1887

Chapter 4 : C-Signal Control of Aggregation and Sporulation

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in
Zoomout

C-Signal Control of Aggregation and Sporulation, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555815578/9781555814045_Chap04-1.gif /docserver/preview/fulltext/10.1128/9781555815578/9781555814045_Chap04-2.gif

Abstract:

Since 1970, the author's research group has been trying to decipher the instructions used by to build its fruiting body. Fruiting body development requires a solid surface because the structure is built by cell movement. Two molecular motors, retractile type IV pili at their leading end (S motility), and nozzles for secreting a slime gel at the trailing end (A motility) provide the adhesion and thrust necessary for moving on surfaces. Outward spreading stops when senses that it has begun to starve; instead it moves inward to the swarm center to establish centers for fruiting body aggregation. By tradition, the aggregation of cells has been considered to arise from chemotaxis, and this view was encouraged by the discovery of many "chemotaxis genes" in . Aggregation by local cell contact signaling has been tested by mathematical simulation. At the beginning of sporulation the cell density in the center is about one-third the density in the outer region. Temporal changes in gene expression are necessary to adjust to starvation, to aggregate, and finally to sporulate. All the defects in aggregation and sporulation could be traced to a particular segment of the C-signal transduction pathway namely the branch from the C-signal receptor to FruA~P. All aspects of the phenotype of either deletion mutant were accounted for by the hypothesis that mutant MXAN4899 severely restricts the rise in the level of phosphorylated FruA.

Citation: Kaiser D. 2008. C-Signal Control of Aggregation and Sporulation, p 51-63. In Winans S, Bassler B (ed), Chemical Communication among Bacteria. ASM Press, Washington, DC. doi: 10.1128/9781555815578.ch4

Key Concept Ranking

Type IV Pili
0.4711491
Sodium Dodecyl Sulfate
0.44259456
0.4711491
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of FIGURE 1
FIGURE 1

The life cycle of A swarm (a group of moving and interacting cells) can have either of two fates, depending on their environment. The fruiting body is a spherical structure of approximately 10 cells that have become stress-resistant spores The fruiting body is small (1/10 mm high) and sticky, and its spores are tightly packed. When a fruiting body receives nutrients, the individual spores germinate and thousands of cells emerge together as an “instant” swarm When prey is available (micrococci in the figure), the swarm becomes a predatory collective that surrounds the prey. Swarm cells feed by contacting, lysing, and consuming the prey bacteria Fruiting body development is advantageous given the collective hunting behavior. Nutrient-poor conditions elicit a unified starvation stress response. That response initiates a self-organized program that changes cell movement behavior, leading to aggregation. The movement behaviors include wave formation and streaming into mounded aggregates , which become spherical Spores differentiate within mounded and spherical aggregates. We use the term “swarming” in its general sense to denote a process “in which motile organisms actively spread on the surface of a suitably moist solid medium” ( ). Reprinted from the USA ( ) with permission of the publisher.

Citation: Kaiser D. 2008. C-Signal Control of Aggregation and Sporulation, p 51-63. In Winans S, Bassler B (ed), Chemical Communication among Bacteria. ASM Press, Washington, DC. doi: 10.1128/9781555815578.ch4
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2
FIGURE 2

Cell movement is correlated with the secretion of slime from its back. Selected frames from a time-lapse movie taken by Lars Jelsbak. (A) Frame 1 of movie; the upper cell has moved down, leaving a slime trail above it. The bottom cell has not moved. (B) Frame 4 of movie; both cells have moved down and left a slime trail above them. (C) Frame 20 of movie; both cells have moved up and left a slime trail below them. (D) Frame 37 of movie; both cells have moved down and left a slime trail above them. (E) Frame 58 of movie; the upper cell has moved down, leaving a slime trail above it. (F) The lower cell has moved up, leaving a slime trail below it.

Citation: Kaiser D. 2008. C-Signal Control of Aggregation and Sporulation, p 51-63. In Winans S, Bassler B (ed), Chemical Communication among Bacteria. ASM Press, Washington, DC. doi: 10.1128/9781555815578.ch4
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 3
FIGURE 3

cells are polarized to glide in one direction. For the cell shown, it is polarized to glide to the left. The A engine is a “pusher” and the S engine is a “puller.” Slime-secretion nozzles are always visible at both ends of each cell, and yet only one end secretes slime.

Citation: Kaiser D. 2008. C-Signal Control of Aggregation and Sporulation, p 51-63. In Winans S, Bassler B (ed), Chemical Communication among Bacteria. ASM Press, Washington, DC. doi: 10.1128/9781555815578.ch4
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 4
FIGURE 4

When a cell divides, two new ends are created by the division septum. Each daughter receives only one of the two engines at its new pole, and always the correct one. The cell’s peptidoglycan and cytoskeleton appear to be recognized as a polarized template specifying different working engines at the two poles.

Citation: Kaiser D. 2008. C-Signal Control of Aggregation and Sporulation, p 51-63. In Winans S, Bassler B (ed), Chemical Communication among Bacteria. ASM Press, Washington, DC. doi: 10.1128/9781555815578.ch4
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 5
FIGURE 5

Regulatory C-signal circuit. C signal is a 17-kDa cell surface protein. Cells must make end-to-end contact to transmit the signal, as shown. Reception of C signal activates FruA by forming FruA~P. FruA~P drives the oscillation of MeFrzCD and FrzE~P. FrzE~P switches MglA•GDP to MglA•GTP, which in turn inactivates old engines. C signaling increases transcription, directly or indirectly, via the proteins of the operon. Rippling, aggregation, sporulation, and C signal-dependent gene expression are induced by increasing levels of FruA~P. MXAN4899 is proposed to be the branch from reception of C signal to FruA~P.

Citation: Kaiser D. 2008. C-Signal Control of Aggregation and Sporulation, p 51-63. In Winans S, Bassler B (ed), Chemical Communication among Bacteria. ASM Press, Washington, DC. doi: 10.1128/9781555815578.ch4
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555815578.ch04
1. Acuna, G.,, W. Shi,, K. Trudeau, and, D. Zusman. 1995. The cheA and cheY domains of Myxococcus xanthus FrzE function independently in vitro as an autokinase and a phosphate acceptor, respectively. FEBS Lett. 358:3133.
2. Arnold, J. W.,, and L. J. Shimkets. 1988. Cell surface properties correlated with cohesion in Myxococcus xanthus. J. Bacteriol. 170:57715777.
3. Behmlander, R. M.,, and M. Dworkin. 1994. Biochemical and structural analyses of the extracellular matrix fibrils of Myxococcus xanthus. J. Bacteriol. 176:62956303.
4. Blackhart, B. D.,, and D. Zusman. 1985. Frizzy genes of Myxococcus xanthus are involved in control of frequency of reversal of gliding motility. Proc. Natl. Acad. Sci. USA 82:87678770.
5. Bonner, J. T. 1982. Evolutionary strategies and developmental constraints in the cellular slime molds. Amer. Nat. 119:530552.
6. Burchard, R. P. 1981. Gliding motility of prokaryotes: ultrastructure, physiology, and genetics. Annu. Rev. Microbiol. 35:497529.
7. Caberoy, N. B.,, R. D. Welch,, J. S. Jakobsen,, S. C. Slater, and, A. G. Garza. 2003. Global mutational analysis of NtrC-like activators in Myxococcus xanthus: identifying activator mutants defective for motility and fruiting body development. J. Bacteriol. 185:60836094.
8. Chang, B. Y.,, and M. Dworkin. 1994. Isolated fibrils rescue cohesion and development in the Dsp mutant of Myxococcus xanthus. J. Bacteriol. 176:71907196.
9. Chiang, P.,, M. Habash, and, L. L. Burrows. 2005. Disparate subcellular localization patterns of Pseudomonas aeruginosa Type IV pilus ATPases involved in twitching motility. J. Bacteriol. 187:829839.
10. Cho, K.,, and D. R. Zusman. 1999. AsgD, a new two-component regulator required for A-signalling and nutrient sensing during early development of Myxococcus xanthus. Mol. Microbiol. 34:268281.
11. Craig, L.,, M. Pique, and, J. A. Tainer. 2004. Type IV pilus structure and pathogenicity. Nat. Rev. Microbiolo. 2:363378.
12. Craig, L.,, N. Volkmann,, A. Arvai,, M. Pique,, M. Yeager,, E. Engleman, and, J. A. Tainer. 2006. Type IV pilus structure by cryo-electron microscopy and crystallography: implications for pilus assembly and functions. Mol. Cell 23:651662.
13. Downard, J.,, and L. Kroos. 1993. Transcriptional regulation of developmental gene expression in Myxococcus xanthus, p. 183–199. In M. Dworkin, and D. Kaiser (ed.), Myxobacteria II. ASM Press, Washington, DC.
14. Ellehauge, E.,, M. Norregaard-Madsen, and, L. Søgaard-Andersen. 1998. The FruA signal transduction protein provides a checkpoint for the temporal coordination of intercellular signals in M. xanthus development. Mol. Microbiol. 30:807813.
15. Garza, A. G.,, J. S. Pollack,, B. Z. Harris,, A. Lee,, I. M. Keseler,, E. F. Licking, and, M. Singer. 1998. SdeK is required for early fruiting body development in Myxococcus xanthus. J. Bacteriol. 180:46284637.
16. Goldman, B. S.,, W. C. Nierman,, D. Kaiser,, S. C. Slater,, A. S. Durkin,, J. A. Eisen,, C. M. Ronning,, W. B. Barbazuk,, M. Blanchard,, C. Field,, C. Halling,, G. Hinkle,, O. Iartchuk,, H. S. Kim,, C. Mackenzie,, R. Madupu,, N. Miller,, A. Shvartsbeyn,, S. A. Sullivan,, M. Vaudin,, R. Wiegand, and, H. B. Kaplan 2006. Evolution of sensory complexity recorded in a myxobacterial genome. Proc. Natl. Acad. Sci. USA 103:1520015205.
17. Gorski, L.,, and D. Kaiser. 1998. Targetted mutagenesis of sigma-54 activator proteins in Myxococcus xanthus. J. Bacteriol. 180:58965905.
18. Gronewold, T. M. A.,, and D. Kaiser. 2001. The act operon controls the level and time of C-signal production for M. xanthus development. Mol. Microbiol. 40:744756.
19. Gronewold, T. M. A.,, and D. Kaiser. 2007. Mutations of the act promoter in Myxococcus xanthus. J. Bacteriol. 184:11721179.
20. Guo, D.,, Y. Wu, and, H. B. Kaplan. 2000. Identification and characterization of genes required for early Myxococcus xanthus developmental gene expression. J. Bacteriol. 182:45644571.
21. Hagen, D. C.,, A. P. Bretscher, and, D. Kaiser. 1978. Synergism between morphogenetic mutants of Myxococcus xanthus. Dev. Biol. 64:284296.
22. Hager, E.,, H. Tse, and, R. E. Gill. 2001. Identification and characterization of spdR mutations that bypass the BsgA protease-dependent regulation of developmental gene expression in Myxococcus xanthus. Mol. Microbiol. 39:765780.
23. Igoshin, O.,, A. Goldbetter,, D. Kaiser, and, G. Oster. 2004. A biochemical oscillator explains the developmental progression of myxobacteria. Proc. Natl. Acad. Sci. USA 101:1576015765.
24. Inouye, S.,, R. Jain,, T. Ueki,, H. Nariya,, C. Xu,, M. Hsu,, B. A. Fernandez-Luque,, J. Munoz-Dorado,, E. Farez-Vidal, and, M. Inouye. 2000. A large family of eukaryotic-like protein Ser/Thr kinases of Myxococcus xanthus, a developmental bacterium. Microb. Comp. Genom. 5:103120.
25. Jakobsen, J. S.,, L. Jelsbak,, L. Jelsbak,, R. Welch,, C. Cummings,, B. Goldman,, E. Stark,, S. C. Slater, and, D. Kaiser. 2004. Sigma54 enhancer binding proteins and Myxococcus xanthus fruiting body development. J. Bacteriol. 186:43614368.
26. Jelsbak, L.,, M. Givskov, and, D. Kaiser. 2005. Enhancer-binding proteins with a forkhead-associated domain and the sigma54 regulon in Myxococcus xanthus fruiting body development. Proc. Natl. Acad. Sci. USA 102:30103015.
27. Jelsbak, L.,, and D. Kaiser. 2005. Regulating pilin expression reveals a threshold for type IV pilus assembly in Myxococcus xanthus. J. Bacteriol. 187:21052112.
28. Jelsbak, L.,, and L. Søgaard-Andersen. 1999. The cell-surface associated C-signal induces behavioral changes in individual M. xanthus cells during fruiting body morphogenesis. Proc. Natl. Acad. Sci. USA 96:50315036.
29. Jelsbak, L.,, and L. Søgaard-Andersen. 2002. Pattern formation by a cell-surface associated morphogen in M. xanthus. Proc. Natl. Acad. Sci. USA 99:20322037.
30. Kaiser, D. 2008. Reversing M. xanthus polarity, p. 93–102. In D. E. Whitworth (ed.), Myxobacteria: Multicellularity and Differentiation. ASM Press, Washington, DC.
31. Kaiser, A. D. 1979. Social gliding is correlated with the presence of pili in Myxococcus xanthus. Proc. Natl. Acad. Sci. USA 76:59525956.
32. Kaiser, A. D.,, and C. Crosby. 1983. Cell movement and its coordination in swarms of Myxococcus xanthus. Cell Motil. 3:227245.
33. Kaiser, D. 2003. Coupling cell movement to multicellular development in myxobacteria. Nature Rev. Microbiol. 1:4554.
34. Kaiser, D.,, and R. Welch. 2004. Dynamics of fruiting body morphogenesis. J. Bacteriol. 186:919927.
35. Keseler, I. M.,, and D. Kaiser. 1995. An early A-signal-dependent gene in Myxococcus xanthus has a sigma-54-like promoter. J. Bacteriol. 177:46384644.
36. Kim, S. K.,, and D. Kaiser. 1991. C-factor has distinct aggregation and sporulation thresholds during Myxococcus development. J. Bacteriol. 173:17221728.
37. Kim, S. K.,, and D. Kaiser. 1990. Cell alignment required in differentiation of Myxococcus xanthus. Science 249:926928.
38. Kim, S. K.,, and D. Kaiser. 1990. Purification and properties of Myxococcus xanthus C-factor, an intercellular signaling protein. Proc. Natl. Acad. Sci. USA 87:36353639.
39. Kirby, J. R.,, and D. R. Zusman. 2003. Chemosensory regulation of developmental gene expression in Myxococcus xanthus. Proc. Natl. Acad. Sci. USA 100:20082013.
40. Kroos, L. 2005. Eukaryotic-like signaling and gene regulation in a prokaryote that undergoes multicellular development. Proc. Natl. Acad. Sci. USA 102:26812682.
41. Kroos, L.,, and D. Kaiser. 1984. Construction of Tn5 lac, a transposon that fuses lacZ expression to exogenous promoters, and its introduction into Myxococcus xanthus. Proc. Natl. Acad. Sci. USA 81:58165820.
42. Kroos, L.,, and D. Kaiser. 1987. Expression of many developmentally regulated genes in Myxococcus depends on a sequence of cell interactions. Genes Dev. 1:840854.
43. Kroos, L.,, A. Kuspa, and, D. Kaiser. 1986. A global analysis of developmentally regulated genes in Myxococcus xanthus. Dev. Biol. 117:252266.
44. Kruse, T.,, S. Lobendanz,, N. M. S. Bertheleson, and, L. Søgaard-Andersen. 2001. C-signal: a cell surface-associated morphogen that induces and coordinates multicellular fruiting body morphogenesis and sporulation in M. xanthus. Mol. Microbiol. 40:156168.
45. Kuhlwein, H.,, and H. Reichenbach. 1968. Schwarmentwicklung und Morphogenese bei Myxobacterien—Archangium, Myxococcus, Chondrococcus, Chondromyces. Film C893. Inst. Wissensch. Film, Gottingen, Germany.
46. Kuner, J.,, and D. Kaiser. 1982. Fruiting body morphogenesis in submerged cultures of Myxococcus xanthus. J. Bacteriol. 151:458461.
47. Kuspa, A.,, L. Kroos, and, D. Kaiser. 1986. Intercellular signaling is required for developmental gene expression in Myxococcus xanthus. Dev. Biol. 117:267276.
48. Lev, M. 1954. Demonstration of a diffusible fruiting factor in myxobacteria. Nature 173:501.
49. Li, S.,, B. U. Lee, and, L. Shimkets. 1992. csgA expression entrains Myxococcus xanthus development. Genes Dev. 6:401410.
50. Lobedanz, S.,, and L. Søgaard-Andersen. 2003. Identification of the C-signal, a contact-dependent morphogen coordinating multiple developmental responses in Myxococcus xanthus. Genes Dev. 17:21512161.
51. Lux, R.,, Y. Li,, A. Lu, and, W. Shi. 2005. Detailed three-dimensional analysis of structural features of Myxococcus xanthus fruiting bodies using confocal laser scanning microscopy. Biofilms 1:293303.
52. Maier, B.,, L. Potter,, M. So,, H. S. Seifert, and, M. P. Sheetz. 2002. Single pilus motor forces exceed 100 pN. Proc. Natl. Acad. Sci. USA 99:1601216017.
53. McVittie, A.,, and S. A. Zahler. 1962. Chemo-taxis in Myxococcus. Nature 194:12991300.
54. Nudleman, E.,, and D. Kaiser. 2004. Pulling together with type IV pili. J. Mol. Microbiol. Biotechnol. 7:5262.
55. Nudleman, E.,, D. Wall, and, D. Kaiser. 2005. Cell-to-cell transfer of bacterial outer-membrane lipoproteins. Science 309:125127.
56. Nudleman, E.,, D. Wall, and, D. Kaiser. 2006. Polar assembly of the type IV pilus secretin in Myxococcus xanthus. Mol. Microbiol. 60:1629.
57. Ogawa, M.,, S. Fujitani,, X. Mao,, S. Inouye, and, T. Komano. 1996. FruA, a putative transcription factor essential for the development of Myxococcus xanthus. Mol. Microbiol. 22:757767.
58. Raetz, C. R. H.,, and C. Whitfield. 2002. Lipopolysaccharide endotoxins. Annu. Rev. Biochem. 71:635700.
59. Reichenbach, H. 1993. Biology of the myxobacteria: ecology and taxonomy, p. 13–62. In M. Dworkin, and D. Kaiser (ed.), Myxobacteria II. ASM Press, Washington, DC.
60. Rodriguez, A. M.,, and A. M. Spormann. 1999. Genetic and molecular analysis of cglB, a gene essential for single-cell gliding in Myxococcus xanthus. J. Bacteriol. 181:43814390.
61. Rodriguez-Soto, J. P.,, and D. Kaiser. 1997. Identification and localization of the tgl protein, which is required for Myxococcus xanthus social motility. J. Bacteriol. 179:43724381.
62. Rodriguez-Soto, J. P.,, and D. Kaiser. 1997. The tgl gene: social motility and stimulation in Myxococcus xanthus. J. Bacteriol. 179:43614371.
63. Romeo, J. M.,, and D. R. Zusman. 1991. Transcription of the myxobacterial hemagglutinin gene is mediated by a sigma 54-like promoter and a cis-acting upstream regulatory region of DNA. J. Bacteriol. 173:29692976.
64. Sager, B.,, and D. Kaiser. 1994. Intercellular C-signaling and the traveling waves of Myxococcus. Genes Dev. 8:27932804.
65. Sager, B.,, and D. Kaiser. 1993. Spatial restriction of cellular differentiation. Genes Dev. 7:16451653.
66. Sager, B.,, and D. Kaiser. 1993. Two cell-density domains within the Myxococcus xanthus fruiting body. Proc. Natl. Acad. Sci. USA 90:36903694.
67. Shimkets, L. J.,, R. E. Gill, and, D. Kaiser. 1983. Developmental cell interactions in Myxococcus xanthus and the spoC locus. Proc. Natl. Acad. Sci. USA 80:14061410.
68. Simunovic, V.,, F. C. Gherardini, and, L. J. Shimkets. 2003. Membrane localization of motility, signaling, and polyketide synthase proteins in Myxococcus xanthus. J. Bacteriol. 185:50665075.
69. Singleton, P.,, and D. Sainsbury. 2001. Dictionary of Microbiology and Molecular Biology. Wiley, Chichester, United Kingdom.
70. Sozinova, O.,, Y. Jiang,, D. Kaiser, and, M. Alber. 2006. A three-dimensional model of myxobacterial fruiting body formation. Proc. Natl. Acad. Sci. USA 103:1725517259.
71. Sozinova, O.,, Y. Jiang,, D. Kaiser, and, M. S. Alber. 2005. Three-dimensional model of myxobacterial aggregation by contact-mediated interaction. Proc. Natl. Acad. Sci. USA 102:1130811312.
72. Spormann, A. M.,, and D. Kaiser. 1999. Gliding mutants of Myxococcus xanthus with high reversal frequencies and small displacements. J. Bacteriol. 181:25932601.
73. Sproer, C.,, H. Reichenbach, and, E. Stacke-brandt. 1999. Correlation between morphological and phylogenetic classification of myxobacteria. Int. J. Syst. Bacteriol. 49:12551262.
74. Sun, H.,, and W. Shi. 2001. Analyses of mrp genes during Myxococcus xanthus development. J. Bacteriol. 183:67336739.
75. Sun, H.,, and W. Shi. 2001. Genetic studies of mrp, a locus essential for cellular aggregation and sporulation of Myxococcus xanthus. J. Bacteriol. 183:47864795.
76. Velicer, G.,, L. Kroos, and, R. E. Lenski. 1998. Loss of social behaviors by Myxococcus xanthus during evolution in an unstructured habitat. Proc. Natl. Acad. Sci. USA 95:1237612380.
77. Velicer, G. J. 2003. Social strife in the microbial world. Trends Microbiol. 11:330337.
78. Ward, M. J.,, H. Lew,, A. Treuner-Lange, and, D. R. Zusman. 1998. Regulation of motility behavior in Myxococcus xanthus may require an extracytoplasmic-function sigma factor. J. Bacteriol. 180:56685675.
79. Welch, R.,, and D. Kaiser. 2001. Cell behavior in traveling wave patterns of myxobacteria. Proc. Natl. Acad. Sci. USA 98:1490714912.
80. White, D. 1984. Structure and function of myxobacteria cells and fruiting bodies, p. 51–67. In E. Rosenberg (ed.), Myxobacteria, Development and Cell Interactions. Springer-Verlag, New York, NY.
81. Wolgemuth, C. 2005. Force and flexibility of flailing myxobacteria. Biophys. J. 89:16431649.
82. Wolgemuth, C.,, E. Hoiczyk,, D. Kaiser, and, G. Oster. 2002. How myxobacteria glide. Curr. Biol. 12:369377.
83. Wu, S. S.,, and D. Kaiser. 1997. Regulation of expression of the pilA gene in Myxococcus xanthus. J. Bacteriol. 179:77487758.
84. Wu, S. S.,, J. Wu, and, D. Kaiser. 1997. The Myxococcus xanthus pilT locus is required for social gliding motility although pili are still produced. Mol. Microbiol. 23:109121.
85. Yang, C.,, and H. B. Kaplan. 1997. Myxococcus xanthus sasS encodes a sensor histidine kinase required for early developmental gene expression. J. Bacteriol. 179:77597767.
86. Yu, R.,, and D. Kaiser. 2007. Gliding motility and polarized slime secretion. Mol. Microbiol. 63:454467.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error