1887

Chapter 9 : LuxR-Type Proteins in Quorum Sensing: Distinct Mechanisms with Global Implications

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in
Zoomout

LuxR-Type Proteins in Quorum Sensing: Distinct Mechanisms with Global Implications, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555815578/9781555814045_Chap09-1.gif /docserver/preview/fulltext/10.1128/9781555815578/9781555814045_Chap09-2.gif

Abstract:

The opportunistic pathogen provides one of the most intensely studied examples of acylhomoserine lactone (acyl-HSL)-controlled gene expression. In , quorum-sensing gene regulation is accomplished by two complete acyl-HSL systems, LasR-LasI and RhlR-RhlI, and by an orphan receptor, QscR. One microarray study provided additional insights into the signal requirements for the activation of individual quorum-controlled genes. LuxR-type polypeptides can be subdivided into two functional domains based on sequence conservation, genetic and biochemical analysis of representative members, and the crystal structure of TraR from . LuxR-type proteins also contain a helix-turn-helix motif (HTH) in their carboxy-terminal domain that is required for DNA binding. Based on the recent biochemical characterization of other LuxR-type proteins, general patterns of acyl-HSL/receptor interaction emerge that allow us to distinguish three separate classes. The three receptors LasR, RhlR, and QscR each represent one such class: LasR is a class 1 receptor. In contrast, if LuxR-type proteins such as LasR and QscR require their ligand for proper folding, they should induce transcription of target genes relatively slowly because protein activation through translation would be slow. Once a quorum is reached, a change in the gene expression profile is triggered that leads to the formation of a mature biofilm, reminiscent of a developmental program in more complex systems.

Citation: Schuster M, Greenberg E. 2008. LuxR-Type Proteins in Quorum Sensing: Distinct Mechanisms with Global Implications, p 133-144. In Winans S, Bassler B (ed), Chemical Communication among Bacteria. ASM Press, Washington, DC. doi: 10.1128/9781555815578.ch9

Key Concept Ranking

Gene Expression
0.5146254
RNA Polymerase
0.5080645
Cyclic AMP
0.49027416
0.5146254
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of FIGURE 1
FIGURE 1

Structure and function of LuxR-type transcription factors. (A) Key regions based on sequence conservation, biochemical analysis of LuxR, TraR and other family members, and the recent TraR crystal structure. The indicated multimerization region has been genetically defined as being required for LuxR multimerization. Several details mentioned in the text are not included in this cartoon. (B) A 3-oxo-C-HSL molecule showing the specific TraR residues that are thought to coordinate each position of this acyl-HSL (Tyr61 interacts along the acyl chain). (C) The palindromic box (the DNA-binding site for TraR) is shown with the two residues (Arg206 and Arg210) that make specific base contacts with this site. Symmetrical contacts are made with the DNA sequence in each half-site.

Citation: Schuster M, Greenberg E. 2008. LuxR-Type Proteins in Quorum Sensing: Distinct Mechanisms with Global Implications, p 133-144. In Winans S, Bassler B (ed), Chemical Communication among Bacteria. ASM Press, Washington, DC. doi: 10.1128/9781555815578.ch9
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555815578.ch09
1. Albus, A. M.,, E. C. Pesci,, L. J. Runyen-Janecky,, S. E. West, and, B. H. Iglewski. 1997. Vfr controls quorum sensing in Pseudomonas aeruginosa. J. Bacteriol. 179:39283935.
2. Anderson, R. M.,, C. A. Zimprich, and, L. Rust. 1999. A second operator is involved in Pseudomonas aeruginosa elastase (lasB) activation. J. Bacteriol. 181:62646270.
3. Bassler, B. L. 2002. Small talk. Cell-to-cell communication in bacteria. Cell 109:421424.
4. Bremer, H.,, and P. P. Dennis. 1996. Modulation of chemical composition and other parameters of the cell by growth rate, p. 1553–1569. In F. C. Neidhardt,, R. Curtiss,, J. L. Ingraham,, E. E. C. Lin,, K. B. Low,, B. Magasanik,, W. S. Reznikoff,, M. Riley,, M. Schaechter,, and H. E. Umbarger (ed.), Escherichia coli and Salmonella: Cellular and Molecular Biology, 2nd ed. ASM Press, Washington, DC.
5. Castang, S.,, S. Reverchon,, P. Gouet, and, W. Nasser. 2006. Direct evidence for the modulation of the activity of the Erwinia chrysanthemi quorum-sensing regulator ExpR by acylhomoserine lactone pheromone. J. Biol. Chem. 281:2997229987.
6. Chai, Y.,, and S. C. Winans. 2004. Site-directed mutagenesis of a LuxR-type quorum-sensing transcription factor: alteration of autoinducer specificity. Mol. Microbiol. 51:765776.
7. Choi, S. H.,, and E. P. Greenberg. 1991. The C-terminal region of the Vibrio fischeri LuxR protein contains an inducer-independent lux gene activating domain. Proc. Natl. Acad. Sci. USA 88:1111511119.
8. Choi, S. H.,, and E. P. Greenberg. 1992. Genetic evidence for multimerization of LasR, the transcriptional activator of Vibrio fischeri luminescence. Mol. Mar. Biol. Biotechnol. 1:408413.
9. Chugani, S. A.,, M. Whiteley,, K. M. Lee,, D. D. Argenio,, C. Manoil, and, E. P. Greenberg. 2001. QscR, a modulator of quorum-sensing signal synthesis and virulence in Pseudomonas aeruginosa. Proc. Natl. Acad. Sci. USA 98:27522757.
10. Conway, B. A.,, V. Venu, and, D. P. Speert. 2002. Biofilm formation and acyl homoserine lactone production in the Burkholderia cepacia complex. J. Bacteriol. 184:56785685.
11. Costerton, J. W. 2001. Cystic fibrosis pathogenesis and the role of biofilms in persistent infection. Trends Microbiol. 9:5052.
12. Costerton, J. W.,, P. S. Stewart, and, E. P Greenberg. 1999. Bacterial biofilms: a common cause of persistent infection. Science 284:13181322.
13. Davies, D. G.,, M. R. Parsek,, J. P. Pearson,, B. H. Iglewski,, J. W. Costerton, and, E. P. Greenberg. 1998. The involvement of cell-to-cell signals in the development of a bacterial biofilm. Science 280:295298.
14. Devine, J. H.,, G. S. Shadel, and, T. O. Baldwin. 1989. Identification of the operator of the lux regulon from the Vibrio fischeri strain ATCC7744. Proc. Natl. Acad. Sci. USA 86:56885692.
15. Deziel, E.,, S. Gopalan,, A. P. Tampakaki,, F. Lepine,, K. E. Padfield,, M. Saucier,, G. Xiao, and, L. G. Rahme. 2005. The contribution of MvfR to Pseudomonas aeruginosa pathogenesis and quorum sensing circuitry regulation: multiple quorum sensing-regulated genes are modulated without affecting lasRI, rhlRI or the production of N-acyl-l-homoserine lactones. Mol. Microbiol. 55:9981014.
16. Deziel, E.,, F. Lepine,, S. Milot,, J. He,, M. N. Mindrinos,, R. G. Tompkins, and, L. G. Rahme. 2004. Analysis of Pseudomonas aeruginosa 4-hydroxy-2-alkylquinolines (HAQs) reveals a role for 4-hydroxy-2-heptylquinoline in cell-to-cell communication. Proc. Natl. Acad. Sci. USA 101:13391344.
17. Diggle, S. P.,, K. Winzer,, S. R. Chhabra,, K. E. Worrall,, M. Camara, and, P. Williams. 2003. The Pseudomonas aeruginosa quinolone signal molecule overcomes the cell density-dependency of the quorum sensing hierarchy, regulates rhl-dependent genes at the onset of stationary phase and can be produced in the absence of LasR. Mol. Microbiol. 50:2943.
18. Eberhard, A.,, A. L. Burlingame,, C. Eberhard,, G. L. Kenyon,, K. H. Nealson, and, N. J. Oppenheimer. 1981. Structural identification of autoinducer of Photobacterium fischeri luciferase. Biochemistry 20:24442449.
19. Egland, K. A.,, and E. P. Greenberg. 2001. Quorum sensing in Vibrio fischeri: analysis of the LuxR DNA binding region by alanine-scanning mutagenesis. J. Bacteriol. 183:382386.
20. Egland, K. A.,, and E. P. Greenberg. 1999. Quorum sensing in Vibrio fischeri: elements of the luxl promoter. Mol. Microbiol. 31:11971204.
21. Engebrecht, J.,, K. Nealson, and, M. Silverman. 1983. Bacterial bioluminescence: isolation and genetic analysis of functions from Vibrio fischeri. Cell 32:773781.
22. Engebrecht, J.,, and M. Silverman. 1984. Identification of genes and gene products necessary for bacterial bioluminescence. Proc. Natl. Acad. Sci. USA 81:41544158.
23. Finney, A. H.,, R. J. Blick,, K. Murakami,, A. Ishihama, and, A. M. Stevens. 2002. Role of the C-terminal domain of the alpha subunit of RNA polymerase in LuxR-dependent transcriptional activation of the lux operon during quorum sensing. J. Bacteriol. 184:45204528.
24. Fuqua, C.,, and E. P. Greenberg. 2002. Listening in on bacteria: acyl-homoserine lactone signalling. Nat. Rev. Mol. Cell. Biol. 3:685695.
25. Fuqua, C.,, M. R. Parsek, and, E. P. Greenberg. 2001. Regulation of gene expression by cell-to-cell communication: acyl-homoserine lactone quorum sensing. Annu. Rev. Genet. 35:439468.
26. Fuqua, W. C.,, and S. C. Winans. 1994. A LuxR-LuxI type regulatory system activates Agrobacterium Ti plasmid conjugal transfer in the presence of a plant tumor metabolite. J. Bacteriol. 176:27962806.
27. Gallagher, L. A.,, S. L. McKnight,, M. S. Kuznetsova,, E. C. Pesci, and, C. Manoil. 2002. Functions required for extracellular quinolone signaling by Pseudomonas aeruginosa. J. Bacteriol. 184:64726480.
28. Gambello, M. J.,, and B. H. Iglewski. 1991. Cloning and characterization of the Pseudomonas aeruginosa lasR gene, a transcriptional activator of elastase expression. J. Bacteriol. 173:30003009.
29. Goodman, A. L.,, B. Kulasekara,, A. Rietsch,, D. Boyd,, R. S. Smith, and, S. Lory. 2004. A signaling network reciprocally regulates genes associated with acute infection and chronic persistence in Pseudomonas aeruginosa. Dev. Cell 7:745754.
30. Gygi, S. P.,, Y. Rochon,, B. R. Franza, and, R. Aebersold. 1999. Correlation between protein and mRNA abundance in yeast. Mol. Cell. Biol. 19:17201730.
31. Hanzelka, B. L.,, and E. P. Greenberg. 1995. Evidence that the N-terminal region of the Vibrio fischeri LuxR protein constitutes an autoinducer-binding domain. J. Bacteriol. 177:815817.
32. Hentzer, M.,, H. Wu,, J. B. Andersen,, K. Riedel,, T. B. Rasmussen,, N. Bagge,, N. Kumar,, M. A. Schembri,, Z. Song,, P. Kristoffersen,, M. Manefield,, J. W. Costerton,, S. Molin,, L. Eberl,, P. Steinberg,, S. Kjelleberg,, N. Hoiby, and, M. Givskov. 2003. Attenuation of Pseudomonas aeruginosa virulence by quorum sensing inhibitors. EMBO J. 22:38033815.
33. Heurlier, K.,, F. Williams,, S. Heeb,, C. Dormond,, G. Pessi,, D. Singer,, M. Camara,, P. Williams, and, D. Haas. 2004. Positive control of swarming, rhamnolipid synthesis, and lipase production by the posttranscriptional RsmA/ RsmZ system in Pseudomonas aeruginosa PAO1. J. Bacteriol. 186:29362945.
34. Johnson, D. C.,, A. Ishihama, and, A. M. Stevens. 2003. Involvement of region 4 of the sigma70 subunit of RNA polymerase in transcriptional activation of the lux operon during quorum sensing. FEMS Microbiol. Lett. 228:193201.
35. Kaplan, H. B.,, and E. P. Greenberg. 1985. Diffusion of autoinducer is involved in regulation of the Vibrio fischeri luminescence system. J. Bacteriol. 163:12101214.
36. Kaplan, H. B.,, and E. P. Greenberg. 1985. Diffusion of autoinducer is involved in regulation of the Vibrio fischeri luminescence system. J. Bacteriol. 163:12101214.
37. Kiratisin, P.,, K. D. Tucker, and, L. Passador. 2002. LasR, a transcriptional activator of Pseudomonas aeruginosa virulence genes, functions as a multimer. J. Bacteriol. 184:49124919.
38. Koch, B.,, T. Liljefors,, T. Persson,, J. Nielsen,, S. Kjelleberg, and, M. Givskov. 2005. The LuxR receptor: the sites of interaction with quorum-sensing signals and inhibitors. Microbiology 151:35893602.
39. Lamb, J. R.,, H. Patel,, T. Montminy,, V. E. Wagner, and, B. H. Iglewski. 2003. Functional domains of the RhlR transcriptional regulator of Pseudomonas aeruginosa. J. Bacteriol. 185:71297139.
40. Latifi, A.,, M. Foglino,, K. Tanaka,, P. Williams, and, A. Lazdunski. 1996. A hierarchical quorum-sensing cascade in Pseudomonas aeruginosa links the transcriptional activators LasR and RhIR (VsmR) to expression of the stationary-phase sigma factor RpoS. Mol. Microbiol. 21:11371146.
41. Ledgham, F.,, I. Ventre,, C. Soscia,, M. Foglino,, J. N. Sturgis, and, A. Lazdunski. 2003. Interactions of the quorum sensing regulator QscR: interaction with itself and the other regulators of Pseudomonas aeruginosa LasR and RhlR. Mol. Microbiol. 48:199210.
42. Lee, J. H.,, Y. Lequette, and, E. P. Greenberg. 2006. Activity of purified QscR, a Pseudomonas aeruginosa orphan quorum-sensing transcription factor. Mol. Microbiol. 59:602609.
43. Lequette, Y.,, J. H. Lee,, F. Ledgham,, A. Lazdunski, and, E. P. Greenberg. 2006. A distinct QscR regulon in the Pseudomonas aeruginosa quorum-sensing circuit. J. Bacteriol. 188:33653370.
44. Luo, Z. Q.,, and S. K. Farrand. 1999. Signal-dependent DNA binding and functional domains of the quorum-sensing activator TraR as identified by repressor activity. Proc. Natl. Acad. Sci. USA 96:90099014.
45. Luo, Z. Q.,, S. Su, and, S. K. Farrand. 2003. In situ activation of the quorum-sensing transcription factor TraR by cognate and noncognate acylhomoserine lactone ligands: kinetics and consequences. J. Bacteriol. 185:56655672.
46. Mashburn, L. M.,, and M. Whiteley. 2005. Membrane vesicles traffic signals and facilitate group activities in a prokaryote. Nature 437:422425.
47. Medina, G.,, K. Juarez,, R. Diaz, and, G. Soberon-Chavez. 2003. Transcriptional regulation of Pseudomonas aeruginosa rhlR, encoding a quorum-sensing regulatory protein. Microbiology 149:30733081.
48. Medina, G.,, K. Juarez,, B. Valderrama, and, G. Soberon-Chavez. 2003. Mechanism of Pseudomonas aeruginosa RhlR transcriptional regulation of the rhlAB promoter. J. Bacteriol. 185:59765983.
49. Minogue, T. D.,, A. L. Carlier,, M. D. Koutsoudis, and, S. B. von Bodman. 2005. The cell density-dependent expression of stewartan exopolysaccharide in Pantoea stewartii ssp. stewartii is a function of EsaR-mediated repression of the rcsA gene. Mol. Microbiol. 56:189203.
50. Minogue, T. D.,, M. Wehland-von Trebra,, F. Bernhard, and, S. B. von Bodman. 2002. The autoregulatory role of EsaR, a quorum-sensing regulator in Pantoea stewartii ssp. stewartii: evidence for a repressor function. Mol. Microbiol. 44:16251635.
51. Muh, U.,, B. J. Hare,, B. A. Duerkop,, M. Schuster,, B. L. Hanzelka,, R. Heim,, E. R. Olson, and, E. P. Greenberg. 2006. A structurally unrelated mimic of a Pseudomonas aeruginosa acyl-homoserine lactone quorum-sensing signal. Proc. Natl. Acad. Sci. USA 103:1694816952.
52. Munch, R.,, K. Hiller,, H. Barg,, D. Heldt,, S. Linz,, E. Wingender, and, D. Jahn. 2003. PRODORIC: prokaryotic database of gene regulation. Nucleic Acids Res. 31:266269.
53. Passador, L.,, J. M. Cook,, M. J. Gambello,, L. Rust, and, B. H. Iglewski. 1993. Expression of Pseudomonas aeruginosa virulence genes requires cell-to-cell communication. Science 260:11271130.
54. Pearson, J. P.,, K. M. Gray,, L. Passador,, K. D. Tucker,, A. Eberhard,, B. H. Iglewski, and, E. P. Greenberg. 1994. Structure of the autoinducer required for expression of Pseudomonas aeruginosa virulence genes. Proc. Natl. Acad. Sci. USA 91:197201.
55. Pearson, J. P.,, L. Passador,, B. H. Iglewski, and, E. P. Greenberg. 1995. A second N-acylhomoserine lactone signal produced by Pseudomonas aeruginosa. Proc. Natl. Acad. Sci. USA 92:14901494.
56. Pesci, E. C.,, J. B. Milbank,, J. P. Pearson,, S. McKnight,, A. S. Kende,, E. P. Greenberg, and, B. H. Iglewski. 1999. Quinolone signaling in the cell-to-cell communication system of Pseudomonas aeruginosa. Proc. Natl. Acad. Sci. USA 96:1122911234.
57. Pesci, E. C.,, J. P. Pearson,, P. C. Seed, and, B. H. Iglewski. 1997. Regulation of las and rhl quorum sensing in Pseudomonas aeruginosa. J. Bacteriol. 179:31273132.
58. Pessi, G.,, and D. Haas. 2000. Transcriptional control of the hydrogen cyanide biosynthetic genes hcnABC by the anaerobic regulator ANR and the quorum-sensing regulators LasR and RhlR in Pseudomonas aeruginosa. J. Bacteriol. 182:69406949.
59. Pessi, G.,, F. Williams,, Z. Hindle,, K. Heurlier,, M. T. Holden,, M. Camara,, D. Haas, and, P. Williams. 2001. The global posttranscriptional regulator RsmA modulates production of virulence determinants and N-acylhomoserine lactones in Pseudomonas aeruginosa. J. Bacteriol. 183:66766683.
60. Piper, K. R.,, S. Beck von Bodman, and, S. K. Farrand. 1993. Conjugation factor of Agrobacterium tumefaciens regulates Ti plasmid transfer by autoinduction. Nature 362:448450.
61. Qin, Y.,, Z. Q. Luo, and, S. K. Farrand. 2004. Domains formed within the N-terminal region of the quorum-sensing activator TraR are required for transcriptional activation and direct interaction with RpoA from Agrobacterium. J. Biol. Chem. 279:4084440851.
62. Qin, Y.,, Z. Q. Luo,, A. J. Smyth,, P. Gao,, S. Beck von Bodman, and, S. K. Farrand. 2000. Quorum-sensing signal binding results in dimerization of TraR and its release from membranes into the cytoplasm. EMBO J. 19:52125221.
63. Reimmann, C.,, M. Beyeler,, A. Latifi,, H. Winteler,, M. Foglino,, A. Lazdunski, and, D. Haas. 1997. The global activator GacA of Pseudomonas aeruginosa PAO positively controls the production of the autoinducer N-butyryl-homoserine lactone and the formation of the virulence factors pyocyanin, cyanide, and lipase. Mol. Microbiol. 24:309319.
64. Rumbaugh, K. P.,, J. A. Griswold, and, A. N. Hamood. 2000. The role of quorum sensing in the in vivo virulence of Pseudomonas aeruginosa. Microbes Infect. 2:17211731.
65. Rust, L.,, E. C. Pesci, and, B. H. Iglewski. 1996. Analysis of the Pseudomonas aeruginosa elastase (lasB) regulatory region. J. Bacteriol. 178:11341140.
66. Schuster, M.,, and E. P. Greenberg. 2006. A network of networks: quorum-sensing gene regulation in Pseudomonas aeruginosa. Int. J. Med. Microbiol. 296:7381.
67. Schuster, M.,, A. C. Hawkins,, C. S. Harwood, and, E. P. Greenberg. 2004. The Pseudomonas aeruginosa RpoS regulon and its relationship to quorum sensing. Mol. Microbiol. 51:973985.
68. Schuster, M.,, C. P. Lohstroh,, T. Ogi, and, E. P. Greenberg. 2003. Identification, timing and signal specificity of Pseudomonas aeruginosa quorum-controlled genes: a transcriptome analysis. J. Bacteriol. 185:20662079.
69. Schuster, M.,, M. L. Urbanowski, and, E. P. Greenberg. 2004. Promoter specificity in Pseudomonas aeruginosa quorum sensing revealed by DNA binding of purified LasR. Proc. Natl. Acad. Sci. USA 101:1583315839.
70. Seed, P. C.,, L. Passador, and, B. H. Iglewski. 1995. Activation of the Pseudomonas aeruginosa lasI gene by LasR and the Pseudomonas autoinducer PAI: an autoinduction regulatory hierarchy. J. Bacteriol. 177:654659.
71. Smith, R. S.,, and B. H. Iglewski. 2003. P. aeruginosa quorum-sensing systems and virulence. Curr. Opin. Microbiol. 6:5660.
72. Stevens, A. M.,, N. Fujita,, A. Ishihama, and, E. P. Greenberg. 1999. Involvement of the RNA polymerase alpha-subunit C-terminal domain in LuxR-dependent activation of the Vibrio fischeri luminescence genes. J. Bacteriol. 181:47044707.
73. Stevens, A. M.,, and E. P. Greenberg. 1999. p. 231–242. In G. M. Dunny, and S. C. Winans (ed.), Cell-Cell Signaling in Bacteria. ASM Press, Washington, DC.
74. Stevens, A. M.,, and E. P. Greenberg. 1997. Quorum sensing in Vibrio fischeri: essential elements for activation of the luminescence genes. J. Bacteriol. 179:557562.
75. Taga, M. E.,, and B. L. Bassler. 2003. Chemical communication among bacteria. Proc. Natl. Acad. Sci. USA 100(Suppl 2):1454914554.
76. Trott, A. E.,, and A. M. Stevens. 2001. Amino acid residues in LuxR critical for its mechanism of transcriptional activation during quorum sensing in Vibrio fischeri. J. Bacteriol. 183:387392.
77. Urbanowski, M. L.,, C. P. Lostroh, and, E. P. Greenberg. 2004. Reversible acyl-homoserine lactone binding to purified Vibrio fischeri LuxR protein. J. Bacteriol. 186:631637.
78. Vannini, A.,, C. Volpari,, C. Gargioli,, E. Muraglia,, R. Cortese,, R. De Francesco,, P. Neddermann, and, S. D. Marco. 2002. The crystal structure of the quorum sensing protein TraR bound to its autoinducer and target DNA. EMBO J. 21:43934401.
79. Vasil, M. L. 2003. DNA microarrays in analysis of quorum sensing: strengths and limitations. J. Bacteriol. 185:20612065.
80. Ventre, I.,, A. L. Goodman,, I. Vallet-Gely,, P. Vasseur,, C. Soscia,, S. Molin,, S. Bleves,, A. Lazdunski,, S. Lory, and, A. Filloux. 2006. Multiple sensors control reciprocal expression of Pseudomonas aeruginosa regulatory RNA and virulence genes. Proc. Natl. Acad. Sci. USA 103:171176.
81. Ventre, I.,, F. Ledgham,, V. Prima,, A. Lazdunski,, M. Foglino, and, J. N. Sturgis. 2003. Dimerization of the quorum sensing regulator RhlR: development of a method using EGFP fluorescence anisotropy. Mol. Microbiol. 48:187198.
82. Viretta, A. U.,, and M. Fussenegger. 2004. Modeling the quorum sensing regulatory network of human-pathogenic Pseudomonas aeruginosa. Biotechnol. Prog. 20:670678.
83. Wagner, V. E.,, D. Bushnell,, L. Passador,, A. I. Brooks, and, B. H. Iglewski. 2003. Microarray analysis of Pseudomonas aeruginosa quorum-sensing regulons: effects of growth phase and environment. J. Bacteriol. 185:20802095.
84. Weingart, C. L.,, C. E. White,, S. Liu,, Y. Chai,, H. Cho,, C. S. Tsai,, Y. Wei,, N. R. Delay,, M. R. Gronquist,, A. Eberhard, and, S. C. Winans. 2005. Direct binding of the quorum sensing regulator CepR of Burkholderia cenocepacia to two target promoters in vitro. Mol. Microbiol. 57:452467.
85. Welch, M.,, D. E. Todd,, N. A. Whitehead,, S. J. McGowan,, B. W. Bycroft, and, G. P. Salmond. 2000. N-acyl homoserine lactone binding to the CarR receptor determines quorum-sensing specificity in Erwinia. EMBO J. 19:631641.
86. White, C. E.,, and S. C. Winans. 2005. Identification of amino acid residues of the Agrobacterium tumefaciens quorum-sensing regulator TraR that are critical for positive control of transcription. Mol. Microbiol. 55:14731486.
87. Whitehead, N. A.,, A. M. Barnard,, H. Slater,, N. J. Simpson, and, G. P. Salmond. 2001. Quorum-sensing in gram-negative bacteria. FEMS Microbiol. Rev. 25:365404.
88. Whiteley, M.,, and E. P. Greenberg. 2001. Promoter specificity elements in Pseudomonas aeruginosa quorum-sensing-controlled genes. J. Bacteriol. 183:55295234.
89. Whiteley, M.,, K. M. Lee, and, E. P. Greenberg. 1999. Identification of genes controlled by quorum sensing in Pseudomonas aeruginosa. Proc. Natl. Acad. Sci. USA 96:1390413909.
90. Winson, M. K.,, M. Camara,, A. Latifi,, M. Foglino,, S. R. Chhabra,, M. Daykin,, M. Bally,, V. Chapon,, G. P. Salmond,, B. W. Bycroft, et al. 1995. Multiple N-acyl-l-homoserine lactone signal molecules regulate production of virulence determinants and secondary metabolites in Pseudomonas aeruginosa. Proc. Natl. Acad. Sci. USA 92:94279431.
91. Wolfgang, M. C.,, V. T. Lee,, M. E. Gilmore, and, S. Lory. 2003. Coordinate regulation of bacterial virulence genes by a novel adenylate cyclase-dependent signaling pathway. Dev. Cell 4:253263.
92. Zhang, R. G.,, T. Pappas,, J. L. Brace,, P. C. Miller,, T. Oulmassov,, J. M. Molyneaux,, J. C. Anderson,, J. K. Bashkin,, S. C. Winans, and, A. Joachimiak. 2002. Structure of a bacterial quorum-sensing transcription factor complexed with pheromone and DNA. Nature 417:971974.
93. Zhu, J.,, and S. C. Winans. 1999. Autoinducer binding by the quorum-sensing regulator TraR increases affinity for target promoters in vitro and decreases TraR turnover rates in whole cells. Proc. Natl. Acad. Sci. USA 96:48324837.
94. Zhu, J.,, and S. C. Winans. 2001. The quorum-sensing transcriptional regulator TraR requires its cognate signaling ligand for protein folding, protease resistance, and dimerization. Proc. Natl. Acad. Sci. USA 98:15071512.

Tables

Generic image for table
TABLE 1

Characteristics of acyl-HSL/LuxR-type receptor interaction

Citation: Schuster M, Greenberg E. 2008. LuxR-Type Proteins in Quorum Sensing: Distinct Mechanisms with Global Implications, p 133-144. In Winans S, Bassler B (ed), Chemical Communication among Bacteria. ASM Press, Washington, DC. doi: 10.1128/9781555815578.ch9

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error