1887

Chapter 5 : The Dif Chemosensory System Is Required for S Motility, Biofilm Formation, Chemotaxis, and Development in

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in
Zoomout

The Dif Chemosensory System Is Required for S Motility, Biofilm Formation, Chemotaxis, and Development in , Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555815578/9781555814045_Chap05-1.gif /docserver/preview/fulltext/10.1128/9781555815578/9781555814045_Chap05-2.gif

Abstract:

This chapter focuses on the Dif chemosensory pathway, which regulates movement and development in different ways. The genes encode components of a chemosensory pathway known to be essential for S motility, biofilm formation, lipid chemotaxis, and fruiting body development. does not respond chemotactically to a variety of molecules that are chemoeffectors in other organisms. Several lines of evidence suggest that the phosphatidylethanolamine (PE) response is analogous to chemotaxis of flagellar bacteria. The Dif chemosensory pathway plays at least three roles in motility. The short diffusion range of the attractant suggests that chemotaxis is contact based. One of the most intriguing problems about Dif-mediated lipid chemotaxis is the need for stimulation and adaptation rates consistent with the slow rate of movement. The mechanism of signal perception was examined by making a variety of artificial DifA constructs. cells expressing a chimeric chemoreceptor (NafA) in which the transmembrane, periplasmic, and histidine kinase, adenylyl cyclase, methyl-accepting chemotaxis protein, and phosphatase (HAMP) linker domains of DifA are replaced by the corresponding domains of the enteric nitrate sensor NarX are defective in extracellular matrix (ECM) production. The DifA cytoplasmic region closely follows the consensus and contains two methylation domains (MD) separated by the highly conserved domain (HCD) that binds CheW.

Citation: Shimkets L. 2008. The Dif Chemosensory System Is Required for S Motility, Biofilm Formation, Chemotaxis, and Development in , p 65-74. In Winans S, Bassler B (ed), Chemical Communication among Bacteria. ASM Press, Washington, DC. doi: 10.1128/9781555815578.ch5

Key Concept Ranking

Bacterial Proteins
0.62531763
Type IV Pili
0.5071309
Cell Movements
0.42448798
0.62531763
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of FIGURE 1
FIGURE 1

The Dif chemosensory system mediates lipid chemotaxis and ECM production. The left portion of the figure illustrates ECM production and chemotaxis to the unique lipid 16:1 PE, both of which are features of self-sensing. ECM production is induced by nutrient deprivation in the presence of divalent cations ( ) and cell-cell contact ( ). An unknown signal, possibly generated following type IV pilus binding to fEPS ( ), activates DifACE, which in turn activates DifX, a hypothetical interacting protein that induces ECM production. For ECM production, activation of DifA is proposed to stimulate autophosphorylation of DifE. ECM production is required for directed movement to 16:1 PE due at least in part to a dependence on the ECM-bound zinc metalloprotease FibA whose substrate is not known. For lipid chemotaxis, activation of DifA is proposed to prevent autophosphorylation of DifE, which in turn leads to an increased reversal period. The right side of the figure depicts elements of the Dif pathway involved in prey sensing. 18:1 PE is not found in and appears to be involved in prey sensing. Response to 18:1 PE requires only DifE and DifD, suggesting that a second lipid-sensing system converges at DifE. Modified from reference with permission from Blackwell Publishing.

Citation: Shimkets L. 2008. The Dif Chemosensory System Is Required for S Motility, Biofilm Formation, Chemotaxis, and Development in , p 65-74. In Winans S, Bassler B (ed), Chemical Communication among Bacteria. ASM Press, Washington, DC. doi: 10.1128/9781555815578.ch5
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2
FIGURE 2

DifA is a dual-function MCP receptor. The transmembrane domains in the inner membrane (IM), periplasmic loop, and HAMP linker domain (white boxes) are required for ECM production but not lipid chemotaxis. None of the potential methylation sites in the first methylation domain (MD1) are involved in ECM production. E110 is required for 16:1 PE chemotaxis but not ECM production (black oval). Three potential methylation sites in the second methylation domain (MD2) function in reversal period control for unstimulated cells (white outlines), and one of these sites is required for ECM production (white oval). The highly conserved domain (HCD) and potential methylation sites with no clear function are shown (black outline). There is no evidence that DifA is methylated or that methylation is required for stimulation or adaptation. This figure summarizes data found in reference and and is modified from reference with permission from Blackwell Publishing.

Citation: Shimkets L. 2008. The Dif Chemosensory System Is Required for S Motility, Biofilm Formation, Chemotaxis, and Development in , p 65-74. In Winans S, Bassler B (ed), Chemical Communication among Bacteria. ASM Press, Washington, DC. doi: 10.1128/9781555815578.ch5
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555815578.ch05
1. Ames, P.,, C. A. Studdert,, R. H. Reiser, and, J. S. Parkinson. 2002. Collaborative signaling by mixed chemoreceptor teams in Escherichia coli. Proc. Natl. Acad. Sci. USA 99:70607065.
2. Arnold, J. W.,, and L. J. Shimkets. 1988. Cell surface properties correlated with cohesion in Myxococcus xanthus. J. Bacteriol. 170:57715777.
3. Arnold, J. W.,, and L. J. Shimkets. 1988. Inhibition of cell-cell interactions in Myxococcus xanthus by congo red. J. Bacteriol. 170:57655770.
4. Baker, M. D.,, P. M. Wolanin, and, J. B. Stock. 2006. Signal transduction in bacterial chemotaxis. Bioessays 28:922.
5. Barker, A. P.,, A. I. Vasil,, A. Filloux,, G. Ball,, P. J. Wilderman, and, M. L. Vasil. 2004. A novel extracellular phospholipase C of Pseudomonas aeruginosa is required for phospholipid chemotaxis. Mol. Microbiol. 53:10891098.
6. Behmlander, R. M.,, and M. Dworkin. 1994. Biochemical and structural analyses of the extracellular matrix fibrils of Myxococcus xanthus. J. Bacteriol. 176:62956303.
7. Behmlander, R. M.,, and M. Dworkin. 1991. Extracellular fibrils and contact-mediated cell interactions in Myxococcus xanthus. J. Bacteriol. 173:78107820.
8. Bellenger, K.,, X. Ma,, W. Shi, and, Z. Yang. 2002. A CheW homologue is required for Myxococcus xanthus fruiting body development, social gliding motility, and fibril biogenesis. J. Bacteriol. 184:56545660.
9. Black, W. P.,, Q. Xu, and, Z. Yang. 2006. Type IV pili function upstream of the Dif chemotaxis pathway in Myxococcus xanthus EPS regulation. Mol. Microbiol. 61:447456.
10. Black, W. P.,, and Z. Yang. 2004. Myxococcus xanthus chemotaxis homologs DifD and DifG negatively regulate fibril polysaccharide production. J. Bacteriol. 186:10011008.
11. Bode, H. B.,, M. W. Ring,, D. Kaiser,, A. C. David,, R. M. Kroppenstedt, and, G. Schwar. 2006. Straight-chain fatty acids are dispensable in the myxobacterium Myxococcus xanthus for vegetative growth and fruiting body formation. J. Bacteriol. 188:56325634.
12. Bonner, P. J.,, W. P. Black,, Z. Yang, and, L. J. Shimkets. 2006. FibA and PilA act cooperatively during fruiting body formation of Myxococcus xanthus. Mol. Microbiol. 61:12831293.
13. Bonner, P. J.,, and L. J. Shimkets. 2006. Cohesion-defective mutants of Myxococcus xanthus. J. Bacteriol. 188:45854588.
14. Bonner, P. J.,, and L. J. Shimkets. 2006. Phospholipid directed motility of surface-motile bacteria. Mol. Microbiol. 61:11011109.
15. Bonner, P. J.,, Q. Xu,, W. P. Black,, Z. Li,, Z. Yang, and, L. J. Shimkets. 2005. The Dif chemosensory pathway is directly involved in phosphatidylethanolamine sensory transduction in Myxococcus xanthus. Mol. Microbiol. 57:14991508.
16. Bustamante, V. H.,, I. Martinez-Flores,, H. C. Vlamakis, and, D. R. Zusman. 2004. Analysis of the Frz signal transduction system of Myxococcus xanthus shows the importance of the conserved C-terminal region of the cytoplasmic chemoreceptor FrzCD in sensing signals. Mol. Microbiol. 53:15011513.
17. Chang, B. Y.,, and M. Dworkin. 1994. Isolated fibrils rescue cohesion and development in the Dsp mutant of Myxococcus xanthus. J. Bacteriol. 176:71907196.
18. Curtis, P. D.,, R. Geyer,, D. C. White, and, L. J. Shimkets. 2006. Novel lipids in Myxococcus xanthus and their role in chemotaxis. Environ. Microbiol. 8:19351949.
19. Dana, J. R.,, and L. J. Shimkets. 1993. Regulation of cohesion-dependent cell interactions in Myxococcus xanthus. J. Bacteriol. 175:36363647.
20. Davies, D. G.,, M. R. Parsek,, J. P. Pearson,, B. H. Iglewski,, J. W. Costerton, and, E. P. Greenberg. 1998. The involvement of cell-to-cell signals in the development of a bacterial biofilm. Science 280:295298.
21. Dworkin, M.,, and D. Eide. 1983. Myxococcus xanthus does not respond chemotactically to moderate concentration gradients. J. Bacteriol. 154:437442.
22. Falke, J. J.,, and S. H. Kim. 2000. Structure of a conserved receptor domain that regulates kinase activity: the cytoplasmic domain of bacterial taxis receptors. Curr. Opin. Struct. Biol. 10:462469.
23. Hodgkin, J.,, and D. Kaiser. 1979. Genetics of gliding motility in Myxococcus xanthus (Myxobacterales): two gene systems control movement. Mol. Gen. Genet. 171:177191.
24. Igoshin, O. A.,, A. Goldbeter,, D. Kaiser, and, G. Oster. 2004. A biochemical oscillator explains several aspects of Myxococcus xanthus behavior during development. Proc. Natl. Acad. Sci. USA 101:1576015765.
25. Kearns, D. B.,, P. J. Bonner,, D. R. Smith, and, L. J. Shimkets. 2002. An extracellular matrix-associated zinc metalloprotease is required for dilauroyl phosphatidylethanolamine chemotactic excitation in Myxococcus xanthus. J. Bacteriol. 184:16781684.
26. Kearns, D. B.,, B. D. Campbell, and, L. J. Shimkets. 2000. Myxococcus xanthus fibril appendages are essential for excitation by a phospholipid attractant. Proc. Natl. Acad. Sci USA 97:1150511510.
27. Kearns, D. B.,, J. Robinson, and, L. J. Shimkets. 2001. Pseudomonas aeruginosa exhibits directed twitching motility up phosphatidylethanolamine gradients. J. Bacteriol. 183:763767.
28. Kearns, D. B.,, and L. J. Shimkets. 1998. Chemotaxis in a gliding bacterium. Proc. Natl. Acad. Sci. USA 95:1195711962.
29. Kearns, D. B.,, and L. J. Shimkets. 2001. Lipid chemotaxis and signal transduction in Myxococcus xanthus. Trends Microbiol 9:126129.
30. Kristich, C. J.,, G. D. Glekas, and, G. W. Ordal. 2003. The conserved cytoplasmic module of the transmembrane chemoreceptor McpC mediates carbohydrate chemotaxis in Bacillus subtilis. Mol. Microbiol. 47:13531366.
31. Kroos, L.,, A. Kuspa, and, D. Kaiser. 1986. A global analysis of developmentally regulated genes in Myxococcus xanthus. Dev. Biol. 117:252266.
32. Kuner, J. M.,, and D. Kaiser. 1982. Fruiting body morphogenesis in submerged cultures of Myxococcus xanthus. J. Bacteriol. 151:458461.
33. Lancero, H.,, J. E. Brofft,, J. Downard,, B. W. Birren,, C. Nusbaum,, J. Naylor,, W. Shi, and, L. J. Shimkets. 2002. Mapping of Myxococcus xanthus social motility dsp mutations to the dif genes. J. Bacteriol. 184:14621465.
34. Lancero, H. L.,, S. Castaneda,, N. B. Caberoy,, X. Ma,, A. G. Garza, and, W. Shi. 2005. Analysing protein-protein interactions of the Myxococcus xanthus Dif signalling pathway using the yeast two-hybrid system. Microbiology 151:15351541.
35. Li, Y.,, H. Sun,, X. Ma,, A. Lu,, R. Lux,, D. Zusman, and, W. Shi. 2003. Extracellular polysaccharides mediate pilus retraction during social motility of Myxococcus xanthus. Proc. Natl. Acad. Sci. USA 100:54435448.
36. Lu, A.,, K. Cho,, W. P. Black,, X. Y. Duan,, R. Lux,, Z. Yang,, H. B. Kaplan,, D. R. Zusman, and, W. Shi. 2005. Exopolysaccharide biosynthesis genes required for social motility in Myxococcus xanthus. Mol. Microbiol. 55:206220.
37. Nudleman, E.,, and D. Kaiser. 2004. Pulling together with type IV pili. J. Mol. Microbiol Biotechnol 7:5262.
38. Park, S. Y.,, X. Chao,, G. Gonzalez-Bonet,, B. D. Beel,, A. M. Bilwes, and, B. R. Crane. 2004. Structure and function of an unusual family of protein phosphatases: the bacterial chemotaxis proteins CheC and CheX. Mol. Cell 16:563574.
39. Reichenbach, H.,, H. Heunert, and, H. Kuczka. 1965. Myxococcus spp. (Myxobacterales)-Schwarmentwicklung und bildung von protocysten. Film E779 Inst. f. Wissen., Gottingen, Germany.
40. Shi, W.,, Z. Yang,, H. Sun,, H. Lancero, and, L. Tong. 2000. Phenotypic analyses of frz and dif double mutants of Myxococcus xanthus. FEMS Microbiol. Lett. 192:211215.
41. Shimkets, L. J. 1986. Correlation of energy-dependent cell cohesion with social motility in Myxococcus xanthus. J. Bacteriol. 166:837841.
42. Shimkets, L. J. 1986. Role of cell cohesion in Myxococcus xanthus fruiting body formation. J. Bacteriol. 166:842848.
43. Sozinova, O.,, Y. Jiang,, D. Kaiser, and, M. Alber. 2005. A three-dimensional model of myxobacterial aggregation by contact-mediated interactions. Proc. Natl. Acad. Sc. i USA 102:1130811312.
44. Studdert, C. A.,, and J. S. Parkinson. 2004. Crosslinking snapshots of bacterial chemoreceptor squads. Proc. Natl. Acad. Sci. USA 101:21172122.
45. Sun, H.,, D. R. Zusman, and, W. Shi. 2000. Type IV pilus of Myxococcus xanthus is a motility apparatus controlled by the frz chemosensory system. Curr. Biol. 10:11431146.
46. Szurmant, H.,, T. J. Muff, and, G. W. Ordal. 2004. Bacillus subtilis CheC and FliY are members of a novel class of CheY-P-hydrolyzing proteins in the chemotactic signal transduction cascade. J. Biol. Chem. 279:2178721792.
47. Vos, M.,, and G. J. Velicer. 2006. Genetic population structure of the soil bacterium Myxococcus xanthus at the centimeter scale. Appl. Environ. Microbiol. 72:36153625.
48. Whitchurch, C. B.,, T. Tolker-Nielsen,, P. C. Ragas, and, J. S. Mattick. 2002. Extracellular DNA required for bacterial biofilm formation. Science 295:1487.
49. Wolgemuth, C.,, E. Hoiczyk,, D. Kaiser, and, G. Oster. 2002. How myxobacteria glide. Curr Biol. 12:369377.
50. Wu, S. S.,, J. Wu,, Y. L. Cheng, and, D. Kaiser. 1998. The pilH gene encodes an ABC transporter homologue required for type IV pilus biogenesis and social gliding motility in Myxococcus xanthus. Mol. Microbiol. 29:12491261.
51. Xu, Q.,, W. P. Black,, S. M. Ward, and, Z. Yang. 2005. Nitrate-dependent activation of the Dif signaling pathway of Myxococcus xanthus mediated by a NarX-DifA interspecies chimera. J. Bacteriol. 187:64106418.
52. Yang, Z.,, Y. Geng,, D. Xu,, H. B. Kaplan, and, W. Shi. 1998. A new set of chemotaxis homologues is essential for Myxococcus xanthus social motility. Mol. Microbiol. 30:11231130.
53. Yang, Z.,, and Z. Li. 2005. Demonstration of interactions among Myxococcus xanthus Dif chemotaxis-like proteins by the yeast two-hybrid system. Arch. Microbiol. 183:243252.
54. Yang, Z.,, X. Ma,, L. Tong,, H. B. Kaplan,, L. J. Shimkets, and, W. Shi. 2000. Myxococcus xanthus dif genes are required for biogenesis of cell surface fibrils essential for social gliding motility. J. Bacteriol. 182:57935798.
55. Yu, R.,, and D. Kaiser. 2007. Gliding motility and polarized slime secretion. Mol. Microbiol. 63:454467.
56. Zhulin, I. B. 2001. The superfamily of chemotaxis transducers: from physiology to genomics and back. Adv. Microb. Physiol. 45:157198.

Tables

Generic image for table
TABLE 1

Dif and Frz proteins are homologs of classical chemotaxis proteins

Citation: Shimkets L. 2008. The Dif Chemosensory System Is Required for S Motility, Biofilm Formation, Chemotaxis, and Development in , p 65-74. In Winans S, Bassler B (ed), Chemical Communication among Bacteria. ASM Press, Washington, DC. doi: 10.1128/9781555815578.ch5

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error