1887

Chapter 15 : Quorum Signaling and Symbiosis in the Marine Luminous Bacterium

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in
Zoomout

Quorum Signaling and Symbiosis in the Marine Luminous Bacterium , Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555815578/9781555814045_Chap15-1.gif /docserver/preview/fulltext/10.1128/9781555815578/9781555814045_Chap15-2.gif

Abstract:

This chapter reviews the role of quorum sensing in , focusing on recent developments in one's understanding of the genetics and physiology of cell-cell signaling by populations of these bacteria, both in culture and in their light-organ symbioses. Particular emphasis is placed on outlining the regulatory factors and pathways by which quorum sensing coordinates the biological activities of this bioluminescent microbe. Early work showed that strains native to were especially well adapted to this host and that nonnative strains such as MJ1 did not colonize juvenile squid well; thus, MJ1 was not an appropriate strain for studying the symbiosis between and . Production of N-octanoyl-homoserine lactone (C-HSL) initiates stimulation of the operon at moderate cell densities; if ES114 had relatively low expression of AinS and low C-HSL output, this deficiency could potentially explain why ES114 is so much dimmer than MJ1. Most likely, then, the large difference in the levels of N-3-oxo-hexanoyl-homoserine lactone (3-O-C-HSL) production and luminescence seen between cultures of ES114 and MJ1 is due to external regulatory influences on the autoinducer synthase genes, and such regulation may be multifactorial. Biochemical and genetic studies of Acyl-homoserine lactone (AHL) signaling in have shown that, in the presence of an inducing concentration of the LuxM-synthesized AHL, the receptor, LuxN,participates in a phosphorelay cascade by stimulating the relative dephosphorylation of LuxU.

Citation: Stabb E, Schaefer A, Bose J, Ruby E. 2008. Quorum Signaling and Symbiosis in the Marine Luminous Bacterium , p 233-250. In Winans S, Bassler B (ed), Chemical Communication among Bacteria. ASM Press, Washington, DC. doi: 10.1128/9781555815578.ch15

Key Concept Ranking

Furanosyl Borate Diester
0.49658072
Quorum Sensing
0.48551682
0.49658072
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of FIGURE 1
FIGURE 1

Specific luminescence (luminescence per A) of ES114 (A) or MJ1 (B) grown at 24°C in 250-ml flasks, shaken at 200 rpm, in 50 (diamonds), 100 (squares), or 200 (triangles) ml of SWTO, a rich nutrient medium ( ). Bacterial cell density was measured by absorbance of the culture at 595 nm ( ).

Citation: Stabb E, Schaefer A, Bose J, Ruby E. 2008. Quorum Signaling and Symbiosis in the Marine Luminous Bacterium , p 233-250. In Winans S, Bassler B (ed), Chemical Communication among Bacteria. ASM Press, Washington, DC. doi: 10.1128/9781555815578.ch15
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2
FIGURE 2

Model of quorum sensing in ES114. Each gene is indicated by a labeled open arrow with the open reading frame designation from the genome database provided underneath in parentheses (e.g., is designated VFA924). The structures of three autoinducer molecules are presented underneath their respective synthases, and a “?” by AI-2 indicates that its structure is inferred but has not been identified in . Interactions between autoinducers, proteins, genes, and small RNAs (designated “sRNAs”) are indicated, and dotted lines around sRNA or protein components indicate that these have been identified in the genome database but not functionally confirmed in ES114 experimentally.

Citation: Stabb E, Schaefer A, Bose J, Ruby E. 2008. Quorum Signaling and Symbiosis in the Marine Luminous Bacterium , p 233-250. In Winans S, Bassler B (ed), Chemical Communication among Bacteria. ASM Press, Washington, DC. doi: 10.1128/9781555815578.ch15
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555815578.ch15
1. Arnold, J. M.,, C. Singley, and, L. Williams-Arnold. 1972. Embryonic development and post-hatch survival of the sepiolid squid Euprymna scolopes under laboratory conditions. Veliger 14:361364.
2. Beeston, A. L.,, and M. G. Surette. 2002. pfs-dependent regulation of autoinducer-2 production in Salmonella enterica serovar Typhimurium. J. Bacteriol. 184:34503456.
3. Boettcher, K. J.,, and E. G. Ruby. 1990. Depressed light emission by symbiotic Vibrio fischeri of the sepiolid squid Euprymna scolopes. J. Bacteriol. 172:37013706.
4. Boettcher, K. J.,, and E. G. Ruby. 1995. Detection and quantification of Vibrio fischeri autoinducer from symbiotic squid light organs. J. Bacteriol. 177:10531058.
5. Boettcher, K. J.,, E. G. Ruby, and, M. J. McFall-Ngai. 1996. Bioluminescence in the symbiotic squid Euprymna scolopes is controlled by a daily biological rhythm. J. Comp. Physiol. 179:6573.
6. Bose, J. L.,, U. Kim,, W. Batrtkowski,, R. P. Gunsalus,, A. M. Overley,, N. L. Lyell,, K. L. Visick, and, E. V. Stabb. 2007. Bioluminescence in Vibrio fischeri is controlled by the redox-responsive regulator ArcA. Mol. Microbiol. 65:538553.
7. Reference deleted.
8. Callahan, S. M.,, and P. V. Dunlap. 2000. LuxR-and acyl-homoserine-lactone-controlled non-lux genes define a quorum-sensing regulon in Vibrio fischeri. J. Bacteriol. 182:28112822.
9. Chen, X.,, S. Schauder,, N. Potier,, A. Van Dorsselaer,, I. Pelczer,, B. L. Bassler, and, F. M. Hughson. 2002. Structural identification of a bacterial quorum-sensing signal containing boron. Nature 415:545549.
10. Chun, C. K.,, E. A. Ozer,, M. J. Welsh,, J. Zabner, and, E. P. Greenberg. 2004. Inactivation of a Pseudomonas aeruginosa quorum-sensing signal by human airway epithelia. Proc. Natl. Acad. Sci. USA 101:35873590.
11. Cloud, K. A.,, and J. P. Dillard. 2002. A lytic transglycosylase of Neisseria gonorrhoeae is involved in peptidoglycan-derived cytotoxin production. Infect. Immun. 70:27522757.
12. Cloud-Hansen, K. A.,, S. B. Peterson,, E. V. Stabb,, W. E. Goldman,, M. J. McFall-Ngai, and, J. Handelsman. 2006. Breaching the great wall: peptidoglycan and microbial interactions. Nat. Rev. Microbiol. 4:710716.
13. Cookson, B. T.,, A. N. Tyler, and, W. E. Goldman. 1989. Primary structure of the peptidoglycan-derived tracheal cytotoxin of Bordetella pertussis. Biochemistry 28:17441749.
14. Croxatto, A. 2006. VanT, a central regulator of quorum sensing signalling in Vibrio anguillarum. Umea University, Umea, Sweden.
15. Croxatto, A.,, V. J. Chalker,, J. Lauritz,, J. Jass,, A. Hardman,, P. Williams,, M. Camara, and, D. L. Milton. 2002. VanT, a homologue of Vibrio harveyi LuxR, regulates serine, metalloprotease, pigment, and biofilm production in Vibrio anguillarum. J. Bacteriol. 184:16171629.
16. Croxatto, A.,, J. Lauritz,, C. Chen, and, D. L. Milton. 2007. Vibrio anguillarum colonization of rainbow trout integument requires a DNA locus involved in exopolysaccharide transport and biosynthesis. Environ. Microbiol. 9:370382.
17. Croxatto, A.,, J. Pride,, A. Hardman,, P. Williams,, M. Camara, and, D. L. Milton. 2004. A distinctive dual-channel quorum-sensing system operates in Vibrio anguillarum. Mol. Microbiol. 52:16771689.
18. Devine, J. H.,, C. Countryman, and, T. O. Baldwin. 1988. Nucleotide sequence of the luxR and luxI genes and structure of the primary regulatory region of the lux operon of Vibrio fischeri ATCC7744. Biochemistry 27:837842.
19. Devine, J. H.,, G. S. Shadel, and, T. O. Baldwin. 1989. Identification of the operator of the lux regulon from Vibrio fischeri ATCC 7744. Proc. Natl. Acad. Sci. USA 86:56885692.
20. Dunlap, P. V. 1999. Quorum regulation of luminescence in Vibrio fischeri. J. Mol. Microbiol. Biotechnol. 1:512.
21. Dunn, A. K.,, D. S. Millikan,, D. M. Adin,, J. L. Bose, and, E. V. Stabb. 2006. New rfp- and pES213-derived tools for analyzing symbiotic Vibrio fischeri reveal patterns of infection and lux expression in situ. Appl. Environ. Microbiol. 72:802810.
22. Eberhard, A.,, A. L. Burlingame,, C. Eberhard,, G. L. Kenyon,, K. H. Nealson,, and, and N. J. Oppenheimer. 1981. Structural identification of autoinducer of Photobacterium fischeri luciferase. Biochemistry 20:24442449.
23. Egland, K. A.,, and E. P. Greenberg. 2000. Conversion of the Vibrio fischeri transcriptional activator, LuxR, to a repressor. J. Bacteriol. 182:805811.
24. Engebrecht, J.,, K. Nealson, and, M. Silverman. 1983. Bacterial bioluminescence: isolation and genetic analysis of functions from Vibrio fischeri. Cell 32:773781.
25. Engebrecht, J.,, and M. Silverman. 1984. Identification of genes and gene products necessary for bacterial bioluminescence. Proc. Natl. Acad. Sci. USA 81:41544158.
26. Fidopiastis, P. M.,, C. M. Miyamoto,, M. G. Jobling,, E. A. Meighen, and, E. G. Ruby. 2002. LitR, a new transcriptional activator in Vibrio fischeri, regulates luminescence and symbiotic light organ colonization. Mol. Microbiol. 45:131143.
27. Fidopiastis, P. M.,, S. von Boletzky, and, E. G. Ruby. 1998. A new niche for Vibrio logei, the predominant light organ symbiont of squids in the genus Sepiola. J. Bacteriol. 180:5964.
28. Foster, J. S.,, M. A. Apicella, and, M. J. McFall-Ngai. 2000. Vibrio fischeri lipopolysaccharide induces developmental apoptosis, but not complete morphogenesis, of the Euprymna scolopes symbiotic light organ. Dev. Biol. 226:242254.
29. Friedrich, W. F.,, and E. P. Greenberg. 1983. Glucose repression of luminescence and luciferase in Vibrio fischeri. Arch. Microbiol. 134:8791.
30. Fuqua, C.,, M. R. Parsek, and, E. P. Greenberg. 2001. Regulation of gene expression by cell-to-cell communication: acyl-homoserine lactone quorum sensing. Annu. Rev. Genet. 35:439468.
31. Geszvain, K.,, and K. L. Visick. 2006. Roles of bacterial regulators in the symbiosis between Vibrio fischeri and Euprymna scolopes. Prog. Mol. Subcell. Biol. 41:277290.
32. Gilson, L.,, A. Kuo, and, P. V. Dunlap. 1995. AinS and a new family of autoinducer synthesis proteins. J. Bacteriol. 177:69466951.
33. Gonzalez, J. E.,, and M. M. Marketon. 2003. Quorum sensing in nitrogen-fixing rhizobia. Microbiol. Mol. Biol. Rev. 67:574592.
34. Goodson, M. S.,, M. Kojadinovic,, J. V. Troll,, T. E. Scheetz,, T. L. Casavant,, M. B. Soares, and, M. J. McFall-Ngai. 2005. Identifying components of the NF-kappaB pathway in the beneficial Euprymna scolopes-Vibrio fischeri light organ symbiosis. Appl. Environ. Microbiol. 71:69346946.
35. Goryachev, A. B.,, D. J. Toh,, K. B. Wee,, T. Lee,, H. B. Zhang, and, L. H. Zhang. 2005. Transition to quorum sensing in an Agrobacterium population: a stochastic model. PLoS Comput Biol 1:e37.
36. Graf, J.,, P. V. Dunlap, and, E. G. Ruby. 1994. Effect of transposon-induced motility mutations on colonization of the host light organ by Vibrio fischeri. J. Bacteriol. 176:69866991.
37. Graf, J.,, and E. G. Ruby. 1998. Host-derived amino acids support the proliferation of symbiotic bacteria. Proc. Natl. Acad. Sci. USA 95:18181822.
38. Gray, K. M.,, and E. P. Greenberg. 1992. Physical and functional maps of the luminescence gene cluster in an autoinducer-deficient Vibrio fischeri strain isolated from a squid light organ. J. Bacteriol. 174:43844390.
39. Greenberg, E. P. 1997. Quorum sensing in gram-negative bacteria. ASM News 63:371377.
40. Hao, G.,, and T. J. Burr. 2006. Regulation of long-chain N-acyl-homoserine lactones in Agrobacterium vitis. J. Bacteriol. 188:21732183.
41. Haygood, M. G.,, and K. H. Nealson. 1985. Mechanisms of iron regulation of luminescence in Vibrio fischeri. J. Bacteriol. 162:209216.
42. Henke, J. M.,, and B. L. Bassler. 2004. Quorum sensing regulates type III secretion in Vibrio harveyi and Vibrio parahaemolyticus. J. Bacteriol. 186:37943805.
43. Henke, J. M.,, and B. L. Bassler. 2004. Three parallel quorum-sensing systems regulate gene expression in Vibrio harveyi. J. Bacteriol. 186:69026914.
44. Jones, B. W.,, and M. K. Nishiguchi. 2004. Counterillumination in the Hawaiian bobtail squid, Euprymna scolopes Berry (Mollusca:-Cephalopoda). Mar. Biol. 144:11511155.
45. Koropatnick, T.,, J. R. Kimbell, and, M. J. McFall-Ngai. 2007. Responses of host hemocytes during initiation of the squid-Vibrio symbiosis. Biol. Bull. 212:2939.
46. Koropatnick, T. A.,, J. T. Engle,, M. A. Apicella,, E. V. Stabb,, W. E. Goldman, and, M. J. McFall-Ngai. 2004. Microbial factor-mediated development in a host-bacterial mutualism. Science 306:11861188.
47. Kulkarni, P. R.,, X. Cui,, J. W. Williams,, A. M. Stevens, and, R. V. Kulkarni. 2006. Prediction of CsrA-regulating small RNAs in bacteria and their experimental verification in Vibrio fischeri. Nucleic Acids Res. 34:33613369.
48. Kuo, A.,, S. M. Callahan, and, P. V. Dunlap. 1996. Modulation of luminescence operon expression by N-octanoyl-l-homoserine lactone in ainS mutants of Vibrio fischeri. J. Bacteriol. 178:971976.
49. Lee, K.-H., and,, and E. G. Ruby. 1994. Effect of the squid host on the abundance and distribution of symbiotic Vibrio fischeri in nature. Appl. Environ. Microbiol. 60:15651571.
50. Lee, K.-H.,, and E. G. Ruby. 1992. Detection of the light organ symbiont, Vibrio fischeri, in Hawaiian seawater by using lux gene probes. Appl. Environ. Microbiol. 58:942947.
51. Lenz, D. H.,, M. B. Miller,, J. Zhu,, R. V. Kulkarni, and, B. L. Bassler. 2005. CsrA and three redundant small RNAs regulate quorum sensing in Vibrio cholerae. Mol. Microbiol. 58:11861202.
52. Lilley, B. N.,, and B. L. Bassler. 2000. Regulation of quorum sensing in Vibrio harveyi by LuxO and sigma-54. Mol. Microbiol. 36:940954.
53. Liu, Z.,, F. R. Stirling, and, J. Zhu. 2007. Temporal quorum-sensing induction regulates Vibrio cholerae biofilm architecture. Infect. Immun. 75:122126.
54. Loh, J.,, E. A. Pierson,, L. S. Pierson,, G. Stacey, and, A. Chatterjee. 2002. Quorum sensing in plant-associated bacteria. Curr. Opin. Plant Biol. 5:285290.
55. Lupp, C.,, and E. G. Ruby. 2004. Vibrio fischeri LuxS and AinS: comparative study of two signal synthases. J. Bacteriol. 186:38733881.
56. Lupp, C.,, and E. G. Ruby. 2005. Vibrio fischeri uses two quorum-sensing systems for the regulation of early and late colonization factors. J. Bacteriol. 187:36203629.
57. Lupp, C.,, M. Urbanowski,, E. P. Greenberg, and, E. G. Ruby. 2003. The Vibrio fischeri quorum-sensing systems ain and lux sequentially induce luminescence gene expression and are important for persistence in the squid host. Mol. Microbiol. 50:319331.
58. Miller, S. T.,, K. B. Xavier,, S. R. Campagna,, M. E. Taga,, M. F. Semmelhack,, B. L. Bassler, and, F. M. Hughson. 2004. Salmonella typhimurium recognizes a chemically distinct form of the bacterial quorum-sensing signal AI-2. Mol. Cell. 15:677687.
59. Millikan, D. S.,, and E. G. Ruby. 2003. FlrA, a sigma54-dependent transcriptional activator in Vibrio fischeri, is required for motility and symbiotic light-organ colonization. J. Bacteriol. 185:35473557.
60. Milton, D. L. 2006. Quorum sensing in vibrios: complexity for diversification. Int. J. Med. Microbiol. 296:6171.
61. Miyamoto, C. M.,, P. V. Dunlap,, E. G. Ruby, and, E. A. Meighen. 2003. LuxO controls luxR expression in Vibrio harveyi: evidence for a common regulatory mechanism in Vibrio. Mol. Microbiol. 48:537548.
62. Mok, K. C.,, N. S. Wingreen, and, B. L. Bassler. 2003. Vibrio harveyi quorum sensing: a coincidence detector for two autoinducers controls gene expression. EMBO J. 22:870881.
63. Nealson, K.,, and A. Markovitz. 1970. Mutant analysis and enzyme subunit complementation in bacterial bioluminescence in Photobacterium fischeri. J. Bacteriol. 104:300312.
64. Nealson, K. H. 1999. Early observations defining quorum-dependent gene expression, p. 277–289. In G. M. Dunny, and S. C. Winans (ed.), Cell-Cell Signaling in Bacteria. ASM Press, Washington, DC.
65. Nealson, K. H., and,, and J. W. Hastings. 1991. The luminous bacteria, p. 1332–1345. In A. Balows,, H. G. Truper,, M. Dworkin,, W. Harder, and, K. H. Schleifer (ed.), The Prokaryotes, a Handbook on the Biology of Bacteria: Ecophysiology, Isolation, Identification, Applications, 2nd ed. Springer, Berlin, Germany.
66. Nealson, K. H.,, and J. W. Hastings. 1977. Low oxygen is optimal for luciferase synthesis in some bacteria. Ecological implications. Arch. Microbiol. 112:916.
67. Nelson, E. J.,, P. M. Fidopiastis, and, E. G. Ruby. 2007. A novel lux operon in the cryptically bioluminescent fish pathogen Vibrio salmonicida is associated with virulence. Appl. Environ. Microbiol. 73:18251833.
68. Nishiguchi, M. K.,, E. G. Ruby, and, M. J. McFall-Ngai. 1997. Phenotypic bioluminescence as an indicator of competitive dominance in the Euprymna-Vibrio symbiosis, p. 123–126. In J. W. Hastings,, L. J. Krick,, and P. E. Stanley (ed.), Bioluminescence and Chemiluminescence: Molecular Reporting with Photons. Wiley and Sons, New York, NY.
69. Nyholm, S. V.,, B. Deplancke,, H. R. Gaskins,, M. A. Apicella, and, M. J. McFall-Ngai. 2002. Roles of Vibrio fischeri and nonsymbiotic bacteria in the dynamics of mucus secretion during symbiont colonization of the Euprymna scolopes light organ. Appl. Environ. Microbiol. 68:51135122.
70. Nyholm, S. V.,, and M. J. McFall-Ngai. 2003. Dominance of Vibrio fischeri in secreted mucus outside the light organ of Euprymna scolopes: the first site of symbiont specificity. Appl. Environ. Microbiol. 69:39323937.
71. Nyholm, S. V.,, and M. J. McFall-Ngai. 1998. Sampling the light-organ microenvironment of Euprymna scolopes: description of a population of host cells in association with the bacterial symbiont Vibrio fischeri. Biol. Bull. 195:8997.
72. Nyholm, S. V.,, and M. J. McFall-Ngai. 2004. The winnowing: establishing the squid-Vibrio symbiosis. Nat. Rev. Microbiol. 2:632642.
73. Nyholm, S. V.,, E. V. Stabb,, E. G. Ruby, and, M. J. McFall-Ngai. 2000. Establishment of an animal-bacterial association: recruiting symbiotic vibrios from the environment. Proc. Natl. Acad. Sci. USA 97:1023110235.
74. Pestova, E. V.,, L. S. Havarstein, and, D. A. Morrison. 1996. Regulation of competence for genetic transformation in Streptococcus pneumoniae by an auto-induced peptide pheromone and a two-component regulatory system. Mol. Microbiol. 21:853862.
75. Rosenthal, R. S. 1979. Release of soluble peptidoglycan from growing gonococci: hexaminidase and amidase activities. Infect. Immun. 24:869878.
76. Ruby, E. G.,, and L. M. Asato. 1993. Growth and flagellation of Vibrio fischeri during initiation of the sepiolid squid light organ symbiosis. Arch. Microbiol. 159:160167.
77. Ruby, E. G.,, and K. H. Lee. 1998. The Vibrio fischeri-Euprymna scolopes light organ association: current ecological paradigms. Appl. Environ. Microbiol. 64:805812.
78. Ruby, E. G.,, and J. G. Morin. 1979. Luminous enteric bacteria of marine fishes in a study of their distribution, density and dispersion. Appl. Environ. Microbiol. 38:406411.
79. Ruby, E. G.,, and K. H. Nealson. 1976. Symbiotic association of Photobacterium fischeri with the marine luminous fish Monocentris japonica; a model of symbiosis based on bacterial studies. Biol. Bull. 151:574586.
80. Ruby, E. G.,, M. Urbanowski,, J. Campbell,, A. Dunn,, M. Faini,, R. Gunsalus,, P. Lostroh,, C. Lupp,, J. McCann,, D. Millikan,, A. Schaefer,, E. Stabb,, A. Stevens,, K. Visick,, C. Whistler, and, E. P. Greenberg. 2005. Complete genome sequence of Vibrio fischeri: a symbiotic bacterium with pathogenic congeners. Proc Natl Acad Sci USA 102:30043009.
81. Schaefer, A. L.,, D. L. Val,, B. L. Hanzelka,, J. E. Cronan, Jr., and, E. P. Greenberg. 1996. Generation of cell-to-cell signals in quorum sensing: acyl homoserine lactone synthase activity of a purified Vibrio fischeri LuxI protein. Proc. Natl. Acad. Sci. USA 93:95059509.
82. Schuster, M.,, and E. P. Greenberg. 2006. A network of networks: quorum-sensing gene regulation in Pseudomonas aeruginosa. Int. J. Med. Microbiol. 296:7381.
83. Seed, P. C.,, L. Passador, and, B. H. Iglewski. 1995. Pseudomonas aeruginosa lasI gene by LasR and the Pseudomonas autoinducer PAI: an autoinduction regulatory hierarchy. J. Bacteriol. 177:654659.
84. Shiner, E. K.,, K. P. Rumbaugh, and, S. C. Williams. 2005. Interkingdom signaling: deciphering the language of acyl homoserine lactones. FEMS Microbiol. Rev. 29:935947.
85. Sitnikov, D. M.,, J. B. Schineller, and, T. O. Baldwin. 1995. Transcriptional regulation of bioluminescence genes from Vibrio fischeri. Mol. Microbiol. 17:801812.
86. Sonnleitner, E.,, M. Schuster,, T. Sorger-Domenigg,, E. P. Greenberg, and, U. Blasi. 2006. Hfq-dependent alterations of the transcriptome profile and effects on quorum sensing in Pseudomonas aeruginosa. Mol. Microbiol. 59:15421558.
87. Stabb, E. V. 2006. The Vibrio fischeri-Euprymna scolopes light organ symbiosis, p. 204–218. In F. L. Thompson,, B. Austin,, and J. Swings (ed.), The Biology of Vibrios. ASM Press, Washington, DC.
88. Stabb, E. V.,, K. L. Visick,, D. S. Millikan,, A. A. Corcoran,, L. Gilson,, S. V. Nyholm,, M. J. McFall-Ngai, and, E. G. Ruby. 2001. The Vibrio fischeri-Euprymna scolopes symbiosis: a model marine animal-bacteria interaction, p. 269–277. In N. Saxena (ed.), Recent Aadvances in Marine Sciences and Technology, 2000. Pacon International, Honolulu, HI.
89. Suzuki, K.,, X. Wang,, T. Weilbacher,, A. K. Pernestig,, O. Melefors,, D. Georgellis,, P. Babitzke, and, T. Romeo. 2002. Regulatory circuitry of the CsrA/CsrB and BarA/UvrY systems of Escherichia coli. J. Bacteriol. 184:51305140.
90. Taga, M. E.,, J. L. Semmelhack, and, B. L. Bassler. 2001. The LuxS-dependent autoinducer AI-2 controls the expression of an ABC transporter that functions in AI-2 uptake in Salmonella typhimurium. Mol Microbiol. 42:777793.
91. Vance, R. E.,, J. Zhu, and, J. J. Mekalanos. 2003. A constitutively active variant of the quorum-sensing regulator LuxO affects protease production and biofilm formation in Vibrio cholerae. Infect. Immun. 71:25712576.
92. Visick, K. L.,, J. Foster,, J. Doino,, M. McFall-Ngai, and, E. G. Ruby. 2000. Vibrio fischeri lux genes play an important role in colonization and development of the host light organ. J. Bacteriol. 182:45784586.
93. Visick, K. L.,, and M. J. McFall-Ngai. 2000. An exclusive contract: specificity in the Vibrio fischeri-Euprymna scolopes partnership. J. Bacteriol. 182:17791787.
94. Visick, K. L.,, T. M. O’Shea,, A. H. Klein,, K. Geszvain, and, A. J. Wolfe. 2007. The sugar phosphotransferase system (PTS) of Vibrio fischeri inhibits both motility and bioluminescence. J. Bacteriol. 189:25712574.
95. Visick, K. L.,, and E. G. Ruby. 1999. The emergent properties of quorum sensing: consequences to bacteria of autoinducer signaling in their natural environment, p. 333–352. In G. M. Dunny, and S. C. Winans (ed.), Cell-Cell Signaling in Bacteria. ASM Press, Washington, DC.
96. Visick, K. L.,, and E. G. Ruby. 2006. Vibrio fischeri and its host: it takes two to tango. Curr. Opin. Microbiol. 9:632638.
97. Walters, M.,, and V. Sperandio. 2006. Quorum sensing in Escherichia coli and Salmonella. Int. J. Med. Microbiol. 296:125131.
98. Wang, L.,, J. Li,, J. C. March,, J. J. Valdes, and, W. E. Bentley. 2005. luxS-dependent gene regulation in Escherichia coli K-12 revealed by genomic expression profiling. J. Bacteriol. 187:83508360.
99. Waters, C. M.,, and B. L. Bassler. 2005. Quorum sensing: cell-to-cell communication in bacteria. Annu. Rev. Cell. Dev. Biol. 21:319346.
100. Wei, S. L.,, and R. E. Young. 1989. Development of symbiotic bacterial luminescence in a nearshore cephalopod, Euprymna scolopes. Mar. Biol. 103:541546.
101. Whistler, C. A.,, and E. G. Ruby. 2003. GacA regulates symbiotic colonization traits of Vibrio fischeri and facilitates a beneficial association with an animal host. J. Bacteriol. 185:72027212.
102. Wisniewski-Dye, F.,, and J. A. Downie. 2002. Quorum-sensing in Rhizobium. Antonie, Leeuwenhoek. 81:397407.
103. Wolfe, A. J.,, D. S. Millikan,, J. M. Campbell, and, K. L. Visick. 2004. Vibrio fischeri sigma54 controls motility, biofilm formation, luminescence, and colonization. Appl. Environ. Microbiol. 70:25202524.
104. Xavier, K. B.,, and B. L. Bassler. 2005. Regulation of uptake and processing of the quorum-sensing autoinducer AI-2 in Escherichia coli. J. Bacteriol. 187:238248.
105. Yip, E. S.,, K. Geszvain,, C. R. Deloney-Marino, and, K. L. Visick. 2006. The symbiosis regulator RscS controls the syp gene locus, biofilm formation and symbiotic aggregation by Vibrio fischeri. Mol. Microbiol. 62:15861600.
106. Zhu, J.,, and J. J. Mekalanos. 2003. Quorum sensing-dependent biofilms enhance colonization in Vibrio cholerae. Dev. Cell 5:647656.
107. Zhu, J.,, M. B. Miller,, R. E. Vance,, M. Dziejman,, B. L. Bassler, and, J. J. Mekalanos. 2002. Quorum-sensing regulators control virulence gene expression in Vibrio cholerae. Proc. Natl. Acad. Sci. USA 99:31293134.

Tables

Generic image for table
TABLE 1

Output of HSL autoinducers by strains ES114 and MJ1

Citation: Stabb E, Schaefer A, Bose J, Ruby E. 2008. Quorum Signaling and Symbiosis in the Marine Luminous Bacterium , p 233-250. In Winans S, Bassler B (ed), Chemical Communication among Bacteria. ASM Press, Washington, DC. doi: 10.1128/9781555815578.ch15
Generic image for table
TABLE 2

Presence of homologous quorum-sensing systems in some species

Citation: Stabb E, Schaefer A, Bose J, Ruby E. 2008. Quorum Signaling and Symbiosis in the Marine Luminous Bacterium , p 233-250. In Winans S, Bassler B (ed), Chemical Communication among Bacteria. ASM Press, Washington, DC. doi: 10.1128/9781555815578.ch15

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error