1887

Chapter 7 : Diverse Cell-Cell Signaling Molecules Control Formation of Aerial Hyphae and Secondary Metabolism in Streptomycetes

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in
Zoomout

Diverse Cell-Cell Signaling Molecules Control Formation of Aerial Hyphae and Secondary Metabolism in Streptomycetes, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555815578/9781555814045_Chap07-1.gif /docserver/preview/fulltext/10.1128/9781555815578/9781555814045_Chap07-2.gif

Abstract:

The , including the genus , constitute, on average, about 13% of soil bacterial communities, making them a dominant form of life on Earth. Research has shown that many wild isolates of spp. are capable of intercellular communication, and in one instance, the extracellular compound is a desferrioxamine siderophore. This apparent diversity of intercellular signaling mechanisms suggests that the streptomycetes rely extensively on cell-cell communication to coordinate growth with the production of secondary metabolites and sporulation. As morphological and physiological differentiation can be visually monitored, extracellular rescue of mutant phenotypes can be quite striking. However, the streptomycetes present challenges that need to be considered when investigating cell-cell signaling. The best-understood signaling systems exhibited by the streptomycetes are those mediated by the γ-butyrolactones. In certain species, including and , the roles of the γ-butyrolactones appear to be restricted to secondary metabolism. To date, three classes of secreted, hydrophobic molecules have been shown to be involved in aerial hyphae formation. In , these include the chaplins and a small lanthionine-containing peptide, SapB, which has orthologues in , , and , as well as a functional homologue, SapT, produced by . The pamamycins, a group of macrolide antibiotics produced by , demonstrate that a single molecule may serve more than one distinct function. At subinhibitory concentrations, they stimulate the formation of aerial hyphae, while at higher concentrations they inhibit the growth of nonproducing streptomycetes and other gram-positive bacteria.

Citation: Willey J, Nodwell J. 2008. Diverse Cell-Cell Signaling Molecules Control Formation of Aerial Hyphae and Secondary Metabolism in Streptomycetes, p 91-104. In Winans S, Bassler B (ed), Chemical Communication among Bacteria. ASM Press, Washington, DC. doi: 10.1128/9781555815578.ch7

Key Concept Ranking

Programmed Cell Death
0.4679047
Streptomyces avermitilis
0.41150472
Streptomyces fradiae
0.41150472
Streptomyces avermitilis
0.41150472
Streptomyces coelicolor
0.41150472
Streptomyces fradiae
0.41150472
Streptomyces coelicolor
0.41150472
0.4679047
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of FIGURE 1
FIGURE 1

Two well-characterized γ-butyrolactones are A-factor of (A), which regulates antibiotic production and sporulation, and SCB-1 of (B), which regulates antibiotic production exclusively.

Citation: Willey J, Nodwell J. 2008. Diverse Cell-Cell Signaling Molecules Control Formation of Aerial Hyphae and Secondary Metabolism in Streptomycetes, p 91-104. In Winans S, Bassler B (ed), Chemical Communication among Bacteria. ASM Press, Washington, DC. doi: 10.1128/9781555815578.ch7
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2
FIGURE 2

Three γ-butyrolactone-regulated pathways. The best-characterized pathway controls antibiotic production and sporulation in The A-factor receptor, ArpA, represses expression of the autoregulatory gene which in turn controls the expression of at least six genes implicated in antibiotic production or sporulation ( ). Of these target genes, two, ( ) and ( ), encode transcription factors that activate other developmental genes, while others encode proteins directly involved in spore maturation () ( ) or proteins involved in extracellular proteolysis () ( ). ArpA repression of is reversed by its interaction with A-factor. In a γ-butyrolactone receptor called TylP represses expression of and which control tylosin production ( ). In the SCB-1 receptor ScbR directly represses an activator of the gene cluster, and feeds into the other antibiotic biosynthetic pathways in a less-well-characterized manner ( ). Repression by TylP and ScbR is relieved when their cognate γ-butyrolactones bind ( ).

Citation: Willey J, Nodwell J. 2008. Diverse Cell-Cell Signaling Molecules Control Formation of Aerial Hyphae and Secondary Metabolism in Streptomycetes, p 91-104. In Winans S, Bassler B (ed), Chemical Communication among Bacteria. ASM Press, Washington, DC. doi: 10.1128/9781555815578.ch7
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 3
FIGURE 3

Structural similarities between the apo structures of (A) TetR ( ) and (B) CprB ( ). For clarity, features are only identified for one monomer in each dimer; the second monomer is shown only as a C-alpha backbone trace. An internal cavity is shown as a mesh surface representation for each protein. For TetR, this cavity shows the tetracycline-binding region as seen in several structures of TetR bound to tetracycline or its derivatives ( ). The corresponding cavity in CprB also seems likely to be a ligand-binding site. Structurally analogous helices are numbered identically in each protein; the only exception is the structurally analogous helices numbered 10 and 9 in TetR and CprB, respectively, reflecting the numbering in the original publications. To emphasize structural similarities between the two proteins, unique helices (helices 9 and 10 in CprB and TetR, respectively) are not shown.

Citation: Willey J, Nodwell J. 2008. Diverse Cell-Cell Signaling Molecules Control Formation of Aerial Hyphae and Secondary Metabolism in Streptomycetes, p 91-104. In Winans S, Bassler B (ed), Chemical Communication among Bacteria. ASM Press, Washington, DC. doi: 10.1128/9781555815578.ch7
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555815578.ch07
1. Aceti, D. J.,, and W. C. Champness. 1998. Transcriptional regulation of Streptomyces coelicolor pathway-specific antibiotic regulators by the absA and absB loci. J. Bacteriol. 180:31003106.
2. Ainsa, J. A.,, H. D. Parry, and, K. F. Chater. 1999. A response regulator-like protein that functions at an intermediate stage of sporulation in Streptomyces coelicolor A3(2). Mol. Microbiol. 34:607619.
3. Ainsa, J. A.,, N. J. Ryding,, N. Hartley,, K. C. Findlay,, C. J. Bruton, and, K. F. Chater. 2000. WhiA, a protein of unknown function conserved among gram-positive bacteria, is essential for sporulation in Streptomyces coelicolor A3(2). J. Bacteriol. 182:54705478.
4. Auchtung, J. M.,, C. A. Lee, and, A. D. Grossman. 2006. Modulation of the ComA-dependent quorum response in Bacillus subtilis by multiple Rap proteins and Phr peptides. J. Bacteriol. 188:52735285.
5. Baltz, R. H. 1998. Genetic manipulation of antibiotic-producing Streptomyces. Trends Microbiol. 6:7683.
6. Bentley, S. D.,, K. F. Chater,, A. M. Cerdeno-Tarraga,, G. L. Challis,, N. R. Thomson,, K. D. James,, D. E. Harris,, M. A. Quail,, H. Kieser,, D. Harper,, A. Bateman,, S. Brown,, G. Chandra,, C. W. Chen,, M. Collins,, A. Cronin,, A. Fraser,, A. Goble,, J. Hidalgo,, T. Hornsby,, S. Howarth,, C. H. Huang,, T. Kieser,, L. Larke,, L. Murphy,, K. Oliver,, S. O’Neil,, E. Rabbinowitsch,, M. A. Rajandream,, K. Rutherford,, S. Rutter,, K. Seeger,, D. Saunders,, S. Sharp,, R. Squares,, S. Squares,, K. Taylor,, T. Warren,, A. Wietzorrek,, J. Woodward,, B. G. Barrell,, J. Parkhill, and, D. A. Hopwood. 2002. Complete genome sequence of the model actinomycete Streptomyces coelicolor A3(2). Nature 417:141147.
7. Birkó, Z.,, S. Bialek,, K. Buzás,, E. Szájli,, B. A. Traag,, K. F. Medzihradszky,, S. Rigali,, E. Vijgenboom,, A. Penyige,, Z. Kele,, G. P. van Wezel, and, S. Biró. 2007. Functional mimicry: the secreted signaling protein factor C triggers the A-factor response regulon in Streptomyces griseus. Mol. Cell. Proteom. 6:12481256.
8. Birkó, Z.,, F. Schauwecker,, F. Pfennig,, F. Szeszák,, S. Vitális,, U. Keller, and, S. Biró. 2001. Expression and rapid one-step purification of biologically active His-tagged factor C by Ni(2+) affinity column chromatography. FEMS Microbiol. Lett. 196:223227.
9. Birkó, Z.,, A. Sumegi,, A. Vinnai,, G. van Wezel,, F. Szeszák,, S. Vitális,, P. T. Szabó,, Z. Kele,, T. Janáky, and, S. Biró. 1999. Characterization of the gene for factor C, an extracellular signal protein involved in morphological differentiation of Streptomyces griseus. Microbiology 145:22452453.
10. Biró, S.,, I. Békési,, S. Vitális, and, G. Szabó. 1980. A substance effecting differentiation in Streptomyces griseus. Purification and properties. Eur. J. Biochem. 103:359363.
11. Biró, S.,, Z. Birkó, and, G. P. van Wezel. 2000. Transcriptional and functional analysis of the gene for factor C, an extracellular signal protein involved in cytodifferentiation of Streptomyces griseus. Antonie van Leeuwenhoek 78:277285.
12. Bongiorni, C.,, S. Ishikawa,, S. Stephenson,, N. Ogasawara, and, M. Perego. 2005. Synergistic regulation of competence development in Bacillus subtilis by two Rap-Phr systems. J. Bacteriol. 187:43534361.
13. Capstick, D. S.,, J. M. Willey,, M. J. Buttner, and, M. A. Elliot. 2007. SapB and the chaplins: connections between morphogenetic proteins in Streptomyces coelicolor. Mol. Microbiol. 64:602611.
14. Chater, K. F.,, and S. Horinouchi. 2003. Signalling early developmental events in two highly diverged Streptomyces species. Mol. Microbiol. 48:915.
15. Claessen, D.,, R. Rink,, W. de Jong,, J. Siebring,, P. de Vreugd,, F. G. Boersma,, L. Dijkhuizen, and, H. A. Wösten. 2003. A novel class of secreted hydrophobic proteins is involved in aerial hyphae formation in Streptomyces coelicolor by forming amyloid-like fibrils. Genes Dev. 17:17141726.
16. Cundliffe, E.,, N. Bate,, A. Butler,, S. Fish,, A. Gandecha, and, L. Merson-Davies. 2001. The tylosin-biosynthetic genes of Streptomyces fradiae. Antonie van Leeuwenhoek 79:229234.
17. Davies, J.,, G. B. Spiegelman, and, G. Yim. 2006. The world of subinhibitory antibiotic concentrations. Curr. Opin. Microbiol. 9:445453.
18. D’Costa, V. M.,, K. M. McGrann,, D. W. Hughes, and, G. D. Wright. 2006. Sampling the antibiotic resistome. Science 311:374377.
19. Dondero, N. C.,, and T. Scotti. 1957. Excretion by streptomycetes of factors causing formation of aerial hyphae by old cultures. J. Bacteriol. 73:584585.
20. Elliot, M. A.,, N. Karoonuthaisiri,, J. Huang,, M. J. Bibb,, S. N. Cohen,, C. M. Kao, and, M. J. Buttner. 2003. The chaplins: a family of hydrophobic cell-surface proteins involved in aerial mycelium formation in Streptomyces coelicolor. Genes Dev. 17:17271740.
21. Fernandez-Moreno, M. A.,, A. J. Martin-Triana,, E. Martinez,, J. Niemi,, H. M. Kieser,, D. A. Hopwood, and, F. Malpartida. 1992. abaA, a new pleiotropic regulatory locus for antibiotic production in Streptomyces coelicolor. J. Bacteriol. 174:29582967.
22. Goh, E. B.,, G. Yim,, W. Tsui,, J. McClure,, M. G. Surette, and, J. Davies. 2002. Transcriptional modulation of bacterial gene expression by subinhibitory concentrations of antibiotics. Proc. Natl. Acad. Sci. USA 99:1702517030.
23. Gonzalez-Pastor, J. E.,, E. C. Hobbs, and, R. Losick. 2003. Cannibalism by sporulating bacteria. Science 301:510523.
24. Hara, O.,, and T. Beppu. 1982. Mutants blocked in streptomycin production in Streptomyces griseus—the role of A-factor. J. Antibiot. 35:349358.
25. Hara, O.,, S. Horinouchi,, T. Uozumi, and, T. Beppu. 1983. Genetic analysis of A-factor synthesis in Streptomyces coelicolor A3(2) and Streptomyces griseus. J. Gen. Microbiol. 129:29392944.
26. Hashimoto, M.,, T. Kondo,, I. Kozone,, H. Kawaide,, H. Abe, and, M. Natsume. 2003. Relationship between response to and production of the aerial mycelium-inducing substances pamamycin-607 and A-factor. Biosci. Biotechnol. Biochem. 67:803808.
27. Hinrichs, W.,, C. Kisker,, M. Duvel,, A. Muller,, K. Tovar,, W. Hillen, and, W. Saenger. 1994. Structure of the Tet repressor-tetracycline complex and regulation of antibiotic resistance. Science 264:418420.
28. Hirano, S.,, J. Y. Kato,, Y. Ohnishi, and, S. Horinouchi. 2006. Control of the Streptomyces subtilisin inhibitor gene by AdpA in the A-factor regulatory cascade in Streptomyces griseus. J. Bacteriol. 188:62076216.
29. Horinouchi, S. 2002. A microbial hormone, A-factor, as a master switch for morphological differentiation and secondary metabolism in Streptomyces griseus. Front. Biosci. 7:20452057.
30. Hutchings, M. I.,, P. A. Hoskisson,, G. Chandra, and, M. J. Buttner. 2004. Sensing and responding to diverse extracellular signals? Analysis of the sensor kinases and response regulators of Streptomyces coelicolor A3(2). Microbiology 150:27952806.
31. Janssen, P. H. 2006. Identifying the dominant soil bacterial taxa in libraries of 16S rRNA and 16S rRNA genes. Appl. Environ. Microbiol. 72:17191728.
32. Kato, J. Y.,, W. J. Chi,, Y. Ohnishi,, S. K. Hong, and, S. Horinouchi. 2005. Transcriptional control by A-factor of two trypsin genes in Streptomyces griseus. J. Bacteriol. 187:286295.
33. Kato, J. Y.,, I. Miyahisa,, M. Mashiko,, Y. Ohnishi, and, S. Horinouchi. 2004. A single target is sufficient to account for the biological effects of the A-factor receptor protein of Streptomyces griseus. J. Bacteriol. 186:22062211.
34. Kato, J. Y.,, Y. Ohnishi, and, S. Horinouchi. 2005. Autorepression of AdpA of the AraC/XylS family, a key transcriptional activator in the A-factor regulatory cascade in Streptomyces griseus. J. Mol. Biol. 350:1226.
35. Kato, J. Y.,, A. Suzuki,, H. Yamazaki,, Y. Ohnishi, and, S. Horinouchi. 2002. Control by A-factor of a metalloendopeptidase gene involved in aerial mycelium formation in Streptomyces griseus. J. Bacteriol. 184:60166025.
36. Keijser, B. J.,, G. P. van Wezel,, G. W. Canters,, T. Kieser, and, E. Vijgenboom. 2000. The ram-dependence of Streptomyces lividans differentiation is bypassed by copper. J. Mol. Microbiol. Biotechnol. 2:565574.
37. Kelemen, G. H.,, P. Brian,, K. Flardh,, L. Chamberlin,, K. F. Chater, and, M. J. Buttner. 1998. Developmental regulation of transcription of whiE, a locus specifying the polyketide spore pigment in Streptomyces coelicolor A3 (2). J. Bacteriol. 180:25152521.
38. Kelemen, G. H.,, G. L. Brown,, J. Kormanec,, L. Potuckova,, K. F. Chater, and, M. J. Buttner. 1996. The positions of the sigma-factor genes, whiG and sigF, in the hierarchy controlling the development of spore chains in the aerial hyphae of Streptomyces coelicolor A3(2). Mol. Microbiol. 21:593603.
39. Kelemen, G. H.,, and M. J. Buttner. 1998. Initiation of aerial mycelium formation in Streptomyces. Curr. Opin. Microbiol. 1:656662.
40. Kendrick, K. E.,, and J. C. Ensign. 1983. Sporulation of Streptomyces griseus in submerged culture. J. Bacteriol. 155:357366.
41. Khokhlov, A. S.,, Tovarova, II,, L. N. Borisova,, S. A. Pliner,, L. N. Shevchenko,, E. Kornitskaia,, N. S. Ivkina, and, I. A. Rapoport. 1967. [The A-factor, responsible for streptomycin biosynthesis by mutant strains of Actinomyces streptomycini]. Dokl. Akad. Nauk. SSSR 177:232235.
42. Kinoshita, H.,, H. Ipposhi,, S. Okamoto,, H. Nakano,, T. Nihira, and, Y. Yamada. 1997. Butyrolactone autoregulator receptor protein (BarA) as a transcriptional regulator in Streptomyces virginiae. J. Bacteriol. 179:69866993.
43. Kisker, C.,, W. Hinrichs,, K. Tovar,, W. Hillen,, and W. Saenger. 1995. The complex formed between Tet repressor and tetracycline-Mg2+ reveals mechanism of antibiotic resistance. J. Mol. Biol. 247:260280.
44. Kitani, S.,, H. Kinoshita,, T. Nihira, and, Y. Yamada. 1999. In vitro analysis of the butyrolactone autoregulator receptor protein (FarA) of Streptomyces lavendulae FRI-5 reveals that FarA acts as a DNA-binding transcriptional regulator that controls its own synthesis. J. Bacteriol. 181:50815084.
45. Kodani, S.,, M. E. Hudson,, M. C. Durrant,, M. J. Buttner,, J. R. Nodwell, and, J. M. Willey. 2004. The SapB morphogen is a lantibiotic-like peptide derived from the product of the developmental gene ramS in Streptomyces coelicolor. Proc. Natl. Acad. Sci. USA 101:1144811453.
46. Kodani, S.,, M. A. Lodato,, M. C. Durrant,, F. Picart, and, J. M. Willey. 2005. SapT, a lanthionine-containing peptide involved in aerial hyphae formation in the streptomycetes. Mol. Microbiol. 58:13681380.
47. Manteca, A.,, M. Fernandez, and, J. Sanchez. 2005. A death round affecting a young compartmentalized mycelium precedes aerial mycelium dismantling in confluent surface cultures of Streptomyces antibioticus. Microbiology 151:36893697.
48. Manteca, A.,, M. Fernandez, and, J. Sanchez. 2006. Cytological and biochemical evidence for an early cell dismantling event in surface cultures of Streptomyces antibioticus. Res. Microbiol. 157:143152.
49. Manteca, A.,, M. Fernandez, and, J. Sanchez. 2005. Mycelium development in Streptomyces antibioticus ATCC11891 occurs in an orderly pattern which determines multiphase growth curves. BMC Microbiol. 5:51.
50. Manteca, A.,, U. Mader,, B. A. Connolly, and, J. Sanchez. 2006. A proteomic analysis of Streptomyces coelicolor programmed cell death. Proteomics 22:60086022.
51. McCann, P. A.,, and B. M. Pogell. 1979. Pamamycin: a new antibiotic and stimulator of aerial mycelia formation. J. Antibiot. 32:673678.
52. Miguelez, E. M.,, C. Hardisson, and, M. B. Manzanal. 1999. Hyphal death during colony development in Streptomyces antibioticus: morphological evidence for the existence of a process of cell deletion in a multicellular prokaryote. J. Cell Biol. 145:515525.
53. Molle, V.,, and M. J. Buttner. 2000. Different alleles of the response regulator gene bldM arrest Streptomyces coelicolor development at distinct stages. Mol. Microbiol. 36:12651278.
54. Natsume, R.,, Y. Ohnishi,, T. Senda, and, S. Horinouchi. 2004. Crystal structure of a gamma-butyrolactone autoregulator receptor protein in Streptomyces coelicolor A3(2). J. Mol. Biol. 336:409419.
55. Natsume, R.,, R. Takeshita,, M. Sugiyama,, Y. Ohnishi,, T. Senda, and, S. Horinouchi. 2003. Crystallization of CprB, an autoregulator-receptor protein from Streptomyces coelicolor A3(2). Acta Crystallogr. D Biol. Crystallogr. 59:23132315.
56. Nguyen, K. T.,, J. M. Willey,, L. D. Nguyen,, L. T. Nguyen,, P. H. Viollier, and, C. J. Thompson. 2002. A central regulator of morphological differentiation in the multicellular bacterium Streptomyces coelicolor. Mol. Microbiol. 46:12231238.
57. Nodwell, J. R.,, and R. Losick. 1998. Purification of an extracellular signaling molecule involved in production of aerial mycelium by Streptomyces coelicolor. J. Bacteriol. 180:13341337.
58. Nodwell, J. R.,, K. McGovern, and, R. Losick. 1996. An oligopeptide permease responsible for the import of an extracellular signal governing aerial mycelium formation in Streptomyces coelicolor. Mol. Microbiol. 22:881893.
59. Nodwell, J. R.,, M. Yang,, D. Kuo, and, R. Losick. 1999. Extracellular complementation and the identification of additional genes involved in aerial mycelium formation in Streptomyces coelicolor. Genetics 151:569584.
60. Ochi, K. 1987. Metabolic initiation of differentiation and secondary metabolism by Streptomyces griseus: significance of the stringent response (ppGpp) and GTP content in relation to A factor. J. Bacteriol. 169:36083616.
61. O’Connor, T. J.,, P. Kanellis, and, J. R. Nodwell. 2002. The ramC gene is required for morphogenesis in Streptomyces coelicolor and expressed in a cell type-specific manner under the direct control of RamR. Mol. Microbiol. 45:4557.
62. O’Connor, T. J.,, and J. R. Nodwell. 2005. Pivotal roles for the receiver domain in the mechanism of action of the response regulator RamR of Streptomyces coelicolor. J. Mol. Biol. 351:10301047.
63. Ohnishi, Y.,, H. Yamazaki,, J. Y. Kato,, A. Tomono, and, S. Horinouchi. 2005. AdpA, a central transcriptional regulator in the A-factor regulatory cascade that leads to morphological development and secondary metabolism in Streptomyces griseus. Biosci. Biotechnol. Biochem. 69:431439.
64. Onaka, H.,, N. Ando,, T. Nihira,, Y. Yamada,, T. Beppu, and, S. Horinouchi. 1995. Cloning and characterization of the A-factor receptor gene from Streptomyces griseus. J. Bacteriol. 177:60836092.
65. Onaka, H.,, M. Nakaho,, K. Hayashi,, Y. Igarashi, and, T. Furumai. 2005. Cloning and characterization of the goadsporin biosynthetic gene cluster from Streptomyces sp. TPA0584. Microbiology 151:39233933.
66. Onaka, H.,, H. Tabata,, Y. Igarashi,, Y. Sato, and, T. Furumai. 2001. Goadsporin, a chemical substance which promotes secondary metabolism and morphogenesis in streptomycetes. I. Purification and characterization. J. Antibiot. 54:10361044.
67. Orth, P.,, F. Cordes,, D. Schnappinger,, W. Hillen,, W. Saenger, and, W. Hinrichs. 1998. Conformational changes of the Tet repressor induced by tetracycline trapping. J. Mol. Biol. 279:439447.
68. Orth, P.,, D. Schnappinger,, W. Hillen,, W. Saenger, and, W. Hinrichs. 2000. Structural basis of gene regulation by the tetracycline inducible Tet repressor-operator system. Nat. Struct. Biol. 7:215219.
69. Pogell, B. M. 1998. The pamamycins: developmental autoregulators and antibiotics from Streptomyces alboniger. A review and update. Cell. Mol. Biol. 44:461463.
70. Ramos, J. L.,, M. Martinez-Bueno,, A. J. Molina-Henares,, W. Teran,, K. Watanabe,, X. Zhang,, M. T. Gallegos,, R. Brennan, and, R. Tobes. 2005. The TetR family of transcriptional repressors. Microbiol. Mol. Biol. Rev. 69:326356.
71. Retzlaff, L.,, and J. Distler. 1995. The regulator of streptomycin gene expression, StrR, of Streptomyces griseus is a DNA binding activator protein with multiple recognition sites. Mol. Microbiol. 18:151162.
72. Richter, M.,, J. M. Willey,, R. Sussmuth,, G. Jung, and, H. P. Fiedler. 1998. Streptofactin, a novel biosurfactatn with aerial mycelium inducing activity from Streptomyces tendae Tu 901/8c. FEMS Microbiol. Lett. 163:165172.
73. Sahl, H. G.,, and G. Bierbaum. 1998. Lantibiotics: biosynthesis and biological activities of uniquely modified peptides from gram-positive bacteria. Annu. Rev. Microbiol. 52:4179.
74. Sobis-Glinkowska, M.,, P. Lisiecki, and, J. Mikucki. 1995. The interchangeability of siderophores in staphylococci. Acta Microbiol. Pol. 44:127134.
75. Straight, P. D.,, J. M. Willey, and, R. Kolter. 2006. Interactions between Streptomyces coelicolor and Bacillus subtilis: role of surfactants in raising aerial structures. J. Bacteriol. 188:49184925.
76. Stratigopoulos, G.,, A. R. Gandecha, and, E. Cundliffe. 2002. Regulation of tylosin production and morphological differentiation in Streptomyces fradiae by TylP, a deduced gamma-butyrolactone receptor. Mol. Microbiol. 45:735744.
77. Sugiyama, M.,, H. Onaka,, T. Nakagawa, and, S. Horinouchi. 1998. Site-directed mutagenesis of the A-factor receptor protein: Val-41 important for DNA-binding and Trp-119 important for lig-and-binding. Gene 222:133144.
78. Szabó, G.,, T. Vályi-Nagy, and, S. Vitális. 1962. A new factor regulating life cycle of Streptomyces griseus. State Publishing House of Medical Literature, Moscow, Russia.
79. Szabó, P. T.,, Z. Kele,, Z. Birkó,, F. Szeszák,, S. Biró, and, T. Janáky. 1999. Identification of factor C protein from Streptomyces griseus by microelectrospray mass spectrometry. J. Mass Spectrom. 34:13121316.
80. Szeszák, F.,, S. Vitális, and, G. Szabó. 1991. Presence of factor C in streptomyces and other bacteria, p. 11–18. In S. Baumberg,, H. Krügel,, and D. Noack (ed.), Genetics and Product Formation in Streptomyces. Plenum, New York, NY.
81. Takahashi, M.,, L. Altschmied, and, W. Hillen. 1986. Kinetic and equilibrium characterization of the Tet repressor-tetracycline complex by fluorescence measurements. Evidence for divalent metal ion requirement and energy transfer. J. Mol. Biol. 187:341348.
82. Takahashi, M.,, J. Degenkolb, and, W. Hillen. 1991. Determination of the equilibrium association constant between Tet repressor and tetracycline at limiting Mg2+ concentrations: a generally applicable method for effector-dependent high-affinity complexes. Anal. Biochem. 199:197202.
83. Takano, E.,, R. Chakraburtty,, T. Nihira,, Y. Yamada, and, M. J. Bibb. 2001. A complex role for the gamma-butyrolactone SCB1 in regulating antibiotic production in Streptomyces coelicolor A3(2). Mol. Microbiol. 41:10151028.
84. Takano, E.,, H. Kinoshita,, V. Mersinias,, G. Bucca,, G. Hotchkiss,, T. Nihira,, C. P. Smith,, M. Bibb,, W. Wohlleben, and, K. Chater. 2005. A bacterial hormone SCB1 directly controls the expression of a pathway-specific regulatory gene in the cryptic type I polyketide biosynthetic gene cluster of Streptomyces coelicolor. Mol. Microbiol. 56:465479.
85. Tillotson, R. D.,, H. A. Wösten,, M. Richter, and, J. M. Willey. 1998. A surface active protein involved in aerial hyphae formation in the filamentous fungus Schizophillum commune restores the capacity of a bald mutant of the filamentous bacterium Streptomyces coelicolor to erect aerial structures. Mol. Microbiol. 30:595602.
86. Ueda, K.,, C. W. Hsheh,, T. Tosaki,, H. Shinkawa,, T. Beppu, and, S. Horinouchi. 1998. Characterization of an A-factor-responsive repressor for amfR essential for onset of aerial mycelium formation in Streptomyces griseus. J. Bacteriol. 180:50855093.
87. Ueda, K.,, S. Kawai,, H. Ogawa,, A. Kiyama,, T. Kubota,, H. Kawanobe, and, T. Beppu. 2000. Wide distribution of interspecific stimulatory events on antibiotic production and sporulation among Streptomyces species. J. Antibiot. 53:979982.
88. Ueda, K.,, K. Miyake,, S. Horinouchi, and, T. Beppu. 1993. A gene cluster involved in aerial mycelium formation in Streptomyces griseus encodes proteins similar to the response regulators of two-component regulatory systems and membrane translocators. J. Bacteriol. 175:20062016.
89. Ueda, K.,, K. Oinuma,, G. Ikeda,, K. Hosono,, Y. Ohnishi,, S. Horinouchi, and, T. Beppu. 2002. AmfS, an extracellular peptidic morphogen in Streptomyces griseus. J. Bacteriol. 184:14881492.
90. Ueda, K.,, H. Takano,, M. Nishimoto,, H. Inaba, and, T. Beppu. 2005. Dual transcriptional control of amfTSBA, which regulates the onset of cellular differentiation in Streptomyces griseus. J. Bacteriol. 187:135142.
91. Veening, J. W.,, L. W. Hamoen, and, O. P. Kuipers. 2005. Phosphatases modulate the bistable sporulation gene expression pattern in Bacillus subtilis. Mol. Microbiol. 56:14811494.
92. Vujaklija, D.,, K. Ueda,, S. K. Hong,, T. Beppu, and, S. Horinouchi. 1991. Identification of an A-factor-dependent promoter in the streptomycin biosynthetic gene cluster of Streptomyces griseus. Mol. Gen. Genet. 229:119128.
93. Willey, J.,, R. Santamaria,, J. Guijarro,, M. Geistlich, and, R. Losick. 1991. Extracellular complementation of a developmental mutation implicates a small sporulation protein in aerial mycelium formation by S. coelicolor. Cell 65:641650.
94. Willey, J.,, J. Schwedock, and, R. Losick. 1993. Multiple extracellular signals govern the production of a morphogenetic protein involved in aerial mycelium formation by Streptomyces coelicolor. Genes Dev. 7:895903.
95. Willey, J. M.,, A. Willems,, S. Kodani, and, J. R. Nodwell. 2006. Morphogenetic surfactants and their role in the formation of aerial hyphae in Streptomyces coelicolor. Mol. Microbiol. 59:731742.
96. Wösten, H. A.,, and M. L. de Vocht. 2000. Hydrophobins, the fungal coat unravelled. Biochim. Biophys. Acta 1469:7986.
97. Wösten, H. A.,, M. A. van Wetter,, L. G. Lugones,, H. C. van der Mei,, H. J. Busscher, and, J. G. Wessels. 1999. How a fungus escapes the water to grow into the air. Curr. Biol. 9:8588.
98. Wösten, H. A.,, and J. M. Willey. 2000. Surface-active proteins enable microbial aerial hyphae to grow into the air. Microbiology 146:767773.
99. Yamanaka, K.,, H. Oikawa,, H. O. Ogawa,, K. Hosono,, F. Shinmachi,, H. Takano,, S. Sakuda,, T. Beppu, and, K. Ueda. 2005. Desferrioxamine E produced by Streptomyces griseus stimulates growth and development of Streptomyces tanashiensis. Microbiology 151:28992905.
100. Yamazaki, H.,, Y. Ohnishi, and, S. Horinouchi. 2000. An A-factor-dependent extracytoplasmic function sigma factor (σ(AdsA)) that is essential for morphological development in Streptomyces griseus. J. Bacteriol. 182:45964605.
101. Yamazaki, H.,, Y. Ohnishi, and, S. Horinouchi. 2003. Transcriptional switch on of ssgA by A-factor, which is essential for spore septum formation in Streptomyces griseus. J. Bacteriol. 185:12731283.
102. Yim, G.,, H. H. Wang, and, J. Davies. 2006. The truth about antibiotics. Int. J. Med. Microbiol. 296:163170.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error