1887

Chapter 20 : Signal Integration in the and Quorum-Sensing Circuits

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in
Zoomout

Signal Integration in the and Quorum-Sensing Circuits, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555815578/9781555814045_Chap20-1.gif /docserver/preview/fulltext/10.1128/9781555815578/9781555814045_Chap20-2.gif

Abstract:

The marine animal pathogen and the human pathogen are aquatic bacteria that engage in a process of cell-cell communication called quorum sensing (QS). Autoinducer (AI)-2 is derived from -adenosylmethionine in three enzymatic steps. First, -adenosylmethionine serves as a methyl donor for many biochemical processes, and these methyltransferase-dependent reactions yield -adenosylhomocysteine. Second, -adenosylhomocysteine is metabolized to adenine and -ribosylhomocysteine by the enzyme Pfs, and third, -ribosylhomocysteine is the substrate for the LuxS enzyme. In mixed species consortia, other microbes also have the potential to alter AI-2 levels, and other classes of AIs are clearly manipulated, but the authors have restricted the discussion to AI-2 and how that pertains to QS. Appropriate and distinct responses to potentially different communities are possible because of signal integration in the circuits. Channel proteins LsrC and LsrD mediate the delivery of the ligand across the membrane. LsrA is an ATPase that supplies the energy required for transport. Rapid Lsr-dependent transport of R-THMF into the cell occurs at high cell densities. Recent studies in show that it possesses five genes, like its closest relatives. Examination of their functions reveals that, in stark contrast to , in the quorum-regulatory RNAs (Qrr) sRNAs act additively to control luxR mRNA levels.

Citation: Hammer B, Bassler B. 2008. Signal Integration in the and Quorum-Sensing Circuits, p 323-332. In Winans S, Bassler B (ed), Chemical Communication among Bacteria. ASM Press, Washington, DC. doi: 10.1128/9781555815578.ch20

Key Concept Ranking

Type III Secretion System
0.4219201
0.4219201
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of FIGURE 1
FIGURE 1

Model of the quorum-sensing system. Three parallel sensory systems converge to regulate quorum-sensing gene expression by controlling the activity of LuxO. The three autoinducers are CAI-1 (circles), HAI-1 (pentagons), and AI-2 (triangles). LuxO~P, along with σ, activates transcription of the genes encoding the Qrr sRNAs that indirectly regulate LuxR protein levels by destabilizing the mRNA. This process is mediated by the sRNA chaperone Hfq. Alterations in the transcription of the multiple sRNAs, in turn, produce an increasing gradient of LuxR protein as the cells transition from low to high cell density. Question marks denote additional regulators proposed to control expression. OM, outer membrane;IM, inner membrane.

Citation: Hammer B, Bassler B. 2008. Signal Integration in the and Quorum-Sensing Circuits, p 323-332. In Winans S, Bassler B (ed), Chemical Communication among Bacteria. ASM Press, Washington, DC. doi: 10.1128/9781555815578.ch20
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2
FIGURE 2

Model of the quorum-sensing system. Multiple sensory systems converge to regulate quorum-sensing gene expression by controlling the activity and/or levels of LuxO. The two autoinducers are CAI-1 (circles) and AI-2 (triangles). (A) Low cell density: The two quorumsensing circuits (CAI- 1/CqsS and AI-2/LuxPQ) and the VarS/VarA-CsrA/BCD global regulatory system function in conjunction with Fis to increase the amount and/or activity of LuxO-phosphate. LuxO~P, along with σ, activates transcription of the genes encoding the Qrr sRNAs. The Qrr sRNAs indirectly regulate HapR protein levels by destabilizing the mRNA. This process is mediated by the RNA chaperone Hfq. (B) High cell density: Phosphate is drained from LuxO. Fis and VarS/A-CsrA/BCD are inactive. Under these conditions, mRNA is stabilized and HapR protein is produced. The lightning bolt represents the putative signal detected by VarS. Dotted lines denote hypothetical interactions. OM, outer membrane;IM, inner membrane.

Citation: Hammer B, Bassler B. 2008. Signal Integration in the and Quorum-Sensing Circuits, p 323-332. In Winans S, Bassler B (ed), Chemical Communication among Bacteria. ASM Press, Washington, DC. doi: 10.1128/9781555815578.ch20
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 3
FIGURE 3

Chemistry of AI-2 signaling molecules. Model showing the proposed pathways for the formation of AI-2 signaling molecules recognized by (upper branch) and enteric bacteria (lower branch). Both signals are derived from the common precursor DPD, the product of the LuxS reaction. -THMF-borate binds to the receptor LuxP, whereas -THMF binds to the enteric receptor LsrB. Adapted from reference with permission from Elsevier.

Citation: Hammer B, Bassler B. 2008. Signal Integration in the and Quorum-Sensing Circuits, p 323-332. In Winans S, Bassler B (ed), Chemical Communication among Bacteria. ASM Press, Washington, DC. doi: 10.1128/9781555815578.ch20
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555815578.ch20
1. Austin, B.,, and X. H. Zhang. 2006. Vibrio harveyi: a significant pathogen of marine vertebrates and invertebrates. Lett. Appl. Microbiol. 43:119124.
2. Ball, C. A.,, R. Osuna,, K. C. Ferguson,, and R. C. Johnson. 1992. Dramatic changes in Fis levels upon nutrient upshift in Escherichia coli. J. Bacteriol. 174:80438056.
3. Bassler, B. L.,, E. P. Greenberg,, and A. M. Stevens. 1997. Cross-species induction of luminescence in the quorum-sensing bacterium Vibrio harveyi. J. Bacteriol. 179:40434045.
4. Bassler, B. L.,, M. Wright,, R. E. Showalter,, and M. R. Silverman. 1993. Intercellular signalling in Vibrio harveyi: sequence and function of genes regulating expression of luminescence. Mol. Microbiol. 9:773786.
5. Bassler, B. L.,, M. Wright,, and M. R. Silverman. 1994. Multiple signalling systems controlling expression of luminescence in Vibrio harveyi: sequence and function of genes encoding a second sensory pathway. Mol. Microbiol. 13:273286.
6. Bowen, H. J. M. 1966. Trace Elements in Biochemistry. Academic, London, United Kingdom.
7. Cao, J. G.,, and E. A. Meighen. 1989. Purification and structural identification of an autoinducer for the luminescence system of Vibrio harveyi. J. Biol. Chem. 264:2167021676.
8. Chen, X.,, S. Schauder,, N. Potier,, A. Van Dorsselaer,, I. Pelczer,, B. L. Bassler,, and F. M. Hughson. 2002. Structural identification of a bacterial quorum-sensing signal containing boron. Nature 415:545549.
9. Colwell, R. R. 1996. Global climate and infectious disease: the cholera paradigm. Science 274:20252031.
10. Cotter, P. A.,, and V. J. DiRita. 2000. Bacterial virulence gene regulation: an evolutionary perspective. Annu. Rev. Microbiol. 54:519565.
11. Defoirdt, T.,, R. Crab,, T. K. Wood,, P. Sorgeloos,, W. Verstraete,, and P. Bossier. 2006. Quorum sensing-disrupting brominated furanones protect the gnotobiotic brine shrimp Artemia franciscana from pathogenic Vibrio harveyi, Vibrio campbellii, and Vibrio parahaemolyticus isolates. Appl. Environ. Microbiol. 72:64196423.
12. Dorman, C. J.,, and P. Deighan. 2003. Regulation of gene expression by histonelike proteins in bacteria. Curr. Opin. Genet. Dev. 13:179184.
13. Freeman, J. A.,, and B. L. Bassler. 1999. A genetic analysis of the function of LuxO, a two-component response regulator involved in quorum sensing in Vibrio harveyi. Mol. Microbiol. 31:665677.
14. Freeman, J. A.,, and B. L. Bassler. 1999. Sequence and function of LuxU:a two-component phosphorelay protein that regulates quorum sensing in Vibrio harveyi. Mol. Microbiol. 31:665677.
15. Givskov, M.,, R. de Nys,, M. Manefield,, L. Gram,, R. Maximilien,, L. Eberl,, S. Molin,, P. D. Steinberg,, and S. Kjelleberg. 1996. Eukaryotic interference with homoserine lactone-mediated prokaryotic signalling. J. Bacteriol. 178:66186622.
16. Hammer, B. K.,, and B. L. Bassler. 2003. Quorum sensing controls biofilm formation in Vibrio cholerae. Mol. Microbiol. 50:101104.
17. Heeb, S.,, and D. Haas. 2001. Regulatory roles of the GacS/GacA two-component system in plant-associated and other gram-negative bacteria. Mol. Plant-Microbe Interact. 14:13511363.
18. Henke, J. M.,, and B. L. Bassler. 2004. Quorum sensing regulates type III secretion in Vibrio harveyi and Vibrio parahaemolyticus. J. Bacteriol. 186:37943805.
19. Henke, J. M.,, and B. L. Bassler. 2004. Three parallel quorum-sensing systems regulate gene expression in Vibrio harveyi. J. Bacteriol. 186:69026914.
20. Ishihama, A. 1999. Modulation of the nucleoid, the transcription apparatus, and the translation machinery in bacteria for stationary phase survival. Genes Cells 4:135143.
21. Jobling, M. G.,, and R. K. Holmes. 1997. Characterization of hapR, a positive regulator of the Vibrio cholerae HA/protease gene hap, and its identification as a functional homologue of the Vibrio harveyi luxR gene. Mol. Microbiol. 26:10231034.
22. Kovacikova, G.,, and K. Skorupski. 2002. Regulation of virulence gene expression in Vibrio cholerae by quorum sensing: HapR functions at the aphA promoter. Mol. Microbiol. 46:11351147.
23. Lenz, D. H.,, and B. L. Bassler. 2007. The small nucleoid protein Fis is involved in Vibrio cholerae quorum sensing. Mol. Microbiol. 63:859871.
24. Lenz, D. H.,, M. B. Miller,, J. Zhu,, R. V. Kulkarni,, and B. L. Bassler. 2005. CsrA and three redundant small RNAs regulate quorum sensing in Vibrio cholerae. Mol. Microbiol. 58:11861202.
25. Lenz, D. H.,, K. C. Mok,, B. N. Lilley,, R. V. Kulkarni,, N. S. Wingreen,, and B. L. Bassler. 2004. The small RNA chaperone Hfq and multiple small RNAs control quorum sensing in Vibrio harveyi and Vibrio cholerae. Cell 118:6982.
26. Lilley, B. N.,, and B. L. Bassler. 2000. Regulation of quorum sensing in Vibrio harveyi by LuxO and sigma-54. Mol. Microbiol. 36:940954.
27. Liu, M. Y.,, G. Gui,, B. Wei,, J. F. Preston, 3rd,, L. Oakford,, U. Yuksel,, D. P. Giedroc,, and T. Romeo. 1997. The RNA molecule CsrB binds to the global regulatory protein CsrA and antagonizes its activity in Escherichia coli. J. Biol. Chem. 272:1750217510.
28. Manefield, M.,, T. B. Rasmussen,, M. Henzter,, J. B. Andersen,, P. Steinberg,, S. Kjelleberg,, and M. Givskov. 2002. Halogenated furanones inhibit quorum sensing through accelerated LuxR turnover. Microbiology 148:11191127.
29. Martin, M.,, R. Showalter,, and M. Silverman. 1989. Identification of a locus controlling expression of luminescence genes in Vibrio harveyi. J. Bacteriol. 171:24062414.
30. Meibom, K. L.,, M. Blokesch,, N. A. Dolganov,, C. Y. Wu,, and G. K. Schoolnik. 2005. Chitin induces natural competence in Vibrio cholerae. Science 310:18241827.
31. Miller, M. B.,, K. Skorupski,, D. H. Lenz,, R. K. Taylor,, and B. L. Bassler. 2002. Parallel quorum sensing systems converge to regulate virulence in Vibrio cholerae. Cell 110:303314.
32. Miller, S. T.,, K. B. Xavier,, S. R. Campagna,, M. E. Taga,, M. F. Semmelhack,, B. L. Bassler,, and F. M. Hughson. 2004. Salmonella typhimurium recognizes a chemically distinct form of the bacterial quorum-sensing signal AI-2. Mol. Cell 15:677687.
33. Mok, K. C.,, N. S. Wingreen,, and B. L. Bassler. 2003. Vibrio harveyi quorum sensing:a coincidence detector for two autoinducers controls gene expression. EMBO J. 22:870881.
34. Molofsky, A. B.,, and M. S. Swanson. 2004. Differentiate to thrive: lessons from the Legionella pneumophila life cycle. Mol. Microbiol. 53:2940.
35. Nealson, K. H.,, and J. W. Hastings. 1979. Bacterial bioluminescence: its control and ecological significance. Microbiol. Rev. 43:496518.
36. Neiditch, M. B.,, M. J. Federle,, A. J. Pompeani,, R. C. Kelly,, D. L. Swem,, P. D. Jeffrey,, B. L. Bassler,, and F. M. Hughson. 2006. Ligand-induced asymmetry in histidine sensor kinase complex regulates quorum sensing. Cell 126:10951108.
37. Schauder, S.,, K. Shokat,, M. G. Surette,, and B. L. Bassler. 2001. The LuxS family of bacterial autoinducers: biosynthesis of a novel quorum-sensing signal molecule. Mol. Microbiol. 41:463476.
38. Semmelhack, M. F.,, S. R. Campagna,, C. Hwa,, M. J. Federle,, and B. L. Bassler. 2004. Boron binding with the quorum sensing signal AI-2 and analogues. Org. Lett. 6:26352637.
39. Showalter, R. E.,, M. O. Martin,, and M. R. Silverman. 1990. Cloning and nucleotide sequence of luxR, a regulatory gene controlling bioluminescence in Vibrio harveyi. J. Bacteriol. 172:29462954.
40. Surette, M. G.,, M. B. Miller,, and B. L. Bassler. 1999. Quorum sensing in Escherichia coli, Salmonella typhimurium, and Vibrio harveyi: a new family of genes responsible for autoinducer production. Proc. Natl. Acad. Sci. USA 96:16391644.
41. Taga, M. E.,, S. T. Miller,, and B. L. Bassler. 2003. Lsr-mediated transport and processing of AI-2 in Salmonella typhimurium. Mol. Microbiol. 50:14111427.
42. Taga, M. E.,, J. L. Semmelhack,, and B. L. Bassler. 2001. The LuxS-dependent autoinducer AI-2 controls the expression of an ABC transporter that functions in AI-2 uptake in Salmonella typhimurium. Mol. Microbiol. 42:777793.
43. Thompson, F. L.,, T. Iida,, and J. Swings. 2004. Biodiversity of vibrios. Microbiol. Mol. Biol. Rev. 68:403431.
44. Tu, K. C.,, and B. L. Bassler. 2007. Multiple small RNAs act additively to integrate sensory information and control quorum sensing in Vibrio harveyi. Genes Dev. 21:221233.
45. Vaitkevicius, K.,, B. Lindmark,, G. Ou,, T. Song,, C. Toma,, M. Iwanaga,, J. Zhu,, A. Andersson,, M. L. Hammarstrom,, S. Tuck,, and S. N. Wai. 2006. A Vibrio cholerae protease needed for killing of Caenorhabditis elegans has a role in protection from natural predator grazing. Proc. Natl. Acad. Sci. USA 103:92809285.
46. Valverde, C.,, S. Heeb,, C. Keel,, and D. Haas. 2003. RsmY, a small regulatory RNA, is required in concert with RsmZ for GacA-dependent expression of biocontrol traits in Pseudomonas fluorescens CHA0. Mol. Microbiol. 50:13611379.
47. Waters, C. M.,, and B. L. Bassler. 2006. The Vibrio harveyi quorum-sensing system uses shared regulatory components to discriminate between multiple autoinducers. Genes Dev. 20:27542767.
48. Xavier, K. B.,, and B. L. Bassler. 2005. Interference with AI-2-mediated bacterial cell-cell communication. Nature 437:750753.
49. Xavier, K. B.,, and B. L. Bassler. 2005. Regulation of uptake and processing of the quorum-sensing autoinducer AI-2 in Escherichia coli. J. Bacteriol. 187:238248.
50. Yildiz, F. H.,, X. S. Liu,, A. Heydorn,, and G. K. Schoolnik. 2004. Molecular analysis of rugosity in a Vibrio cholerae O1 El Tor phase variant. Mol. Microbiol. 53:497515.
51. Zhang, L. H.,, and Y. H. Dong. 2004. Quorum sensing and signal interference: diverse implications. Mol. Microbiol. 53:15631571.
52. Zhu, J.,, and J. J. Mekalanos. 2003. Quorum sensing-dependent biofilms enhance colonization in Vibrio cholerae. Dev. Cell 5:647656.
53. Zhu, J.,, M. B. Miller,, R. E. Vance,, M. Dziejman,, B. L. Bassler,, and J. J. Mekalanos. 2002. Quorum-sensing regulators control virulence gene expression in Vibrio cholerae. Proc. Natl. Acad. Sci. USA 99:31293134.
54. Zuber, S.,, F. Carruthers,, C. Keel,, A. Mattart,, C. Blumer,, G. Pessi,, C. Gigot- Bonnefoy,, U. Schnider-Keel,, S. Heeb,, C. Reimmann,, and D. Haas. 2003. GacS sensor domains pertinent to the regulation of exoproduct formation and to the biocontrol potential of Pseudomonas fluorescens CHA0. Mol. Plant-Microbe Interact. 16:634644.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error