1887

Chapter 1 : Intercompartmental Signal Transduction during Sporulation in

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in
Zoomout

Intercompartmental Signal Transduction during Sporulation in , Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555815578/9781555814045_Chap01-1.gif /docserver/preview/fulltext/10.1128/9781555815578/9781555814045_Chap01-2.gif

Abstract:

This chapter talks about the two cells that comprise the sporangium during spore formation in . Spore formation in has served as an important model for cell-cell signaling in bacteria. The conversation between the forespore and mother cell provides insight into how and why cells communicate and highlights the diversity of ways in which organisms transduce information across their membranes. It is clear that there are three signal transduction pathways between the mother cell and forespore that ensure that gene expression in one compartment is linked to gene expression in the other throughout the sporulation process. The first signal transduction pathway between the forespore and mother cell has as input σ activity in the forespore and as output the activation of σ in the mother cell. Dissection of the molecular mechanisms of R-mediated GA activation and GA-mediated pro-σ processing promises to reveal general principles of how information can be transduced across a lipid bilayer. The second signal transduction pathway, the activation of σ in the forespore under the control of σ in the mother cell, has been the most refractory to genetic and molecular dissection. The third and final signal transduction pathway, the activation of σ in the mother cell under the control of σ in the forespore, is the most well understood of the three. All three of these signaling pathways have served as powerful models for studying cell-cell signaling in bacteria.

Citation: Rudner D, Doan T. 2008. Intercompartmental Signal Transduction during Sporulation in , p 3-12. In Winans S, Bassler B (ed), Chemical Communication among Bacteria. ASM Press, Washington, DC. doi: 10.1128/9781555815578.ch1

Key Concept Ranking

Signalling Pathway
0.6068046
Signal Transduction
0.6008002
Gene Expression
0.50431645
Signal Molecules
0.4628973
Integral Membrane Proteins
0.43450728
0.6068046
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

References

/content/book/10.1128/9781555815578.ch01
1. Blaylock, B.,, X. Jiang,, A. Rubio,, C. P. Moran, Jr., and, K. Pogliano. 2004. Zipper-like interaction between proteins in adjacent daughter cells mediates protein localization. Genes Dev. 18:29162928.
2. Brown, M. S.,, and J. L. Goldstein. 1997. The SREBP pathway: regulation of cholesterol metabolism by proteolysis of a membrane-bound transcription factor. Cell 89:331340.
3. Campo, N.,, and D. Z. Rudner. 2006. A branched pathway governing the activation of a developmental transcription factor by regulated intramembrane proteolysis. Mol. Cell 23:2535.
4. Campo, N.,, and D. Z. Rudner. 2007. SpoIVB and CtpB are both forespore signals in the activation of the sporulation transcription factor sigmaK in Bacillus subtilis. J. Bacteriol. 189:60216027.
5. Clarkson, J.,, I. D. Campbell, and, M. D. Yudkin. 2004. Efficient regulation of sigmaF, the first sporulation-specific sigma factor in B. subtilis. J. Mol. Biol. 342:11871195.
6. Cutting, S.,, A. Driks,, R. Schmidt,, B. Kunkel, and, R. Losick. 1991. Forespore-specific transcription of a gene in the signal transduction pathway that governs Pro-sigma K processing in Bacillus subtilis. Genes Dev. 5:456466.
7. Cutting, S.,, V. Oke,, A. Driks,, R. Losick,, S. Lu, and, L. Kroos. 1990. A forespore checkpoint for mother cell gene expression during development in B. subtilis. Cell 62:239250.
8. Cutting, S.,, S. Roels, and, R. Losick. 1991. Sporulation operon spoIVF and the characterization of mutations that uncouple mother-cell from forespore gene expression in Bacillus subtilis. J. Mol. Biol. 221:12371256.
9. Doan, T.,, K. A. Marquis, and, D. Z. Rudner. 2005. Subcellular localization of a sporulation membrane protein is achieved through a network of interactions along and across the septum. Mol. Microbiol. 55:17671781.
10. Doan, T.,, and D. Z. Rudner. 2007. Perturbations to engulfment trigger a degradative response that prevents cell-cell signaling during sporulation in Bacillus subtilis. Mol. Microbiol. 64:500511.
11. Dong, T. C.,, and S. M. Cutting. 2003. SpoIVB-mediated cleavage of SpoIVFA could provide the intercellular signal to activate processing of Pro-sigmaK in Bacillus subtilis. Mol. Microbiol. 49:14251434.
12. Driks, A.,, and R. Losick. 1991. Compartmentalized expression of a gene under the control of sporulation transcription factor sigma E in Bacillus subtilis. Proc. Natl. Acad. Sci. USA 88:99349938.
13. Dworkin, J.,, and R. Losick. 2005. Developmental commitment in a bacterium. Cell 121:401409.
14. Eichenberger, P.,, P. Fawcett, and, R. Losick. 2001. A three-protein inihibitor of polar septation during sporulation in Bacillus subtilis. Mol. Microbiol. 42:11471162.
15. Errington, J. 2003. Regulation of endospore formation in Bacillus subtilis. Nat. Rev. Microbiol. 1:117126.
16. Fawcett, P.,, A. Melnikov,, and P. Youngman. 1998. The Bacillus SpoIIGA protein is targeted to sites of spore septum formation in a SpoIIE-independent manner. Mol. Microbiol. 28:931943.
17. Fujita, M.,, and R. Losick. 2002. An investigation into the compartmentalization of the sporulation transcription factor sigmaE in Bacillus subtilis. Mol. Microbiol. 43:2738.
18. Fujita, M.,, and R. Losick. 2003. The master regulator for entry into sporulation in Bacillus subtilis becomes a cell-specific transcription factor after asymmetric division. Genes Dev. 17:11661174.
19. Gomez, M.,, S. Cutting, and, P. Stragier. 1995. Transcription of spoIVB is the only role of sigma G that is essential for pro-sigma K processing during spore formation in Bacillus subtilis. J. Bacteriol. 177:48254827.
20. Hilbert, D. W.,, and P. J. Piggot. 2004. Compartmentalization of gene expression during Bacillus subtilis spore formation. Microbiol. Mol. Biol. Rev. 68:234262.
21. Hofmeister, A. 1998. Activation of the proprotein transcription factor pro-sigmaE is associated with its progression through three patterns of sub-cellular localization during sporulation in Bacillus subtilis. J. Bacteriol. 180:24262433.
22. Hofmeister, A. E.,, A. Londono-Vallejo,, E. Harry,, P. Stragier, and, R. Losick. 1995. Extracellular signal protein triggering the proteolytic activation of a developmental transcription factor in B. subtilis. Cell 83:219226.
23. Iber, D.,, J. Clarkson,, M. D. Yudkin, and, I. D. Campbell. 2006. The mechanism of cell differentiation in Bacillus subtilis. Nature 441:371374.
24. Igoshin, O. A.,, C. W. Price, and, M. A. Savageau. 2006. Signalling network with a bistable hysteretic switch controls developmental activation of the sigma transcription factor in Bacillus subtilis. Mol. Microbiol. 61:165184.
25. Jiang, X.,, A. Rubio,, S. Chiba, and, K. Pogliano. 2005. Engulfment-regulated proteolysis of SpoIIQ: evidence that dual checkpoints control sigma activity. Mol. Microbiol. 58:102115.
26. Johnson, B. D.,, and A. J. Dombroski. 1997. The role of the pro sequence of Bacillus subtilis sigmaK in controlling activity in transcription initiation. J. Biol. Chem. 272:3102931035.
27. Ju, J.,, Luo, T., and, W. G. Haldenwang. 1997. Bacillus subtilis pro-sigmaE fusion protein localizes to the forespore septum and fails to be processed when synthesized in the forespore. J. Bacteriol. 179:48884893.
28. Karow, M. L.,, P. Glaser, and, P. J. Piggot. 1995. Identification of a gene, spoIIR, that links the activation of sigma E to the transcriptional activity of sigma F during sporulation in Bacillus subtilis. Proc. Natl. Acad. Sci. USA 92:20122016.
29. Kellner, E. M.,, A. Decatur, and, C. P. Moran, Jr. 1996. Two-stage regulation of an anti-sigma factor determines developmental fate during bacterial endospore formation. Mol. Microbiol. 21:913924.
30. Khvorova, A.,, V. K. Chary,, D. W. Hilbert, and, P. J. Piggot. 2000. The chromosomal location of the Bacillus subtilis sporulation gene spoIIR is important for its function. J. Bacteriol. 182:44254429.
31. King, N.,, O. Dreesen,, P. Stragier,, K. Pogliano, and, R. Losick. 1999. Septation, dephosphorylation, and the activation of sigmaF during sporulation in Bacillus subtilis. Genes Dev. 13:11561167.
32. Kroos, L.,, B. Kunkel, and, R. Losick. 1989. Switch protein alters specificity of RNA polymerase containing a compartment-specific sigma factor. Science 243:526529.
33. LaBell, T. L.,, J. E. Trempy, and, W. G. Haldenwang. 1987. Sporulation-specific sigma factor sigma 29 of Bacillus subtilis is synthesized from a precursor protein, P31. Proc. Natl. Acad. Sci. USA 84:17841788.
34. Li, Z.,, and P. J. Piggot. 2001. Development of a two-part transcription probe to determine the completeness of temporal and spatial compartmentalization of gene expression during bacterial development. Proc. Natl. Acad. Sci. USA 98:1253812543.
35. Londono-Vallejo, J. A.,, C. Frehel, and, P. Stragier. 1997. SpoIIQ, a forespore-expressed gene required for engulfment in Bacillus subtilis. Mol. Microbiol. 24:2939.
36. Londono-Vallejo, J. A.,, and P. Stragier. 1995. Cell-cell signaling pathway activating a developmental transcription factor in Bacillus subtilis. Genes Dev. 9:503508.
37. Losick, R.,, and P. Stragier. 1992. Crisscross regulation of cell-type-specific gene expression during development in B. subtilis. Nature 355:601604.
38. Losick, R.,, P. Youngman, and P. J. Piggot. 1986. Genetics of endospore formation in Bacillus subtilis. Annu. Rev. Genet. 20:625669.
39. Lu, S.,, R. Halberg, and L. Kroos. 1990. Processing of the mother-cell sigma factor, sigma K, may depend on events occurring in the forespore during Bacillus subtilis development. Proc. Natl. Acad. Sci. USA 87:97229726.
40. Makinoshima, H.,, and M. S. Glickman. 2006. Site-2 proteases in prokaryotes: regulated intramembrane proteolysis expands to microbial pathogenesis. Microbes Infect. 8:18821888.
41. Margolis, P. S.,, A. Driks, and, R. Losick. 1993. Sporulation gene spoIIB from Bacillus subtilis. J. Bacteriol. 175:528540.
42. Murakami, T.,, K. Haga,, M. Takeuchi, and, T. Sato. 2002. Analysis of the Bacillus subtilis spoIIIJ gene and its paralogue gene, yqjG. J. Bacteriol. 184:19982004.
43. Pan, Q.,, R. Losick, and, D. Z. Rudner. 2003. A second PDZ-containing serine protease contributes to activation of the sporulation transcription factor sigmaK in Bacillus subtilis. J. Bacteriol. 185:60516056.
44. Partridge, S. R.,, and J. Errington. 1993. The importance of morphological events and intercellular interactions in the regulation of presporespecific gene expression during sporulation in Bacillus subtilis. Mol. Microbiol. 8:945955.
45. Piggot, P. J.,, and R. Losick. 2002. Sporulation genes and intercompartmental regulation, p. 483–517. In A. L. Sonenshein,, J. A. Hoch,, and R. Losick (ed.), Bacillus subtilis and Its Closest Relatives: from Genes to Cells. ASM Press, Washington, DC.
46. Pogliano, J.,, N. Osborne,, M. D. Sharp,, A. Abanes-De Mello,, A. Perez,, Y. L. Sun, and, K. Pogliano. 1999. A vital stain for studying membrane dynamics in bacteria: a novel mechanism controlling septation during Bacillus subtilis sporulation. Mol. Microbiol. 31:11491159.
47. Rawson, R. B.,, N. G. Zelenski,, D. Nijhawan,, J. Ye,, J. Sakai,, M. T. Hasan,, T. Y. Chang,, M. S. Brown, and, J. L. Goldstein. 1997. Complementation cloning of S2P, a gene encoding a putative metalloprotease required for intramembrane cleavage of SREBPs. Mol. Cell 1:4757.
48. Resnekov, O.,, S. Alper, and, R. Losick. 1996. Subcellular localization of proteins governing the proteolytic activation of a developmental transcription factor in Bacillus subtilis. Genes Cells 1:529542.
49. Resnekov, O.,, and R. Losick. 1998. Negative regulation of the proteolytic activation of a developmental transcription factor in Bacillus subtilis. Proc. Natl. Acad. Sci. USA 95:31623167.
50. Ricca, E.,, S. Cutting, and, R. Losick. 1992. Characterization of bofA, a gene involved in inter-compartmental regulation of pro-sigma K processing during sporulation in Bacillus subtilis. J. Bacteriol. 174:31773184.
51. Rubio, A.,, and K. Pogliano. 2004. Septal localization of forespore membrane proteins during engulfment in Bacillus subtilis. EMBO J. 23:16361646.
52. Rudner, D. Z.,, P. Fawcett, and, R. Losick. 1999. A family of membrane-embedded metalloproteases involved in regulated proteolysis of membrane-associated transcription factors. Proc. Natl. Acad. Sci. USA 96:1476514770.
53. Rudner, D. Z.,, and R. Losick. 2001. Morphological coupling in development: lessons from prokaryotes. Dev. Cell 1:733742.
54. Rudner, D. Z.,, and R. Losick. 2002. A sporulation membrane protein tethers the prosigmaK processing enzyme to its inhibitor and dictates its subcellular localization. Genes Dev. 16:10071018.
55. Schlessinger, J. 2000. Cell signaling by receptor tyrosine kinases. Cell 103:211225.
56. Schlessinger, J. 2002. Ligand-induced, receptor-mediated dimerization and activation of EGF receptor. Cell 110:669672.
57. Serrano, M.,, A. Neves,, C. M. Soares,, C. P. Moran, Jr., and, A. O. Henriques. 2004. Role of the anti-sigma factor SpoIIAB in regulation of sigmaG during Bacillus subtilis sporulation. J. Bacteriol. 186:40004013.
58. Smith, K.,, M. E. Bayer, and, P. Youngman. 1993. Physical and functional characterization of the Bacillus subtilis spoIIM gene. J. Bacteriol. 175:36073617.
59. Steil, L.,, M. Serrano,, A. O. Henriques, and, U. Volker. 2005. Genome-wide analysis of temporally regulated and compartment-specific gene expression in sporulating cells of Bacillus subtilis. Microbiology 151:399420.
60. Stragier, P.,, C. Bonamy, and, C. Karmazyn-Campelli. 1988. Processing of a sporulation sigma factor in Bacillus subtilis: how morphological structure could control gene expression. Cell 52:697704.
61. Stragier, P.,, and R. Losick. 1996. Molecular genetics of sporulation in Bacillus subtilis. Annu. Rev. Genet. 30:297241.
62. Sun, Y. L.,, M. D. Sharp, and, K. Pogliano. 2000. A dispensable role for forespore-specific gene expression in engulfment of the forespore during sporulation of Bacillus subtilis. J. Bacteriol. 182:29192927.
63. Trempy, J. E.,, J. Morrison-Plummer, and, W. G. Haldenwang. 1985. Synthesis of sigma 29, an RNA polymerase specificity determinant, is a developmentally regulated event in Bacillus subtilis. J. Bacteriol. 161:340346.
64. Wakeley, P. R.,, R. Dorazi,, N. T. Hoa,, J. R. Bowyer, and, S. M. Cutting. 2000. Proteolysis of SpolVB is a critical determinant in signalling of pro-sigmaK processing in Bacillus subtilis. Mol. Microbiol. 36:13361348.
65. Wang, S. T.,, B. Setlow,, E. M. Conlon,, J. L. Lyon,, D. Imamura,, T. Sato,, P. Setlow,, R. Losick, and, P. Eichenberger. 2006. The forespore line of gene expression in Bacillus subtilis. J. Mol. Biol. 358:1637.
66. Wu, L. J.,, A. Feucht, and, J. Errington. 1998. Prespore-specific gene expression in Bacillus subtilis is driven by sequestration of SpoIIE phosphatase to the prespore side of the asymmetric septum. Genes Dev. 12:13711380.
67. Yu, Y. T.,, and L. Kroos. 2000. Evidence that SpoIVFB is a novel type of membrane metalloprotease governing intercompartmental communication during Bacillus subtilis sporulation. J. Bacteriol. 182:33053309.
68. Zelenski, N. G.,, R. B. Rawson,, M. S. Brown, and, J. L. Goldstein. 1999. Membrane topology of S2P, a protein required for intramembranous cleavage of sterol regulatory element-binding proteins. J. Biol. Chem. 274:2197321980.
69. Zhang, B.,, A. Hofmeister, and, L. Kroos. 1998. The prosequence of pro-sigmaK promotes membrane association and inhibits RNA polymerase core binding. J. Bacteriol. 180:24342441.
70. Zhou, R.,, and L. Kroos. 2004. BofA protein inhibits intramembrane proteolysis of pro-sigmaK in an intercompartmental signaling pathway during Bacillus subtilis sporulation. Proc. Natl. Acad. Sci. USA 101:63856390.
71. Zuber, P.,, and R. Losick. 1983. Use of a lacZ fusion to study the role of the spoO genes of Bacillus subtilis in developmental regulation. Cell 35:275283.
72. Zupancic, M. L.,, H. Tran, and, A. E. Hofmeister. 2001. Chromosomal organization governs the timing of cell type-specific gene expression required for spore formation in Bacillus subtilis. Mol. Microbiol. 39:14711481.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error