1887

Chapter 19 : A New Look at Secondary Metabolites

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in
Zoomout

A New Look at Secondary Metabolites, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555815578/9781555814045_Chap19-1.gif /docserver/preview/fulltext/10.1128/9781555815578/9781555814045_Chap19-2.gif

Abstract:

In syntrophic interactions, metabolic pathways are integrated over different cell types. This chapter focuses on two seemingly well-defined groups of secondary metabolites, quorum-sensing signals and antibiotics, to demonstrate that their described biological activities do not necessarily define their functional roles in microbial communities. The study of the biology of living organisms and associated biochemical processes has, to date, focused primarily on the structures and functions of DNA, RNA, proteins, lipids, carbohydrates, and their macromolecular complexes. Many bacteria regulate gene expression in response to accumulation of secondary metabolites, and this behavior has been collectively referred to as quorum sensing or cell-cell communication. The generalization of quorum sensing as a density-dependent process ignores the reality that most bacteria do not exist in well-stirred reactors and the signaling will largely be a local event between small groups of cells. The dual role of quorum-sensing signal and antibiotic is not exclusive to nisin, subtilin, and mercascidin peptide antibiotics. A bactericidal activity produced by a strain of that inhibited the growth of several related strains was purified and demonstrated to be a typical acyl homoserine lactone (AHL) [-(3-hydroxy-7-cis-tetradecenoyl)-L-homoserine lactone]. The streptomycin and chloramphenicol resistance determinants were later shown to catalyze chemical inactivation of the corresponding antibiotic. In addition to the widespread occurrence of antibiotic resistance mechanisms, it has become apparent in recent years that there are many naturally occurring systems that interfere with cell-cell signaling pathways.

Citation: Surette M, Davies J. 2008. A New Look at Secondary Metabolites, p 307-322. In Winans S, Bassler B (ed), Chemical Communication among Bacteria. ASM Press, Washington, DC. doi: 10.1128/9781555815578.ch19

Key Concept Ranking

Two-Component Signal Transduction Systems
0.4746225
0.4746225
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of FIGURE 1
FIGURE 1

Hormesis and small molecules. The nature and extent of transcription responses to bioactive small molecules are concentration dependent. The cellular response at low concentration will be observed where there are no significant growth effects and can often be observed as changes in patterns of gene expression. The pattern of expressed genes will change when growth becomes inhibited. Reprinted from reference . © Elsevier (2006).

Citation: Surette M, Davies J. 2008. A New Look at Secondary Metabolites, p 307-322. In Winans S, Bassler B (ed), Chemical Communication among Bacteria. ASM Press, Washington, DC. doi: 10.1128/9781555815578.ch19
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2
FIGURE 2

Representative structures of small molecule signaling compounds. Two examples of -acyl homoserine lactones from : (A) 3-oxododecanoyl-homoserine lactone ( ) and (B) -butanoyl-homoserine lactone ( ). (C) The quinolone signal 2-heptyl-3-hydroxy-4-quinolone (PQS) ( ). Two examples of γ-butyrolactones: (D) factor 1 from ( ) and (E) IM-2 from ( ). (F) AI-2 is formed from 4,5-dihydroxy-2,3-pentanedione (DPD), the product generated by LuxS ( ), which spontaneously cyclizes into a family of furanones. (G) The furanosyl borate diester complex of (, )-2-methyl-2,3,3,4-tetrahy-droxytetrahydrofuran is the form of AI-2 bound to LuxP receptor of ( ). (H) The (, )-2-methyl-2,3,3,4-tetrahydroxytetrahydrofuran isomer interacts with the LsrB receptor in serovar Typhimurium ( ).

Citation: Surette M, Davies J. 2008. A New Look at Secondary Metabolites, p 307-322. In Winans S, Bassler B (ed), Chemical Communication among Bacteria. ASM Press, Washington, DC. doi: 10.1128/9781555815578.ch19
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 3
FIGURE 3

Transcriptional response to subinhibitory antibiotics. serovar Typhimurium containing a promoter- fusion for an amino acid biosynthesis operon was plated on LB agar with antibiotics added to sterile filter disks as indicated in the first panel. The middle panel is a photograph of the plate after 20 h showing zones of inhibition. The third panel is a photograph taken in the dark showing strong induction of luciferase at subinhibitory concentrations for some but not all antibiotics. The dashed lines in this panel indicate the zone of inhibition for each antibiotic. The abbreviations for the antibiotics are Erm, erythromycin; Cam, chloramphenicol;Tet, tetracycline; Spc, spectinomycin; Nal, nalidixic acid; Str, streptomycin; Gat, gatifloxicin;Tmp, trimethoprim (J. Davies and M. G. Surette, unpublished data).

Citation: Surette M, Davies J. 2008. A New Look at Secondary Metabolites, p 307-322. In Winans S, Bassler B (ed), Chemical Communication among Bacteria. ASM Press, Washington, DC. doi: 10.1128/9781555815578.ch19
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555815578.ch19
1. Bandow, J. E.,, H. Brotz,, L. I. Leichert,, H. Labischinski,, and M. Hecker. 2003. Proteomic approach to understanding antibiotic action. Antimicrob. Agents Chemother. 47:948955.
2. Bassler, B. L.,, M. Wright,, R. E. Showalter,, and M. R. Silverman. 1993. Intercellular signalling in Vibrio harveyi: sequence and function of genes regulating expression of luminescence. Mol. Microbiol. 9:773786.
3. Bibb, M. J. 2005. Regulation of secondary metabolism in streptomycetes. Curr. Opin. Microbiol. 8:208215.
4. Burgess, N. A.,, D. F. Kirke,, P. Williams,, K. Winzer,, K. R. Hardie,, N. L. Meyers,, J. Aduse-Opoku,, M. A. Curtis,, and M. Camara. 2002. LuxS-dependent quorum sensing in Porphyromonas gingivalis modulates protease and haemagglutinin activities but is not essential for virulence. Microbiology. 148:763772.
5. Camilli, A.,, and B. L. Bassler. 2006. Bacterial small-molecule signaling pathways. Science 311:11131116.
6. Chandler, J. R.,, and G. M. Dunny. 2004. Enterococcal peptide sex pheromones: synthesis and control of biological activity. Peptides. 25:13771388.
7. Chandler, J. R.,, H. Hirt,, and G. M. Dunny. 2005. A paracrine peptide sex pheromone also acts as an autocrine signal to induce plasmid transfer and virulence factor expression in vivo. Proc. Natl. Acad. Sci. USA 102:1561715622.
8. Chatterjee, C.,, M. Paul,, L. Xie,, and W. A. van der Donk. 2005. Biosynthesis and mode of action of lantibiotics. Chem. Rev. 105:633684.
9. Chen, X.,, S. Schauder,, N. Potier,, A. Van Dorsselaer,, I. Pelczer,, B. L. Bassler,, and F. M. Hughson. 2002. Structural identification of a bacterial quorum-sensing signal containing boron. Nature 415:545549.
10. Claverys, J. P.,, M. Prudhomme,, and B. Martin. 2006. Induction of competence regulons as a general response to stress in grampositive bacteria. Annu. Rev. Microbiol. 60:451475.
11. Cvitkovitch, D. G. 2001. Genetic competence and transformation in oral streptococci. Crit. Rev. Oral. Biol. Med. 12:217243.
12. Davies, J. 1994. Microbial molecular diversity: past and present; Thom Award Lecture. J. Ind. Microbiol. 13:208211.
13. Davies, J. 2006. Are antibiotics naturally antibiotics? J. Ind. Microbiol. Biotechnol. 33:496499.
14. Davies, J. 2007. Small molecules: the lexicon of biodiversity. J. Biotechnol. 129:35.
15. Davies, J.,, G. B. Spiegelman,, and G. Yim. 2006. The world of subinhibitory antibiotic concentrations. Curr. Opin. Microbiol. 9:445453.
16. Davies, J. E.,, and R. E. Benveniste. 1974. Enzymes that inactivate antibiotics in transit to their targets. Ann. N. Y. Acad. Sci. 235:130136.
17. D’Costa, V. M.,, K. M. McGrann,, D. W. Hughes,, and G. D. Wright. 2006. Sampling the antibiotic resistome. Science 311:374377.
18. De Keersmaecker, S. C.,, K. Sonck,, and J. Vanderleyden. 2006. Let LuxS speak up in AI-2 signaling. Trends Microbiol. 14:114119.
19. Demain, A. L. 2000. Small bugs, big business: the economic power of the microbe. Biotechnol. Adv. 18:499514.
20. Deziel, E.,, F. Lepine,, S. Milot,, J. He,, M. N. Mindrinos,, R. G. Tompkins,, and L. G. Rahme. 2004. Analysis of Pseudomonas aeruginosa 4-hydroxy-2-alkylquinolines (HAQs) reveals a role for 4-hydroxy-2-heptylquinoline in cell-to-cell communication. Proc. Natl. Acad. Sci. USA 101:13391344.
21. Diggle, S. P.,, P. Cornelis,, P. Williams,, and M. Camara. 2006. 4-quinolone signalling in Pseudomonas aeruginosa: old molecules, new perspectives. Int. J. Med. Microbiol. 296:8391.
22. Dong, Y. H.,, L. H. Wang,, and L. H. Zhang. 2007. Quorum-quenching microbial infections: mechanisms and implications. Philos. Trans. R Soc. Lond. B Biol. Sci. 362:12011211.
23. Dong, Y. H.,, and L. H. Zhang. 2005. Quorum sensing and quorum-quenching enzymes. J. Microbiol. 43:101109.
24. Duan, K.,, and M. Surette. 2006. LuxS in cellular metabolism and cell-to-cell signaling, p. 117–150. In D. Demuth, and R. Lamont (ed.), Bacterial Cell-to-Cell Communication: Role in Virulence and Pathogenesis. CambridgeUniversity Press, New York, NY.
25. Dunny, G. M.,, M. H. Antiporta,, and H. Hirt. 2001. Peptide pheromone-induced transfer of plasmid pCF10 in Enterococcus faecalis: probing the genetic and molecular basis for specificity of the pheromone response. Peptides 22:15291539.
26. Egland, P. G.,, R. J. Palmer, Jr.,, and P. E. Kolenbrander. 2004. Interspecies communication in Streptococcus gordonii-Veillonella atypica biofilms: signaling in flow conditions requires juxtaposition. Proc. Natl. Acad. Sci. USA 101:1691716922.
27. Goh, E. B.,, G. Yim,, W. Tsui,, J. McClure,, M. G. Surette,, and J. Davies. 2002. Transcriptional modulation of bacterial gene expression by subinhibitory concentrations of antibiotics. Proc. Natl. Acad. Sci. USA 99:1702517030.
28. Gonzalez, J. E.,, and N. D. Keshavan. 2006. Messing with bacterial quorum sensing. Microbiol. Mol. Biol. Rev. 70:859875.
29. Greenberg, E. P. 2003. Bacterial communication: tiny teamwork. Nature 424:134.
30. Hamoen, L. W.,, G. Venema,, and O. P. Kuipers. 2003. Controlling competence in Bacillus subtilis: shared use of regulators. Microbiology 149:917.
31. Hastings, J. W.,, and E. P. Greenberg. 1999. Quorum sensing: the explanation of a curious phenomenon reveals a common characteristic of bacteria. J. Bacteriol. 181:26672668.
32. Havarstein, L. S. 1998. Identification of a competence regulon in Streptococcus pneumoniae by genomic analysis. Trends Microbiol. 6:297299; discussion, 299–300.
33. Henke, J. M.,, and B. L. Bassler. 2004. Bacterial social engagements. Trends Cell. Biol. 14:648656.
34. Heuer, H.,, E. Krögerrecklenfort,, E. M. H. Wellington,, S. Egan,, J. D. van Elsas,, L. S. van Overbeek,, J. M. Collard,, G. Guillaume,, A. D. Karagouni,, T. L. Nikolakopoulou,, and K. Smalla. 2002. Gentamicin resistance genes in environmental bacteria: prevalence and transfer. FEMS Microbiol. Ecol. 42:289302.
35. Hirt, H.,, D. A. Manias,, E. M. Bryan,, J. R. Klein,, J. K. Marklund,, J. H. Staddon,, M. L. Paustian,, V. Kapur,, and G. M. Dunny. 2005. Characterization of the pheromone response of the Enterococcus faecalis conjugative plasmid pCF10: complete sequence and comparative analysis of the transcriptional and phenotypic responses of pCF10-containing cells to pheromone induction. J. Bacteriol. 187:10441054.
36. Horinouchi, S. 2002. A microbial hormone, A-factor, as a master switch for morphological differentiation and secondary metabolism in Streptomyces griseus. Front. Biosci. 7:d2045d2057.
37. Ji, G.,, R. Beavis,, and R. P. Novick. 1997. Bacterial interference caused by autoinducing peptide variants. Science 276:20272030.
38. Josephson, J. 2006. The microbial “resistome.” Environ. Sci. Technol. 40:65316534.
39. Kaufmann, G. F.,, R. Sartorio,, S. H. Lee,, C. J. Rogers,, M. M. Meijler,, J. A. Moss,, B. Clapham,, A. P. Brogan,, T. J. Dickerson,, and K. D. Janda. 2005. Revisiting quorum sensing: discovery of additional chemical and biological functions for 3-oxo-N-acylhomoserine lactones. Proc. Natl. Acad. Sci. USA 102:309314.
40. Keller, L.,, and M. G. Surette. 2006. Communication in bacteria: an ecological and evolutionary perspective. Nat. Rev. Microbiol. 4:249258.
41. Khokhlov, A. S.,, I. I. Tovarova,, L. N. Borisova,, S. A. Pliner,, L. N. Shevchenko,, E. Kornitskaia,, N. S. Ivkina,, and I. A. Rapoport. 1967. [The A-factor, responsible for streptomycin biosynthesis by mutant strains of Actinomyces streptomycini]. Dokl. Akad. Nauk. SSSR, 177:232235.
42. Kitamoto, O.,, N. Kusia,, N. Fukaya,, and A. Kawashima. 1956. Drug sensitivity of the Shigella strains isolated in 1955. J. Jpn. Assoc. Infect. Dis. 30:403404.
43. Kleerebezem, M.,, R. Bongers,, G. Rutten,, W. M. de Vos,, and O. P. Kuipers. 2004. Autoregulation of subtilin biosynthesis in Bacillus subtilis: the role of the spa-box in subtilin-responsive promoters. Peptides 25:14151424.
44. Kleerebezem, M.,, O. P. Kuipers,, W. M. de Vos,, M. E. Stiles,, and L. E. Quadri. 2001. A two-component signal-transduction cascade in Carnobacterium piscicola LV17B: two signaling peptides and one sensor-transmitter. Peptides 22:15971601.
45. Kleerebezem, M.,, L. E. Quadri,, O. P. Kuipers,, and W. M. de Vos. 1997. Quorum sensing by peptide pheromones and two-component signal-transduction systems in gram-positive bacteria. Mol. Microbiol. 24:895904.
46. Kolenbrander, P. E.,, R. N. Andersen,, D. S. Blehert,, P. G. Egland,, J. S. Foster,, and R. J. Palmer, Jr. 2002. Communication among oral bacteria. Microbiol. Mol. Biol. Rev. 66:486505.
47. Kolenbrander, P. E.,, P. G. Egland,, P. I. Diaz,, and R. J. Palmer, Jr. 2005. Genome-genome interactions: bacterial communities in initial dental plaque. Trends Microbiol. 13:1115.
48. Kuipers, O. P.,, M. M. Beerthuyzen,, P. G. de Ruyter,, E. J. Luesink,, and W. M. de Vos. 1995. Autoregulation of nisin biosynthesis in Lactococcus lactis by signal transduction. J. Biol. Chem. 270:2729927304.
49. Levy, S. B. 1998. The challenge of antibiotic resistance. Sci. Am. 278:4653.
50. Levy, S. B. 2001. Antimicrobial resistance potential. Lancet 358:11001101.
51. Lyon, G. J.,, and R. P. Novick. 2004. Peptide signaling in Staphylococcus aureus and other gram-positive bacteria. Peptides 25:13891403.
52. Manefield, M.,, R. de Nys,, N. Kumar,, R. Read,, M. Givskov,, P. Steinberg,, and S. Kjelleberg. 1999. Evidence that halogenated furanones from Delisea pulchra inhibit acylated homoserine lactone (AHL)-mediated gene expression by displacing the AHL signal from its receptor protein. Microbiology 145:283291.
53. Manefield, M.,, T. B. Rasmussen,, M. Henzter,, J. B. Andersen,, P. Steinberg,, S. Kjelleberg,, and M. Givskov. 2002. Halogenated furanones inhibit quorum sensing through accelerated LuxR turnover. Microbiology 148:11191127.
54. Marsh, P. D. 2004. Dental plaque as a microbial biofilm. Caries Res. 38:204211.
55. Mayville, P.,, G. Ji,, R. Beavis,, H. Yang,, M. Goger,, R. P. Novick,, and T. W. Muir. 1999. Structure-activity analysis of synthetic autoinducing thiolactone peptides from Staphylococcus aureus responsible for virulence. Proc. Natl. Acad. Sci. USA 96:12181223.
56. McAuliffe, O.,, R. P. Ross,, and C. Hill. 2001. Lantibiotics: structure, biosynthesis and mode of action. FEMS Microbiol. Rev. 25:285308.
57. McFall-Ngai, M. J. 2000. Negotiations between animals and bacteria: the ‘diplomacy’ of the squid-vibrio symbiosis. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 126:471480.
58. McKnight, S. L.,, B. H. Iglewski,, and E. C. Pesci. 2000. The Pseudomonas quinolone signal regulates rhl quorum sensing in Pseudomonas aeruginosa. J. Bacteriol. 182:27022708.
59. McNab, R.,, and R. J. Lamont. 2003. Microbial dinner-party conversations: the role of LuxS in interspecies communication. J. Med. Microbiol. 52:541545.
60. Miller, M. B.,, and B. L. Bassler. 2001. Quorum sensing in bacteria. Annu. Rev. Microbiol. 55:165199.
61. Miller, S. T.,, K. B. Xavier,, S. R. Campagna,, M. E. Taga,, M. F. Semmelhack,, B. L. Bassler,, and F. M. Hughson. 2004. Salmonella typhimurium recognizes a chemically distinct form of the bacterial quorum-sensing signal AI-2. Mol. Cell. 15:677687.
62. Muller, S. 2003. Another face of RNA: metabolite-induced “riboswitching” for regulation of gene expression. Chembiochem. 4:817819.
63. Nagao, J.,, S. M. Asaduzzaman,, Y. Aso,, K. Okuda,, J. Nakayama,, and K. Sonomoto. 2006. Lantibiotics: insight and foresight for new paradigm. J. Biosci. Bioeng. 102:139149.
64. Namwat, W.,, Y. Kamioka,, H. Kinoshita,, Y. Yamada,, and T. Nihira. 2002. Characterization of virginiamycin S biosynthetic genes from Streptomyces virginiae. Gene 286:283290.
65. Novick, R. P. 2003. Autoinduction and signal transduction in the regulation of staphylococcal virulence. Mol. Microbiol. 48:14291449.
66. Ohnishi, Y.,, H. Yamazaki,, J. Y. Kato,, A. Tomono,, and S. Horinouchi. 2005. AdpA, a central transcriptional regulator in the A-factor regulatory cascade that leads to morphological development and secondary metabolism in Streptomyces griseus. Biosci. Biotechnol. Biochem. 69:431439.
67. Otto, M. 2001. Staphylococcus aureus and Staphylococcus epidermidis peptide pheromones produced by the accessory gene regulator agr system. Peptides 22:16031608.
68. Ozer, E. A.,, A. Pezzulo,, D. M. Shih,, C. Chun,, C. Furlong,, A. J. Lusis,, E. P. Greenberg,, and J. Zabner. 2005. Human and murine paraoxonase 1 are host modulators of Pseudomonas aeruginosa quorum-sensing. FEMS Microbiol. Lett. 253:2937.
69. Palumbi, S. R. 2001. Humans as the world’s greatest evolutionary force. Science 293:17861790.
70. Pearson, J. P.,, K. M. Gray,, L. Passador,, K. D. Tucker,, A. Eberhard,, B. H. Iglewski,, and E. P. Greenberg. 1994. Structure of the autoinducer required for expression of Pseudomonas aeruginosa virulence genes. Proc. Natl. Acad. Sci. USA 91:197201.
71. Pearson, J. P.,, L. Passador,, B. H. Iglewski,, and E. P. Greenberg. 1995. A second N-acylhomoserine lactone signal produced by Pseudomonas aeruginosa. Proc. Natl. Acad. Sci. USA 92:14901494.
72. Ruby, E. G. 1999. The Euprymna scolopes-Vibrio fischeri symbiosis: a biomedical model for the study of bacterial colonization of animal tissue. J. Mol. Microbiol. Biotechnol. 1:1321.
73. Schauder, S.,, K. Shokat,, M. G. Surette,, and B. L. Bassler. 2001. The LuxS family of bacterial autoinducers:biosynthesis of a novel quorum-sensing signal molecule. Mol. Microbiol. 41:463476.
74. Schmitz, S.,, A. Hoffmann,, C. Szekat,, B. Rudd,, and G. Bierbaum. 2006. The lantibiotic mersacidin is an autoinducing peptide. Appl. Environ. Microbiol. 72:72707277.
75. Schreiber, S. L. 2005. Small molecules: the missing link in the central dogma. Nat. Chem. Biol. 1:6466.
76. Schripsema, J.,, K. E. de Rudder,, T. B. van Vliet,, P. P. Lankhorst,, E. de Vroom,, J. W. Kijne,, and A. A. van Brussel. 1996. Bacteriocin small of Rhizobium leguminosarum belongs to the class of N-acyl-l-homoserine lactone molecules, known as autoinducers and as quorum sensing co-transcription factors. J. Bacteriol. 178:366371.
77. Strohl, W. R. 1997. The Biotechnology of Antibiotics. Marcel Decker, New York, NY.
78. Sun, J.,, R. Daniel,, I. Wagner-Dobler,, and A. P. Zeng. 2004. Is autoinducer-2 a universal signal for interspecies communication: a comparative genomic and phylogenetic analysis of the synthesis and signal transduction pathways. BMC Evol. Biol. 4:36.
79. Surette, M. G.,, M. B. Miller,, and B. L. Bassler. 1999. Quorum sensing in Escherichia coli, Salmonella typhimurium, and Vibrio harveyi: a new family of genes responsible for autoinducer production. Proc. Natl. Acad. Sci. USA 96:16391644.
80. Sutcliffe, J. A. 2005. Improving on nature: antibiotics that target the ribosome. Curr. Opin. Microbiol. 8:534542.
81. Takano, E. 2006. Gamma-butyrolactones: Streptomyces signalling molecules regulating antibiotic production and differentiation. Curr. Opin. Microbiol. 9:287294.
82. Tenson, T.,, and A. Mankin. 2006. Antibiotics and the ribosome. Mol. Microbiol. 59:16641677.
83. Travisano, M.,, and G. J. Velicer. 2004. Strategies of microbial cheater control. Trends Microbiol. 12:7278.
84. Tsui, W. H.,, G. Yim,, H. H. Wang,, J. E. McClure,, M. G. Surette,, and J. Davies. 2004. Dual effects of MLS antibiotics: transcriptional modulation and interactions on the ribosome. Chem. Biol. 11:13071316.
85. Twomey, D.,, R. P. Ross,, M. Ryan,, B. Meaney,, and C. Hill. 2002. Lantibiotics produced by lactic acid bacteria: structure, function and applications. Antonie Van Leeuwenhoek 82:165185.
86. VanBogelen, R. A.,, and F. C. Neidhardt. 1990. Ribosomes as sensors of heat and cold shock in Escherichia coli. Proc. Natl. Acad. Sci. USA 87:55895593.
87. VanBogelen, R. A.,, E. E. Schiller,, J. D. Thomas,, and F. C. Neidhardt. 1999. Diagnosis of cellular states of microbial organisms using proteomics. Electrophoresis 20:21492159.
88. van Overbeek, L. S.,, E. M. H. Wellington,, S. Egan,, K. Smalla,, H. Heuer,, J. M. Collard,, G. Guillaume,, A. D. Karagouni,, T. L. Nikolakopoulou,, and J. D. van Elsas. 2002. Prevalence of streptomycin-resistance genes in bacterial populations in European habitats. FEMS Microbiol. Ecol. 42:277288.
89. Velicer, G. J. 2003. Social strife in the microbial world. Trends Microbiol. 11:330337.
90. Vendeville, A.,, K. Winzer,, K. Heurlier,, C. M. Tang,, and K. R. Hardie. 2005. Making ‘sense’ of metabolism: autoinducer-2, LuxS and pathogenic bacteria. Nat. Rev. Microbiol. 3:383396.
91. Verdine, G. L. 1996. The combinatorial chemistry of nature. Nature 384:1113.
92. Visick, K. L. 2005. Layers of signaling in a bacterium-host association. J. Bacteriol. 187:36033606.
93. Waksman, S. 1961. The role of antibiotics in nature, p. 271–272. In Perspectives in Biology and Nature. The Johns Hopkins University Press, Baltimore, MD.
94. West, S. A.,, A. S. Griffin,, A. Gardner,, and S. P. Diggle. 2006. Social evolution theory for microorganisms. Nat. Rev. Microbiol. 4:597607.
95. Winzer, K.,, K. R. Hardie,, and P. Williams. 2003. LuxS and autoinducer-2: their contribution to quorum sensing and metabolism in bacteria. Adv. Appl. Microbiol. 53:291396.
96. Wright, G. D. 2007. The antibiotic resistome: the nexus of chemical and genetic diversity. Nat. Rev. Microbiol. 5:175186.
97. Wu, H.,, Z. Song,, M. Hentzer,, J. B. Andersen,, S. Molin,, M. Givskov,, and N. Hoiby. 2004. Synthetic furanones inhibit quorum-sensing and enhance bacterial clearance in Pseudomonas aeruginosa lung infection in mice. J. Antimicrob. Chemother. 53:10541061.
98. Xavier, K. B., and B. L. Bassler. 2003. LuxS quorum sensing: more than just a numbers game. Curr. Opin. Microbiol. 6:191197.
99. Yang, F.,, L. H. Wang,, J. Wang,, Y. H. Dong,, J. Y. Hu,, and L. H. Zhang. 2005. Quorum quenching enzyme activity is widely conserved in the sera of mammalian species. FEBS Lett. 579:37133717.
100. Yim, G.,, F. de la Cruz,, G. B. Spiegelman,, and J. Davies. 2006. Transcription modulation of Salmonella enterica serovar Typhimurium promoters by sub-MIC levels of rifampin. J. Bacteriol. 188:79887991.
101. Yim, G.,, H. H. Wang,, and J. Davies. 2006. The truth about antibiotics. Int. J. Med. Microbiol. 296:163170.
102. Yonath, A. 2005. Antibiotics targeting ribosomes: resistance, selectivity, synergism and cellular regulation. Annu. Rev. Biochem. 74:649679.
103. Zhou, X. X.,, W. F. Li,, G. X. Ma,, and Y. J. Pan. 2006. The nisin-controlled gene expression system: construction, application and improvements. Biotechnol. Adv. 24:285295.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error