
21. Cornu, T. I., and, J. C. de la Torre. 2002. Characterization of the arenavirus RING finger Z protein regions required for Z-mediated inhibition of viral RNA synthesis. J. Virol. 76:66786688.
22. Cornu, T. I., and, J. C. de la Torre. 2001. RING finger Z protein of lymphocytic choriomeningitis virus (LCMV) inhibits transcription and RNA replication of an LCMV S-segment minigenome. J. Virol. 75:94159426.
23. Cornu, T. I.,, H. Feldmann, and, J. C. de la Torre. 2004. Cells expressing the RING finger Z protein are resistant to arenavirus infection. J. Virol. 78:29792983.
24. Dalod, M.,, T. P. Salazar-Mather,, L. Malmgaard,, C. Lewis,, C. Asselin-Paturel,, F. Briere,, G. Trinchieri, and, C. A. Biron. 2002. Interferon alpha/beta and interleukin 12 responses to viral infections: pathways regulating dendritic cell cytokine expression in vivo. J. Exp. Med. 195:517528.
25. de la Torre, J. C., and, M. B. A. Oldstone. 1996. The anatomy of viral persistence: mechanisms of persistence and associated disease. Adv. Virus Res. 46:311343.
26. Di Simone, C., and, M. J. Buchmeier. 1995. Kinetics and pH dependence of acid-induced structural changes in the lymphocytic choriomeningitis virus glycoprotein complex. Virology 209:39.
27. Di Simone, C.,, M. A. Zandonatti, and, M. J. Buchmeier. 1994. Acidic pH triggers LCMV membrane fusion activity and conformational change in the glycoprotein spike. Virology 198:455465.
28. Doughty, L.,, K. Nguyen,, J. Durbin, and, C. Biron. 2001. A role for IFN-alpha beta in virus infection-induced sensitization to endotoxin. J. Immunol. 166:26582664.
29. Doyle, S.,, S. Vaidya,, R. O’Connell,, H. Dadgostar,, P. Dempsey,, T. Wu,, G. Rao,, R. Sun,, M. Haberland,, R. Modlin, and, G. Cheng. 2002. IRF3 mediates a TLR3/TLR4-specific antiviral gene program. Immunity 17:251263.
30. Ehrhardt, C.,, C. Kardinal,, W. J. Wurzer,, T. Wolff,, C. von Eichel-Streiber,, S. Pleschka,, O. Planz, and, S. Ludwig. 2004. Rac1 and PAK1 are upstream of IKK-epsilon and TBK-1 in the viral activation of interferon regulatory factor-3. FEBS Lett. 567:230238.
31. Eichler, R.,, O. Lenz,, T. Strecker,, M. Eickmann,, H. D. Klenk, and, W. Garten. 2003. Identification of Lassa virus glycoprotein signal peptide as a trans-acting maturation factor. EMBO Rep. 4:10841088.
32. Eichler, R.,, O. Lenz,, T. Strecker,, M. Eickmann,, H. D. Klenk, and, W. Garten. 2004. Lassa virus glycoproteinsignal peptide displays a novel topology with an extended endoplasmic reticulum luminal region. J. Biol. Chem. 279:1229312299.
33. Eichler, R.,, O. Lenz,, T. Strecker, and, W. Garten. 2003. Signal peptide of Lassa virus glycoprotein GP-C exhibits an unusual length. FEBS Lett. 538:203206.
34. Fischer, S. A.,, M. B. Graham,, M. J. Kuehnert,, C. N. Kotton,, A. Srinivasan,, F. M. Marty,, J. A. Comer,, J. Guarner,, C. D. Paddock,, D. L. DeMeo,, W. J. Shieh,, B. R. Erickson,, U. Bandy,, A. DeMaria, Jr.,, J. P. Davis,, F. L. Delmonico,, B. Pavlin,, A. Likos,, M. J. Vincent,, T. K. Sealy,, C. S. Goldsmith,, D. B. Jernigan,, P. E. Rollin,, M. M. Packard,, M. Patel,, C. Rowland,, R. F. Helfand,, S. T. Nichol,, J. A. Fishman,, T. Ksiazek, and, S. R. Zaki. 2006. Transmission of lymphocytic choriomeningitis virus by organ transplantation. N. Engl. J. Med. 354:22352249.
35. Fitzgerald, K. A.,, S. M. McWhirter,, K. L. Faia,, D. C. Rowe,, E. Latz,, D. T. Golenbock,, A. J. Coyle,, S. M. Liao, and, T. Maniatis. 2003. IKKepsilon and TBK1 are essential components of the IRF3 signaling pathway. Nat. Immunol. 4:491496.
36. Flatz, L.,, A. Bergthaler,, J. C. de la Torre, and, D. D. Pinschewer. 2006. Recovery of an arenavirus entirely from RNA polymerase I/II-driven cDNA. Proc. Natl. Acad. Sci. USA 103:46634668.
37. Freed, E. O. 2002. Viral late domains. J. Virol. 76:46794687.
38. Freedman, D. O., and, J. Woodall. 1999. Emerging infectious diseases and risk to the traveler. Med. Clin. North Am. 83:865883, v.
39. Froeschke, M.,, M. Basler,, M. Groettrup, and, B. Dobberstein. 2003. Long-lived signal peptide of lymphocytic choriomeningitis virus glycoprotein pGP-C. J. Biol. Chem. 278:4191441920.
40. Gallaher, W. R.,, C. DiSimone, and, M. J. Buchmeier. 2001. The viral transmembrane superfamily: possible divergence of Arenavirus and Filovirus glycoproteins from a common RNA virus ancestor. BMC Microbiol. 1:1.
41. Garcia-Sastre, A., and, C. A. Biron. 2006. Type 1 interferons and the virus-host relationship: a lesson in detente. Science 312:879882.
42. Garcin, D., and, D. Kolakofsky. 1992. Tacaribe arenavirus RNA synthesis in vitro is primer dependent and suggests an unusual model for the initiation of genome replication. J. Virol. 66:13701376.
43. Grandvaux, N.,, M. J. Servant,, B. tenOever,, G. C. Sen,, S. Balachandran,, G. N. Barber,, R. Lin, and, J. Hiscott. 2002. Transcriptional profiling of interferon regulatory factor 3 target genes: direct involvement in the regulation of interferon-stimulated genes. J. Virol. 76:55325539.
44. Guilbert, J. J. 2003. The world health report 2002— reducing risks, promoting healthy life. Educ. Health (Abingdon) 16:230.
45. Haller, O.,, G. Kochs, and, F. Weber. 2006. The interferon response circuit: induction and suppression by pathogenic viruses. Virology 344:119130.
46. Hass, M.,, U. Golnitz,, S. Muller,, B. Becker-Ziaja, and, S. Gunther. 2004. Replicon system for Lassa virus. J. Virol. 78:1379313803.
47. Hass, M.,, M. Westerkofsky,, S. Muller,, B. Becker-Ziaja,, C. Busch, and, S. Gunther. 2006. Mutational analysis of the Lassa virus promoter. J. Virol. 80:1241412419.
48. Holmes, G. P.,, J. B. McCormick,, S. C. Trock,, R. A. Chase,, S. M. Lewis,, C. A. Mason,, P. A. Hall,, L. S. Brammer,, G. I. Perez-Oronoz,, M. K. McDonnell, et al. 1990. Lassa fever in the United States. Investigation of a case and new guidelines for management. N. Engl. J. Med. 323:11201123.
49. Hosmalin, A., and, P. Lebon. 2006. Type I interferon production in HIV-infected patients. J. Leukoc. Biol. 80:984993.
50. Isaacson, M. 2001. Viral hemorrhagic fever hazards for travelers in Africa. Clin. Infect. Dis. 33:17071712.
51. Ito, T.,, R. Amakawa, and, S. Fukuhara. 2002. Roles of Toll-like receptors in natural interferon-producing cells as sensors in immune surveillance. Hum. Immunol. 63:11201125.
52. Jahrling, P. B., and, C. J. Peters. 1992. Lymphocytic choriomeningitis virus. A neglected pathogen of man. Arch. Pathol. Lab. Med. 116:486488.
53. Jarrossay, D.,, G. Napolitani,, M. Colonna,, F. Sallusto, and, A. Lanzavecchia. 2001. Specialization and complementarity in microbial molecule recognition by human myeloid and plasmacytoid dendritic cells. Eur. J. Immunol. 31:33883393.
54. Kato, H.,, O. Takeuchi,, S. Sato,, M. Yoneyama,, M. Yamamoto,, K. Matsui,, S. Uematsu,, A. Jung,, T. Kawai,, K. J. Ishii,, O. Yamaguchi,, K. Otsu,, T. Tsujimura,, C. S. Koh,, C. Reis e Sousa,, Y. Matsuura,, T. Fujita, and, S. Akira. 2006. Differential roles of MDA5 and RIG-I helicases in the recognition of RNA viruses. Nature 441:101105.
55. Kentsis, A.,, E. C. Dwyer,, J. M. Perez,, M. Sharma,, A. Chen,, Z. Q. Pan, and, K. L. Borden. 2001. The RING domains of the promyelocytic leukemia protein PML and the arenaviral protein Z repress translation by directly inhibiting translation initiation factor eIF4E. J. Mol. Biol. 312:609623.
56. Kilgore, P. E.,, T. G. Ksiazek,, P. E. Rollin,, J. N. Mills,, M. R. Villagra,, M. J. Montenegro,, M. A. Costales,, L. C. Paredes, and, C. J. Peters. 1997. Treatment of Bolivian hemorrhagic fever with intravenous ribavirin. Clin. Infect. Dis. 24:718722.
57. King, C. C.,, B. D. Jamieson,, K. Reddy,, N. Bali,, R. J. Concepcion, and, R. Ahmed. 1992. Viral infection of the thymus. J. Virol. 66:31553160.
58. Kopecky-Bromberg, S. A.,, L. Martinez-Sobrido,, M. Frieman,, R. A. Baric, and, P. Palese. 2007. Severe acute respiratory syndrome coronavirus open reading frame (ORF) 3b, ORF 6, and nucleocapsid proteins function as interferon antagonists. J. Virol. 81:548557.
59. Kunz, S.,, P. Borrow, and, M. B. Oldstone. 2002. Receptor structure, binding, and cell entry of arenaviruses. Curr. Top. Microbiol. Immunol. 262:111137.
60. Kunz, S.,, K. H. Edelmann,, J.-C. de la Torre,, R. Gorney, and, M. B. Oldstone. 2003. Mechanisms for lymphocytic choriomeningitis virus glycoprotein cleavage, transport, and incorporation into virions. Virology 314:168178.
61. Kunz, S.,, N. Sevilla,, J. M. Rojek, and, M. B. Oldstone. 2004. Use of alternative receptors different than alpha-dystroglycan by selected isolates of lymphocytic choriomeningitis virus. Virology 325:432445.
62. Lee, K. J.,, I. S. Novella,, M. N. Teng,, M. B. Oldstone, and, J. C. de La Torre. 2000. NP and L proteins of lymphocytic choriomeningitis virus (LCMV) are sufficient for efficient transcription and replication of LCMV genomic RNA analogs. J. Virol. 74:34703477.
63. Lee, K. J.,, M. Perez,, D. D. Pinschewer, and, J. C. de la Torre. 2002. Identification of the lymphocytic choriomeningitis virus (LCMV) proteins required to rescue LCMV RNA analogs into LCMV-like particles. J. Virol. 76:63936397.
64. Levy, D. E., and, A. Garcia-Sastre. 2001. The virus battles: IFN induction of the antiviral State and mechanisms of viral evasion. Cytokine Growth Factor Rev. 12:143156.
65. Lopez, N.,, R. Jacamo, and, M. T. Franze-Fernandez. 2001. Transcription and RNA replication of Tacaribe virus genome and antigenome analogs require N and L proteins: Z protein is an inhibitor of these processes. J. Virol. 75:1224112251.
66. Louten, J.,, N. van Rooijen, and, C. A. Biron. 2006. Type 1 IFN deficiency in the absence of normal splenic architecture during lymphocytic choriomeningitis virus infection. J. Immunol. 177:32663272.
67. Malmgaard, L.,, T. P. Salazar-Mather,, C. A. Lewis, and, C. A. Biron. 2002. Promotion of alpha/beta interferon induction during in vivo viral infection through alpha/beta interferon receptor/Stat1 system-dependent and -independent pathways. J. Virol. 76:45204525.
68. Marie, I.,, J. E. Durbin, and, D. E. Levy. 1998. Differential viral induction of distinct interferon-alpha genes by positive feedback through interferon regulatory factor-7. EMBO J. 17:66606669.
69. Martinez-Sobrido, L.,, P. Giannakas,, B. Cubitt,, A. Garcia-Sastre, and, J. C. de la Torre. 2007. Differential inhibition of type I interferon induction by arenavirus nucleoproteins. J. Virol. 81:1269612703.
70. Martinez-Sobrido, L.,, E. I. Zuniga,, D. Rosario,, A. Garcia-Sastre, and, J. C. de la Torre. 2006. Inhibition of the type I interferon response by the nucleoprotein of the prototypic arenavirus lymphocytic choriomeningitis virus. J. Virol. 80:91929199.
71. McCormick, J. B., and, S. P. Fisher-Hoch. 2002. Lassa fever, p. 75–110. In M. B. Oldstone (ed.), Arenaviruses I, vol. 262. Springer-Verlag, Berlin, Germany.
72. McCormick, J. B.,, I. J. King,, P. A. Webb,, C. L. Scribner,, R. B. Craven,, K. M. Johnson,, L. H. Elliott, and, R. Belmont-Williams. 1986. Lassa fever. Effective therapy with ribavirin. N. Engl. J. Med. 314:2026.
73. McKee, K. T., Jr.,, J. W. Huggins,, C. J. Trahan, and, B. G. Mahlandt. 1988. Ribavirin prophylaxis and therapy for experimental Argentine hemorrhagic fever. Antimicrob. Agents Chemother. 32:13041309.
74. McKenna, K.,, A. S. Beignon, and, N. Bhardwaj. 2005. Plasmacytoid dendritic cells: linking innate and adaptive immunity. J. Virol. 79:1727.
75. Melchjorsen, J.,, S. B. Jensen,, L. Malmgaard,, S. B. Rasmussen,, F. Weber,, A. G. Bowie,, S. Matikainen, and, S. R. Paludan. 2005. Activation of innate defense against a paramyxovirus is mediated by RIG-I and TLR7 and TLR8 in a cell-type-specific manner. J. Virol. 79:1294412951.
76. Mets, M. B.,, L. L. Barton,, A. S. Khan, and, T. G. Ksiazek. 2000. Lymphocytic choriomeningitis virus: an underdiag-nosed cause of congenital chorioretinitis. Am. J. Ophthalmol. 130:209215.
77. Meyer, B. J.,, J. C. de la Torre, and, P. J. Southern. 2002. Arenaviruses: genomic RNAs, transcription, and replication. Curr. Top. Microbiol. Immunol. 262:139149.
78. Mibayashi, M.,, L. Martinez-Sobrido,, Y. M. Loo,, W. B. Cardenas,, M. Gale, Jr., and, A. Garcia-Sastre. 2007. Inhibition of retinoic acid-inducible gene I-mediated induction of beta interferon by the NS1 protein of influenza A virus. J. Virol. 81:514524.
79. Montoya, M.,, M. J. Edwards,, D. M. Reid, and, P. Borrow. 2005. Rapid activation of spleen dendritic cell subsets following lymphocytic choriomeningitis virus infection of mice: analysis of the involvement of type 1 IFN. J. Immunol. 174:18511861.
80. Montoya, M.,, G. Schiavoni,, F. Mattei,, I. Gresser,, F. Belardelli,, P. Borrow, and, D. F. Tough. 2002. Type I interferons produced by dendritic cells promote their phenotypic and functional activation. Blood 99:32633271.
81. Mori, M.,, M. Yoneyama,, T. Ito,, K. Takahashi,, F. Inagaki, and, T. Fujita. 2004. Identification of Ser-386 of interferon regulatory factor 3 as critical target for inducible phosphorylation that determines activation. J. Biol. Chem. 279:96989702.
82. Nakaya, T.,, M. Sato,, N. Hata,, M. Asagiri,, H. Suemori,, S. Noguchi,, N. Tanaka, and, T. Taniguchi. 2001. Gene induction pathways mediated by distinct IRFs during viral infection. Biochem. Biophys. Res. Commun. 283:11501156.
83. Neuman, B. W.,, B. D. Adair,, J. W. Burns,, R. A. Milligan,, M. J. Buchmeier, and, M. Yeager. 2005. Complementarity in the supramolecular design of arenaviruses and retro-viruses revealed by electron cryomicroscopy and image analysis. J. Virol. 79:38223830.
84. Oldstone, M. B. 2002. Biology and pathogenesis of lymphocytic choriomeningitis virus infection, p. 83–118. In M. B. Oldstone (ed.), Arenaviruses, vol. 263. Springer-Verlag, Berlin, Germany.
85. Oldstone, M. B. 2006. Viral persistence: parameters, mechanisms and future predictions. Virology 344:111118.
86. Palacios, G.,, J. Druce,, L. Du,, T. Tran,, C. Birch,, T. Briese,, S. Conlan,, P. L. Quan,, J. Hui,, J. Marshall,, J. F. Simons,, M. Egholm,, C. D. Paddock,, W. J. Shieh,, C. S. Goldsmith,, S. R. Zaki,, M. Catton, and, W. I. Lipkin. 2008. A new arenavirus in a cluster of fatal transplant-associated diseases. N. Engl. J. Med. 358:991998.
87. Park, M. S.,, A. Garcia-Sastre,, J. F. Cros,, C. F. Basler, and, P. Palese. 2003. Newcastle disease virus V protein is a determinant of host range restriction. J. Virol. 77:95229532.
88. Park, M. S.,, M. L. Shaw,, J. Munoz-Jordan,, J. F. Cros,, T. Nakaya,, N. Bouvier,, P. Palese,, A. Garcia-Sastre, and, C. F. Basler. 2003. Newcastle disease virus (NDV)-based assay demonstrates interferon-antagonist activity for the NDV V protein and the Nipah virus V, W, and C proteins. J. Virol. 77:15011511.
89. Perez, M.,, R. C. Craven, and, J. C. de la Torre. 2003. The small RING finger protein Z drives arenavirus budding: implications for antiviral strategies. Proc. Natl. Acad. Sci. USA 100:1297812983.
90. Perez, M., and, J. C. de la Torre. 2003. Characterization of the genomic promoter of the prototypic arenavirus lymphocytic choriomeningitis virus. J. Virol., 77:11841194.
91. Perez, M.,, D. L. Greenwald, and, J. C. de la Torre. 2004. Myristoylation of the RING finger Z protein is essential for arenavirus budding. J. Virol. 78:1144311448.
92. Peters, C. J. 2002. Human infection with arenaviruses in the Americas, p. 65–74. In M. B. Oldstone (ed.), Arenaviruses I, vol. 262. Springer-Verlag, Berlin, Germany.
93. Peters, C. J. 2006. Lymphocytic choriomeningitis virus— an old enemy up to new tricks. N. Engl. J. Med. 354:22082211.
94. Peters, K. L.,, H. L. Smith,, G. R. Stark, and, G. C. Sen. 2002. IRF-3-dependent, NFkappa B- and JNK-independent activation of the 561 and IFN-beta genes in response to double-stranded RNA. Proc. Natl. Acad. Sci. USA 99:63226327.
95. Pinschewer, D. D.,, M. Perez, and, J. C. de la Torre. 2005. Dual role of the lymphocytic choriomeningitis virus intergenic region in transcription termination and virus propagation. J. Virol. 79:45194526.
96. Pinschewer, D. D.,, M. Perez, and, J. C. de la Torre. 2003. Role of the virus nucleoprotein in the regulation of lymphocytic choriomeningitis virus transcription and RNA replication. J. Virol. 77:38823887.
97. Pinschewer, D. D.,, M. Perez,, A. B. Sanchez, and, J. C. de la Torre. 2003. Recombinant lymphocytic choriomeningitis virus expressing vesicular stomatitis virus glycoprotein. Proc. Natl. Acad. Sci. USA 100:78957900.
98. Pircher, H.,, K. Burki,, R. Lang,, H. Hengartner, and, R. M. Zinkernagel. 1989. Tolerance induction in double specific T-cell receptor transgenic mice varies with antigen. Nature 342:559561.
99. Quinlivan, M.,, D. Zamarin,, A. Garcia-Sastre,, A. Cullinane,, T. Chambers, and, P. Palese. 2005. Attenuation of equine influenza viruses through truncations of the NS1 protein. J. Virol. 79:84318439.
100. Raju, R.,, L. Raju,, D. Hacker,, D. Garcin,, R. Compans, and, D. Kolakofsky. 1990. Nontemplated bases at the 5′ ends of Tacaribe virus mRNAs. Virology 174:5359.
101. Ruiz-Jarabo, C. M.,, C. Ly,, E. Domingo, and, J. C. de la Torre. 2003. Lethal mutagenesis of the prototypic arenavirus lymphocytic choriomeningitis virus (LCMV). Virology 308:3747.
102. Salvato, M.,, P. Borrow,, E. Shimomaye, and, M. B. Oldstone. 1991. Molecular basis of viral persistence: a single amino acid change in the glycoprotein of lymphocytic choriomeningitis virus is associated with suppression of the antiviral cytotoxic T-lymphocyte response and establishment of persistence. J. Virol. 65:18631869.
103. Salvato, M.,, E. Shimomaye, and, M. B. Oldstone. 1989. The primary structure of the lymphocytic choriomeningitis virus L gene encodes a putative RNA polymerase. Virology 169:377384.
104. Salvato, M.,, E. Shimomaye,, P. Southern, and, M. B. Oldstone. 1988. Virus-lymphocyte interactions. IV. Molecular characterization of LCMV Armstrong (CTL+)small genomic segment and that of its variant, Clone 13 (CTL-). Virology 164:517522.
105. Salvato, M. S. 1993. Molecular biology of the prototype arenavirus, lymphocytic choriomeningitis virus, p. 133–156. In M. S. Salvato (ed.), The Arenaviridae, vol. 1. Plenum Press, New York, NY.
106. Salvato, M. S.,, K. J. Schweighofer,, J. Burns, and, E. M. Shimomaye. 1992. Biochemical and immunological evidence that the 11 kDa zinc-binding protein of lymphocytic choriomeningitis virus is a structural component of the virus. Virus Res. 22:185198.
107. Sanchez, A. B., and, J. C. de la Torre. 2005. Genetic and biochemical evidence for an oligomeric structure of the functional L polymerase of the prototypic arenavirus lymphocytic choriomeningitis virus. J. Virol. 79:72627268.
108. Sanchez, A. B., and, J. C. de la Torre. 2006. Rescue of the prototypic arenavirus LCMV entirely from plasmid. Virology 350:370380.
109. Sato, M.,, N. Tanaka,, N. Hata,, E. Oda, and, T. Taniguchi. 1998. Involvement of the IRF family transcription factor IRF-3 in virus-induced activation of the IFN-beta gene. FEBS Lett. 425:112116.
110. Schlender, J.,, V. Hornung,, S. Finke,, M. Gunthner-Biller,, S. Marozin,, K. Brzozka,, S. Moghim,, S. Endres,, G. Hartmann, and, K. K. Conzelmann. 2005. Inhibition of Toll-like receptor 7- and 9-mediated alpha/beta interferon production in human plasmacytoid dendritic cells by respiratory syncytial virus and measles virus. J. Virol. 79:55075515.
111. Servant, M. J.,, B. ten Oever,, C. LePage,, L. Conti,, S. Gessani,, I. Julkunen,, R. Lin, and, J. Hiscott. 2001. Identification of distinct signaling pathways leading to the phosphorylation of interferon regulatory factor 3. J. Biol. Chem. 276:355363.
112. Sevilla, N.,, S. Kunz,, A. Holz,, H. Lewicki,, D. Homann,, H. Yamada,, K. P. Campbell,, J. C. de La Torre, and, M. B. Oldstone. 2000. Immunosuppression and resultant viral persistence by specific viral targeting of dendritic cells. J. Exp. Med. 192:12491260.
113. Sevilla, N.,, D. B. McGavern,, C. Teng,, S. Kunz, and, M. B. Oldstone. 2004. Viral targeting of hematopoietic progenitors and inhibition of DC maturation as a dual strategy for immune subversion. J. Clin. Invest. 113:737745.
114. Smelt, S. C.,, P. Borrow,, S. Kunz,, W. Cao,, A. Tishon,, H. Lewicki,, K. P. Campbell, and, M. B. Oldstone. 2001. Differences in affinity of binding of lymphocytic choriomeningitis virus strains to the cellular receptor alpha-dystroglycan correlate with viral tropism and disease kinetics. J. Virol. 75:448457.
115. Spiropoulou, C. F.,, S. Kunz,, P. E. Rollin,, K. P. Campbell, and, M. B. Oldstone. 2002. New World arenavirus clade C, but not clade A and B viruses, utilizes alpha-dystroglycan as its major receptor. J. Virol. 76:51405146.
116. Stojdl, D. F.,, B. D. Lichty,, B. R. tenOever,, J. M. Paterson,, A. T. Power,, S. Knowles,, R. Marius,, J. Reynard,, L. Poliquin,, H. Atkins,, E. G. Brown,, R. K. Durbin,, J. E. Durbin,, J. Hiscott, and, J. C. Bell. 2003. VSV strains with defects in their ability to shutdown innate immunity are potent systemic anti-cancer agents. Cancer Cell 4:263275.
117. Strecker, T.,, R. Eichler,, J. Meulen,, W. Weissenhorn,, H. Dieter Klenk,, W. Garten, and, O. Lenz. 2003. Lassa virus Z protein is a matrix protein and sufficient for the release of virus-like particles [corrected]. J. Virol. 77:1070010705.
118. Talon, J.,, C. M. Horvath,, R. Polley,, C. F. Basler,, T. Muster,, P. Palese, and, A. Garcia-Sastre. 2000. Activation of interferon regulatory factor 3 is inhibited by the influenza A virus NS1 protein. J. Virol. 74:79897996.
119. Talon, J.,, M. Salvatore,, R. E. O’Neill,, Y. Nakaya,, H. Zheng,, T. Muster,, A. Garcia-Sastre, and, P. Palese. 2000. Influenza A and B viruses expressing altered NS1 proteins: a vaccine approach. Proc. Natl. Acad. Sci. USA 97:43094314.
120. tenOever, B. R.,, S. Sharma,, W. Zou,, Q. Sun,, N. Grandvaux,, I. Julkunen,, H. Hemmi,, M. Yamamoto,, S. Akira,, W. C. Yeh,, R. Lin, and, J. Hiscott. 2004. Activation of TBK1 and IKK-ε kinases by vesicular stomatitis virus infection and the role of viral ribonucleoprotein in the development of interferon antiviral immunity. J. Virol. 78:1063610649.
121. Urata, S.,, T. Noda,, Y. Kawaoka,, H. Yokosawa, and, J. Yasuda. 2006. Cellular factors required for Lassa virus budding. J. Virol. 80:41914195.
122. Vieth, S.,, A. E. Torda,, M. Asper,, H. Schmitz, and, S. Gunther. 2004. Sequence analysis of L RNA of Lassa virus. Virology 318:153168.
123. Weaver, B. K.,, K. P. Kumar, and, N. C. Reich. 1998. Interferon regulatory factor 3 and CREB-binding protein/ p300 are subunits of double-stranded RNA-activated transcription factor DRAF1. Mol. Cell. Biol. 18:13591368.
124. Yoneyama, M., and, T. Fujita. 2004. [RIG-I: critical regulator for virus-induced innate immunity]. Tanpakushitsu Kakusan Koso 49:25712578.
125. Yoneyama, M.,, M. Kikuchi,, T. Natsukawa,, N. Shinobu,, T. Imaizumi,, M. Miyagishi,, K. Taira,, S. Akira, and, T. Fujita. 2004. The RNA helicase RIG-I has an essential function in double-stranded RNA-induced innate antiviral responses. Nat. Immunol. 5:730737.
126. York, J.,, V. Romanowski,, M. Lu, and, J. H. Nunberg. 2004. The signal peptide of the Junin arenavirus envelope glycoprotein is myristoylated and forms an essential subunit of the mature G1-G2 complex. J. Virol. 78:1078310792.
127. Young, P. R., and, C. R. Howard. 1983. Fine structure analysis of Pichinde virus nucleocapsids. J. Gen. Virol. 64(Pt. 4):833842.
128. Zinkernagel, R. M. 2002. Lymphocytic choriomeningitis virus and immunology. Curr. Top. Microbiol. Immunol. 263:15.
129. Zuniga, E. I.,, D. B. McGavern,, J. L. Pruneda-Paz,, C. Teng, and, M. B. Oldstone. 2004. Bone marrow plasmacytoid dendritic cells can differentiate into myeloid dendritic cells upon virus infection. Nat. Immunol. 5:12271234.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error