1887

Chapter 17 : Acyl-Homoserine Lactone Biosynthesis: Structure and Mechanism

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in
Zoomout

Acyl-Homoserine Lactone Biosynthesis: Structure and Mechanism, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555815578/9781555814045_Chap17-1.gif /docserver/preview/fulltext/10.1128/9781555815578/9781555814045_Chap17-2.gif

Abstract:

The first quorum-sensing system to be discovered was the Lux system of , which regulates light production in the light organ of deep sea fish and squid via an acyl-homoserine lactone (AHL) signaling molecule. The LuxI-type AHL synthases catalyze the formation of the AHL from the substrates S-adenosyl-L-methionine (SAM) and acyl-acyl carrier protein (acyl-ACP). Enzymatic synthesis of AHLs using purified substrates for TraI (from ) verified that both SAM and acyl-ACP are substrates for AHL synthesis in vitro. X-ray crystallographic structural analyses of two LuxI-type AHL synthases form the basis of the current molecular understanding of AHL synthesis. The structure of the EsaI enzyme from was determined from the native sequence. The structure of the LasI enzyme from was determined from an active form that had been engineered to improve solubility and crystallization properties. The LasI structure provided a less clear explanation for the selectivity of AHL synthases for acyl-ACPs with long acyl chains. The LasI acyl-chain binding pocket is actually an elongated tunnel through the enzyme that is formed by hydrophobic residues at similar positions in the enzyme as those in the EsaI pocket. The residues in EsaI that occlude the pocket are larger than those in the same position in LasI, which limits the acyl chain size to a C acyl-chain.

Citation: Churchill M, Herman J. 2008. Acyl-Homoserine Lactone Biosynthesis: Structure and Mechanism, p 275-289. In Winans S, Bassler B (ed), Chemical Communication among Bacteria. ASM Press, Washington, DC. doi: 10.1128/9781555815578.ch17

Key Concept Ranking

Fatty Acid Biosynthesis
0.46750706
0.46750706
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of FIGURE 1
FIGURE 1

Chemical structure of AHLs. AHLs found in gram-negative bacteria vary by substitution at the C-3 position (R1) and the length and unsaturation of R2. Shown also are the structures of a subset of the AHLs that are produced by the AHL synthases EsaI from (or LuxI from ) and LasI from .

Citation: Churchill M, Herman J. 2008. Acyl-Homoserine Lactone Biosynthesis: Structure and Mechanism, p 275-289. In Winans S, Bassler B (ed), Chemical Communication among Bacteria. ASM Press, Washington, DC. doi: 10.1128/9781555815578.ch17
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2
FIGURE 2

Schematic diagrams of the reactions performed by AHL synthases and structural homologues. (A) AHL synthesis reaction. AHL synthases catalyze the formation of AHLs from SAM and acyl-ACP by acylation of SAM and lactonization of the methionine moiety to give, in addition to the AHL, holo-ACP and 5′-methylthioadenosine products ( ). (B) The GNATs catalyze acetylation of lysine or other primary amines using acetyl-CoA as a substrate ( ). (C) The acyl tyrosine synthases catalyze the acylation of amino acids using acyl-ACP as a substrate ( ).

Citation: Churchill M, Herman J. 2008. Acyl-Homoserine Lactone Biosynthesis: Structure and Mechanism, p 275-289. In Winans S, Bassler B (ed), Chemical Communication among Bacteria. ASM Press, Washington, DC. doi: 10.1128/9781555815578.ch17
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 3
FIGURE 3

Structure of the AHL synthases EsaI and LasI. (A) Sequence and topology diagram of the AHL synthases LasI and EsaI. The gray shaded regions are the most conserved sequence blocks within the AHL synthase family. The eight conserved residues of the AHL synthase family are highlighted in black, and those that are similar among AHL synthases are boxed in white. Below the sequences are shown the alpha-helices and beta-strands observed in the structures. (B and C) Ribbon diagrams depict the backbone structures of EsaI (B) and LasI (C). The conserved residues are drawn in dark gray. The active site V-shaped clefts are indicated by arrows.

Citation: Churchill M, Herman J. 2008. Acyl-Homoserine Lactone Biosynthesis: Structure and Mechanism, p 275-289. In Winans S, Bassler B (ed), Chemical Communication among Bacteria. ASM Press, Washington, DC. doi: 10.1128/9781555815578.ch17
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 4
FIGURE 4

Schematic diagram of the proposed AHL synthesis mechanism. (A) The interactions predicted to form between acyl-phosphopantetheine bound in the active site of EsaI are depicted as dotted lines for hydrogen bonds and curves for other types of interactions. (B) The proposed mechanism of acylation involves a direct nucleophilic attack by the amine of SAM on the C-1 position of the acyl chain. (C) The mechanism of lactonization is a direct nucleophilic attack on the C-γ position of SAM by the carboxylate oxygen atom, which will produce the lactone and release the product 5′-methylthioadenosine.

Citation: Churchill M, Herman J. 2008. Acyl-Homoserine Lactone Biosynthesis: Structure and Mechanism, p 275-289. In Winans S, Bassler B (ed), Chemical Communication among Bacteria. ASM Press, Washington, DC. doi: 10.1128/9781555815578.ch17
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 5
FIGURE 5

Specificity of AHL synthases. (A) Comparison of AHLs produced by EsaI and the EsaI T140A mutant, as analyzed by mass spectrometry ( ). (B) Comparison of AHLs produced by LasI and LasI-substitution mutants at the equivalent position T142 ( ). (C) The acyl-chain cavity/tunnel is shown as a surface representation that is visible though the protein ribbon diagram, shown in gray for both EsaI (C) ( ) and LasI (D) ( ).

Citation: Churchill M, Herman J. 2008. Acyl-Homoserine Lactone Biosynthesis: Structure and Mechanism, p 275-289. In Winans S, Bassler B (ed), Chemical Communication among Bacteria. ASM Press, Washington, DC. doi: 10.1128/9781555815578.ch17
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555815578.ch17
1. Atkinson, S.,, J. P. Throup,, G. Stewart,, and P. Williams. 1999. A hierarchical quorum-sensing system in Yersinia pseudotuberculosis is involved in the regulation of motility and clumping. Mol. Microbiol. 33:12671277.
2. Bassler, B. L.,, M. Wright,, R. E. Showalter,, and M. R. Silverman. 1993. Intercellular signalling in Vibrio harveyi: sequence and function of genes regulating expression of luminescence. Mol. Microbiol. 9:773786.
3. Beck von Bodman, S.,, and S. K. Farrand. 1995. Capsular polysaccharide biosynthesis and pathogenicity in Erwinia stewartii require induction by an N-acylhomoserine lactone autoinducer. J. Bacteriol. 177:50005008.
4. Beck von Bodman, S.,, G. T. Hayman,, and S. K. Farrand. 1992. Opine catabolism and conjugal transfer of the nopaline Ti plasmid pTiC58 are coordinately regulated by a single repressor. Proc. Natl. Acad. Sci. USA 89:643647.
5. Beck von Bodman, S.,, D. R. Majerczak,, and D. L. Coplin. 1998. A negative regulator mediates quorum-sensing control of exopolysaccharide production in Pantoea stewartii subsp stewartii. Proc. Natl. Acad. Sci. USA 95:76877692.
6. Brader, G.,, S. Sjoblom,, H. Hyytiainen,, K. Sims-Huopaniemi,, and E. T. Palva. 2005. Altering substrate chain length specificity of an acylhomoserine lactone synthase in bacterial communication. J. Biol. Chem. 280:1040310409.
7. Brencic, A.,, and S. C. Winans. 2005. Detection of and response to signals involved in host-microbe interactions by plant-associated bacteria. Microbiol. Mol. Biol. Rev. 69:155194.
8. Burton, E. O.,, H. W. Read,, M. C. Pellitteri,, and W. J. Hickey. 2005. Identification of acylhomoserine lactone signal molecules produced by Nitrosomonas europaea strain Schmidt. Appl. Environ. Microbiol. 71:49064909.
9. Byers, J. T.,, C. Lucas,, G. P. Salmond,, and M. Welch. 2002. Nonenzymatic turnover of an Erwinia carotovora quorum-sensing signaling molecule. J. Bacteriol. 184:11631171.
10. Chernin, L. S.,, M. K. Winson,, J. M. Thompson,, S. Haran,, B. W. Bycroft,, I. Chet,, P. Williams,, and G. S. Stewart. 1998. Chitinolytic activity in Chromobacterium violaceum: substrate analysis and regulation by quorum sensing. J. Bacteriol. 180:44354441.
11. Churchill, M. E. A. 2006. A new GNAT in bacterial signaling? Structure 14:13421344.
12. Clements, A.,, and R. Marmorstein. 2003. Insights into structure and function of GCN5/PCAF and yEsa 1 histone acetyltransferase domains. Methods Enzymol. 371:545564.
13. Cullinane, M.,, C. Baysse,, J. P. Morrissey,, and F. O’Gara. 2005. Identification of two lysophosphatidic acid acyltransferase genes with overlapping function in Pseudomonas fluorescens. Microbiology 151:30713080.
14. Davies, D. G.,, M. R. Parsek,, J. P. Pearson,, B. H. Iglewski,, J. W. Costerton,, and E. P. Greenberg. 1998. The involvement of cell-to-cell signals in the development of bacterial biofilm. Science 280:295298.
15. De Kievit, T. R.,, and B. H. Iglewski. 2000. Bacterial quorum sensing in pathogenic relationships. Infect. Immun. 68:48394849.
16. De Kievit, T. R.,, Y. Kakai,, J. K. Register,, E. C. Pesci,, and B. H. Iglewski. 2002. Role of the Pseudomonas aeruginosa las and rhl quorum-sensing systems in rhlI regulation. FEMS Microbiol. Lett. 212:101106.
17. Dong, Y.-H.,, L.-H. Wang,, J.-L. Xu,, H.-B. Zhang,, X.-F. Zhang,, and L.-H. Zhang. 2001. Quenching quorum-sensing-dependent bacterial infection by an N-acyl homoserine lactonase. Nature 411:813817.
18. Dunphy, G.,, C. Miyamoto,, and E. Meighen. 1997. A homoserine lactone autoinducer regulates virulence of an insect-pathogenic bacterium, Xenorhabdus nematophilus (Enterobacteriaceae). J. Bacteriol. 179:52885291.
19. Eberhard, A.,, A. L. Burlingame,, C. Eberhard,, G. L. Kenyon,, K. H. Nealson,, and N. J. Oppenheimer. 1981. Structural identification of autoinducer of Photobacterium fischeri. Biochemistry 20:24442449.
20. Eberl, L. 2006. Quorum sensing in the genus Burkholderia. Int. J. Med. Microbiol. 296:103110.
21. Engebrecht, J.,, and M. Silverman. 1984. Identification of genes and gene products necessary for bacterial bioluminescence. Proc. Natl. Acad. Sci. USA 81:41544158.
22. Freeman, J. A.,, B. N. Lilley,, and B. L. Bassler. 2000. A genetic analysis of the functions of LuxN: a two-component hybrid sensor kinase that regulates quorum sensing in Vibrio harveyi. Mol. Microbiol. 35:139149.
23. Fuqua, C.,, and A. Eberhard. 1999. Signal generation in autoinduction systems: synthesis of acylated homoserine lactones by LuxI-type proteins, p. 211–230. In G. Dunny, and S. C. Winans (ed.), Cell-Cell Communication in Bacteria. ASM Press, Washington, DC.
24. Fuqua, C.,, M. R. Parsek,, and E. P. Greenberg. 2001. Regulation of gene expression by cell-to-cell communication: acylhomoserine lactone quorum sensing. Annu. Rev. Genet. 35:439468.
25. Fuqua, W. C.,, S. C. Winans,, and E. P. Greenberg. 1996. Census and consensus in bacterial ecosystems: the LuxR-LuxI family of quorum-sensing transcriptional regulators. Annu. Rev. Microbiol. 50:727751.
26. Gilson, L.,, A. Kuo,, and P. V. Dunlap. 1995. AinS and a new family of autoinducer synthesis proteins. J. Bacteriol. 177:69466951.
27. Gould, T. A.,, J. Herman,, J. Krank,, R. C. Murphy,, and M. E. A. Churchill. 2006. Specificity of acylhomoserine lactone syntheses examined by mass spectrometry. J. Bacteriol. 188:773783.
28. Gould, T. A.,, H. P. Schweizer,, and M. E. A. Churchill. 2004. Structure of the Pseudomonas aeruginosa acylhomoserinelactone synthase LasI. Mol. Microbiol. 53:11351146.
29. Gould, T. A.,, W. T. Watson,, S. H. Choi,, H. P. Schweizer,, and M. E. A. Churchill. 2004. Crystallization of Pseudomonas aeruginosa AHL synthase LasI using beta-turn crystal engineering. Acta Crystallogr. D60:518520.
30. Hanzelka, B. L.,, and E. P. Greenberg. 1996. Quorum sensing in Vibrio fischeri: evidence that S-adenosylmethionine is the amino acid substrate for autoinducer synthesis. J. Bacteriol. 178:52915294.
31. Hanzelka, B. L.,, M. R. Parsek,, D. L. Val,, P. V. Dunlap,, J. E. J. Cronan,, and E. P. Greenberg. 1999. Acylhomoserine lactone synthase activity of the Vibrio fischeri AinS protein. J. Bacteriol. 181:57665770.
32. Hanzelka, B. L.,, A. M. Stevens,, M. R. Parsek,, T. J. Crone,, and E. P. Greenberg. 1997. Mutational analysis of the Vibrio fischeri LuxI polypep-tide: critical regions of an autoinducer synthase. J. Bacteriol. 179:48824887.
33. Hickman, A. B.,, M. A. Namboodiri,, D. C. Klein,, and F. Dyda. 1999. The structural basis of ordered substrate binding by serotonin N-acetyltransferase: enzyme complex at 1.8 Å resolution with a bisubstrate analog. Cell 97:361369.
34. Hoang, T. T.,, S. A. Sullivan,, J. K. Cusick,, and H. P. Schweizer. 2002. Beta-ketoacyl acyl carrier protein reductase (FabG) activity of the fatty acid biosynthetic pathway is a determining factor of 3-oxo-homoserine lactone acyl chain lengths. Microbiology 148:38493856.
35. Huang, J. J.,, J. I. Han,, L. H. Zhang,, and J. R. Leadbetter. 2003. Utilization of acylhomoserine lactone quorum signals for growth by a soil pseudomonad and Pseudomonas aeruginosa PAO1. Appl. Environ. Microbiol. 69:59415949.
36. Huang, J. J.,, A. Petersen,, M. Whiteley,, and J. R. Leadbetter. 2006. Identification of QuiP, the product of gene PA1032, as the second acylhomoserine lactone acylase of Pseudomonas aeruginosa PAO1. Appl. Environ. Microbiol. 72:11901197.
37. Juhas, M.,, L. Eberl,, and B. Tummler. 2005. Quorum sensing: the power of cooperation in the world of Pseudomonas. Environ. Microbiol. 7:459471.
38. Juhas, M.,, L. Wiehlmann,, P. Salunkhe,, J. Lauber,, J. Buer,, and B. Tummler. 2005. GeneChip expression analysis of the VqsR regulon of Pseudomonas aeruginosaTB. FEMS Microbiol. Lett. 242:287295.
39. Kaplan, H. B.,, and E. P. Greenberg. 1985. Diffusion of autoinducer is involved in the regulation of the Vibrio fischeri luminescence system. J. Bacteriol. 163:12101214.
40. Khan, S. R.,, D. V. Mavrodi,, G. J. Jog,, H. Suga,, L. S. Thomashow,, and S. K. Farrand. 2005. Activation of the phz operon of Pseudomonas fluorescens 2–79 requires the LuxR homolog PhzR, N-(3-OH-hexanoyl)-l-homoserine lactone produced by the LuxI homolog PhzI, and a cis-acting phz box. J. Bacteriol. 187:65176527.
41. Kirwan, J. P.,, T. A. Gould,, H. P. Schweizer,, S. W. Bearden,, R. C. Murphy,, and M. E. Churchill. 2006. Quorum-sensing signal synthesis by the Yersinia pestis acylhomoserine lactone synthase YspI. J. Bacteriol. 188:784788.
42. Laue, B. E.,, Y. Jiang,, S. R. Chhabra,, S. Jacob,, G. S. Stewart,, A. Hardman,, J. A. Downie,, F. O’Gara,, and P. Williams. 2000. The biocontrol strain Pseudomonas fluorescens F113 produces the Rhizobium small bacteriocin, N-(3-hydroxy-7-cis-tetradecenoyl)homoserine lactone, via HdtS, a putative novel N-acylhomoserine lactone synthase. Microbiology 146:24692480.
43. Leadbetter, J. R.,, and E. P. Greenberg. 2000. Metabolism of acylhomoserine lactone quorum-sensing signals by Variovorax paradoxus. J. Bacteriol. 182:69216926.
44. Lerat, E.,, and N. A. Moran. 2004. The evolutionary history of quorum-sensing systems in bacteria. Mol. Biol. Evol. 21:903913.
45. Lewenza, S.,, B. Conway,, E. P. Greenberg,, and P. A. Sokol. 1999. Quorum sensing in Burkholderia cepacia: identification of the LuxRI homologs CepRI. J. Bacteriol. 181:748756.
46. Lithgow, J. K.,, A. Wilkinson,, A. Hardman,, B. Rodelas,, F. Wisniewski-Dye,, P. Williams,, and J. A. Downie. 2000. The regulatory locus cinRI in Rhizobium leguminosarum controls a network of quorum-sensing loci. Mol. Microbiol. 37:8197.
47. Marketon, M. M.,, M. R. Gronquist,, A. Eberhard,, and J. E. Gonzalez. 2002. Characterization of the Sinorhizobium meliloti sinR/sinI locus and the production of novel N-acyl homoserine lactones. J. Bacteriol. 184:56865695.
48. Milton, D. L.,, V. J. Chalker,, D. Kirke,, A. Hard-man,, M. Camara,, and P. Williams. 2001. The LuxM homologue VanM from Vibrio anguillarum directs the synthesis of N-(3-hydroxyhexanoyl) homoserine lactone and N-hexanoylhomoserine lactone. J. Bacteriol. 183:35373547.
49. Milton, D. L.,, A. Hardman,, M. Camara,, S. R. Chhabra,, B. W. Bycroft,, G. S. Stewart,, and P. Williams. 1997. Quorum sensing in Vibrio anguillarum: characterization of the vanI/vanR locus and identification of the autoinducer N-(3-oxodecanoyl)-l-homoserine lactone. J. Bacteriol. 179:30043012.
50. Minogue, T. D.,, M. Wehland-von Trebra,, F. Bernhard,, and S. B. von Bodman. 2002. The autoregulatory role of EsaR, a quorum-sensing regulator in Pantoea stewartii ssp. stewartii: evidence for a repressor function. Mol. Microbiol. 44:16251635.
51. Moré, M. I.,, L. D. Finger,, J. L. Stryker,, C. Fuqua,, A. Eberhard,, and S. C. Winans. 1996. Enzymatic synthesis of a quorum-sensing autoinducer through use of defined substrates. Science 272:16551658.
52. Nachin, L.,, and F. Barras. 2000. External pH:an environmental signal that helps to rationalize pel gene duplication in Erwinia chrysanthemi. Mol. Plant-Microbe Interact. 13:882886.
53. Nealson, K. H. 1977. Autoinduction of bacterial luciferase: occurrence, mechanism and significance. Arch. Microbiol. 112:7379.
54. Parsek, M. R.,, A. L. Schaefer,, and E. P. Greenberg. 1997. Analysis of random and site-directed mutations in rhlI, a Pseudomonas aeruginosa gene encoding an acyl homoserine lactone synthase. Mol. Microbiol. 26:301310.
55. Parsek, M. R.,, D. L. Val,, B. L. Hanzelka,, J. E. J. Cronan,, and E. P. Greenberg. 1999. Acyl homoserine-lactone quorum-sensing signal generation. Proc. Natl. Acad. Sci. USA 96:43604365.
56. Pearson, J. P.,, L. Passador,, B. H. Iglewski,, and E. P. Greenberg. 1995. A second N-acylhomoserine lactone signal produced by Pseudomonas aeruginosa. Proc Natl Acad Sci USA 92:14901494.
57. Pearson, J. P.,, E. C. Pesci,, and B. H. Iglewski. 1997. Roles of Pseudomonas aeruginosa las and rhl quorum-sensing systems in control of elastase and rhamnolipid biosynthesis genes. J. Bacteriol. 179:57565767.
58. Puskas, A.,, E. P. Greenberg,, S. Kaplan,, and A. L. Schaefer. 1997. A quorum-sensing system in the free-living photosynthetic bacterium Rhodobacter sphaeroides. J. Bacteriol. 179:75307537.
59. Raychaudhuri, A.,, A. Jerga,, and P. A. Tipton. 2005. Chemical mechanism and substrate specificity of RhlI, an acylhomoserine lactone synthase from Pseudomonas aeruginosa. Biochemistry 44:29742981.
60. Roche, D. M.,, J. T. Byers,, D. S. Smith,, F. G. Glansdorp,, D. R. Spring,, and M. Welch. 2004. Communications blackout? Do N-acylhomoserine-lactone-degrading enzymes have any rolein quorum sensing? Microbiology 150:20232028.
61. Rojas, J. R.,, R. C. Trievel,, J. Zhou,, Y. Mo,, S. L. Berger,, C. D. Allis,, and R. Marmorstein. 1999. Structure of Tetrahymena GCN5 bound to coenzyme A and a histone H3 peptide. Nature 401:9398.
62. Schaefer, A. L.,, D. L. Val,, B. L. Hanzelka,, J. E. Cronan, Jr.,, and E. P. Greenberg. 1996. Generation of cell-to-cell signals in quorum sensing: acyl homoserine lactone synthase activity of a purified Vibrio fischeri LuxI protein. Proc. Natl. Acad. Sci. USA 93:95059509.
63. Schuster, M.,, and E. P. Greenberg. 2006. A network of networks: quorum-sensing gene regulation in Pseudomonas aeruginosa. Int. J. Med. Microbiol. 296:7381. Epub 14 Feb 2006.
64. Schuster, M.,, C. P. Lostroh,, T. Ogi,, and E. P. Greenberg. 2003. Identification, timing, and signal specificity of Pseudomonas aeruginosa quorum-controlled genes: a transcriptome analysis. J. Bacteriol. 185:20662079.
65. Seed, C. P.,, L. Passador,, and B. H. Iglewski. 1995. Activation of the Pseudomonas aeruginosa lasI gene by LasR and the Pseudomonas autoinducer PAI: an autoinduction regulatory hierarchy. J. Bacteriol. 177:654659.
66. Shadel, G. S.,, and T. O. Baldwin. 1991. The Vibrio fischeri LuxR protein is capable of bidirectional stimulation of transcription and both positive and negative regulation of the luxR gene. J. Bacteriol. 173:568574.
67. Shaw, P. D.,, G. Ping,, S. L. Daly,, C. Cha,, J. E. J. Cronan,, K. L. Rinehart,, and S. K. Farrand. 1997. Detecting and characterizing N-acylhomoserine lactone signal molecules by thin-layer chromatography. Proc. Natl. Acad. Sci. USA 94:60366041.
68. Shih, G. C.,, C. M. Kahler,, J. S. Swartley,, M. M. Rahman,, J. Coleman,, R. W. Carlson,, and D. S. Stephens. 1999. Multiple lysophosphatidic acid acyltransferases in Neisseria meningitidis. Mol. Microbiol. 32:942952.
69. Sio, C. F.,, L. G. Otten,, R. H. Cool,, S. P. Diggle,, P. G. Braun,, R. Bos,, M. Daykin,, M. Camara,, P. Williams,, and W. J. Quax. 2006. Quorum quenching by an N-acylhomoserine lactone acylase from Pseudomonas aeruginosa PAO1. Infect. Immun. 74:16731682.
70. Smith, K. M.,, Y. Bu,, and H. Suga. 2003. Induction and Inhibition of Pseudomonas aeruginosa quorum sensing by synthetic autoinducer analogs. Chem. Biol. 10:8189.
71. Stevens, A. M.,, and E. P. Greenberg. 1999. Transcriptional activation by LuxR, p. 231–242. In G. Dunny, and S. C. Winans (ed.), Cell-Cell Communication in Bacteria. ASM Press, Washington, DC.
72. Taga, M. E.,, and B. L. Bassler. 2003. Chemical communication among bacteria. Proc. Natl. Acad. Sci. USA 100:1454914554.
73. Tanner, K. G.,, R. C. Trievel,, M.-H. Huo,, R. M. Howard,, S. L. Berger,, C. D. Allis,, R. Marmorstein,, and J. M. Denu. 1999. Catalytic mechanism and function of invariant glutamic acid 173 from the histone acetyltransferase GCN5 transcriptional coactivator. J. Biol. Chem. 274:1815718160.
74. Ulrich, R. L.,, D. Deshazer,, H. B. Hines,, and J. A. Jeddeloh. 2004. Quorum sensing: a transcriptional regulatory system involved in the pathogenicity of Burkholderia mallei. Infect. Immun. 72:65896596.
75. Val, D. L.,, and J. E. J. Cronan. 1998. In vivo evidence that S-adenosylmethionine and fatty acid synthesis intermediates are the substrates for the LuxI family of autoinducer synthases. J. Bacteriol. 180:26442651.
76. Van Wagoner, R. M.,, and J. Clardy. 2006. FeeM, an N-acyl amino acid synthase from an uncultured soil microbe: structure, mechanism, and acyl carrier protein binding. Structure 14:14251435.
77. von Bodman, S. B.,, J. K. Ball,, M. A. Faini,, C. M. Herrera,, T. D. Minogue,, M. L. Urbanowski,, and A. M. Stevens. 2003. The quorum sensing negative regulators EsaR and ExpR(Ecc), homologues within the LuxR family, retain the ability to function as activators of transcription. J. Bacteriol. 185:70017007.
78. Wagner, V. E.,, D. Bushnell,, L. Passador,, A. I. Brooks,, and B. H. Iglewski. 2003. Microarray analysis of Pseudomonas aeruginosa quorum-sensing regulons: effects of growth phase and environment. J. Bacteriol. 185:20802095.
79. Waters, C. M.,, and B. L. Bassler. 2005. Quorum sensing: cell-to-cell communication in bacteria. Annu. Rev. Cell Dev. Biol. 21:319346.
80. Watson, W. T.,, T. D. Minogue,, D. L. Val,, S. Beck von Bodman,, and M. E. A. Churchill. 2002. Structural basis and specificity of acylhomoserine lactone signal production in bacterial quorumsensing. Mol. Cell. 9:685694.
81. Watson, W. T.,, F. V. Murphy,, T. A. Gould,, P. Jambeck,, D. L. Val,, J. E. Cronan,, S. Beck von Bodman,, and M. E. A. Churchill. 2001. Crystallization and rhenium MAD phasing of the acylhomoserine lactone synthase EsaI. Acta Crystallogr. D57:19451949.
82. Whitehead, N. A.,, A. M. Barnard,, H. Slater,, N. J. Simpson,, and G. P. Salmond. 2001. Quorum sensing in gram-negative bacteria. FEMS Microbiol. Rev. 25:365404.
83. Yan, Y.,, S. Harper,, D. W. Speicher,, and R. Marmorstein. 2002. The catalytic mechanism of the ESA1 histone acetyltransferase involves a self-acetylated intermediate. Nat. Struct. Biol. 9:862869.
84. Yates, E. A.,, B. Philipp,, C. Buckley,, S. Atkinson,, S. R. Chhabra,, R. E. Sockett,, M. Goldner,, Y. Dessaux,, M. Camara,, H. Smith,, and P. Williams. 2002. N-acylhomoserine lactones undergo lactonolysis in a pH-, temperature-, and acyl chain length-dependent manner during growth of Yersinia pseudotuberculosis and Pseudomonas aeruginosa. Infect. Immun. 70:56355646.
85. Zhang, L.,, P. J. Murphy,, A. Kerr,, and M. E. Tate. 1993. Agrobacterium conjugation and gene regulation by N-acyl-l-homoserine lactones. Nature 362:446448.

Tables

Generic image for table
TABLE 1

AHL signals and AHL synthases

Citation: Churchill M, Herman J. 2008. Acyl-Homoserine Lactone Biosynthesis: Structure and Mechanism, p 275-289. In Winans S, Bassler B (ed), Chemical Communication among Bacteria. ASM Press, Washington, DC. doi: 10.1128/9781555815578.ch17

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error