1887

Chapter 21 : Signal Trafficking with Bacterial Outer Membrane Vesicles

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in
Zoomout

Signal Trafficking with Bacterial Outer Membrane Vesicles, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555815578/9781555814045_Chap21-1.gif /docserver/preview/fulltext/10.1128/9781555815578/9781555814045_Chap21-2.gif

Abstract:

The gram-negative bacterium is a ubiquitous opportunistic pathogen that causes infection in immunocompromised individuals, including those with the heritable disease cystic fibrosis (CF). Quorum sensing (QS) has been proposed to be important for colonization of the CF lung, and virulence studies indicate that inactivation of QS in significantly reduces virulence in mammalian, plant, and insect models. Pseudomonas quinolone signal (PQS) biosynthesis proceeds through a head-to- head condensation of anthranilic acid and β-keto-decanoic acid to form the immediate precursor of PQS, 2-heptyl-4-quinolone (HHQ). This chapter focuses on membrane vesicles (MVs), including their potential use as trafficking vehicles for a variety of cargo, including cell-cell signals. To be utilized as trafficking vehicles, MVs must (i) have the ability to deliver their cargo to other cells and (ii) possess physiologically relevant cargo, necessitating transfer between cells. MVs isolated from have significant antimicrobial activity, particularly against gram-positive bacteria. This antimicrobial activity is multifaceted, including both small molecule and protein components. Recent studies using thin sectioning and transmission electron microscopy revealed that MVs were consistently present in the biofilm EPS matrix.

Citation: Mashburn-Warren L, Whiteley M. 2008. Signal Trafficking with Bacterial Outer Membrane Vesicles, p 333-344. In Winans S, Bassler B (ed), Chemical Communication among Bacteria. ASM Press, Washington, DC. doi: 10.1128/9781555815578.ch21

Key Concept Ranking

Cell Wall Components
0.447471
Outer Membrane Proteins
0.44228438
Type II Secretion System
0.43391123
0.447471
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of FIGURE 1
FIGURE 1

A simplified model for QS. Each system utilizes a distinct chemical signal that is sensed by a corresponding transcriptional regulator. The signal/transcriptional regulator complex binds DNA and elicits changes in gene expression. Approximately 5% of all genes are regulated by QS ( ).

Citation: Mashburn-Warren L, Whiteley M. 2008. Signal Trafficking with Bacterial Outer Membrane Vesicles, p 333-344. In Winans S, Bassler B (ed), Chemical Communication among Bacteria. ASM Press, Washington, DC. doi: 10.1128/9781555815578.ch21
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2
FIGURE 2

Transmission electron micrograph of negatively stained MVs. Diameter of a single MV is shown for scale.

Citation: Mashburn-Warren L, Whiteley M. 2008. Signal Trafficking with Bacterial Outer Membrane Vesicles, p 333-344. In Winans S, Bassler B (ed), Chemical Communication among Bacteria. ASM Press, Washington, DC. doi: 10.1128/9781555815578.ch21
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 3
FIGURE 3

Structures of relevant quinolones produced by .

Citation: Mashburn-Warren L, Whiteley M. 2008. Signal Trafficking with Bacterial Outer Membrane Vesicles, p 333-344. In Winans S, Bassler B (ed), Chemical Communication among Bacteria. ASM Press, Washington, DC. doi: 10.1128/9781555815578.ch21
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 4
FIGURE 4

MVs have antimicrobial activity against gram-positive bacteria. cells (left) and MVs (right) were spotted onto a confluent lawn of killing is indicated by zones of lysis.

Citation: Mashburn-Warren L, Whiteley M. 2008. Signal Trafficking with Bacterial Outer Membrane Vesicles, p 333-344. In Winans S, Bassler B (ed), Chemical Communication among Bacteria. ASM Press, Washington, DC. doi: 10.1128/9781555815578.ch21
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 5
FIGURE 5

Proposed mechanisms of MV formation. (Model 1) In areas lacking peptidoglycan-outer membrane protein linkages, MVs form when the outer membrane grows faster than the underlying peptidoglycan layer. This causes the outer membrane to bulge and eventually “pinch off” to form MVs. (Model 2) During normal peptidoglycan turnover, soluble low-molecular-weight peptidoglycan fragments are not internalized efficiently by the cell, resulting in accumulation of these fragments in the periplasm. Accumulation of these small fragments exerts turgor pressure on the outer membrane, causing it to swell and form MVs. (Model 3) Ionic interactions between PQS and Mg in the outer membrane enhances anionic repulsion between LPS molecules, resulting in membrane blebbing. LPS, lipopolysaccharide; OM, outer membrane; PG, peptidoglycan; IM, inner membrane. Figure reprinted from reference with permission from Blackwell Publishing.

Citation: Mashburn-Warren L, Whiteley M. 2008. Signal Trafficking with Bacterial Outer Membrane Vesicles, p 333-344. In Winans S, Bassler B (ed), Chemical Communication among Bacteria. ASM Press, Washington, DC. doi: 10.1128/9781555815578.ch21
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555815578.ch21
1. Bauman, S. J.,, and M. J. Kuehn. 2006. Purification of outer membrane vesicles from Pseudomonas aeruginosa and their activation of an IL-8 response. Microb. Infect. 8:24002408.
2. Beveridge, T. J. 1999. Structures of gram-negative cell walls and their derived membrane vesicles. J. Bacteriol. 181:47254733.
3. Beveridge, T. J.,, S. A. Makin,, J. L. Kadurugamuwa,, and Z. Li. 1997. Interactions between biofilms and the environment. FEMS Microbiol. Rev. 20:291303.
4. Bladen, H. A.,, and S. E. Mergenhagen. 1964. Ultrastructure of Veillonella and morphological correlation of an outer membrane with particles associated with endotoxic activity. J. Bacteriol. 88:14821492.
5. Braun, V. 1975. Covalent lipoprotein from the outer membrane of Escherichia coli. Biochim. Biophys. Acta 415:335377.
6. Bredenbruch, F.,, R. Geffers,, M. Nimtz,, J. Buer,, and S. Haussler. 2006. The Pseudomonas aeruginosa quinolone signal (PQS) has an iron-chelating activity. Environ. Microbiol. 8:13181329.
7. Chatterjee, S. N.,, and J. Das. 1967. Electron microscopic observations on the excretion of cell-wall material by Vibrio cholerae. J. Gen. Microbiol. 49:111.
8. Ciofu, O.,, T. J. Beveridge,, J. Kadurugamuwa,, J. Walther-Rasmussen,, and N. Hoiby. 2000. Chromosomal beta-lactamase is packaged into membrane vesicles and secreted from Pseudomonas aeruginosa. J. Antimicrob. Chemother. 45:913.
9. Davey, M. E.,, and A. O’Toole G. 2000. Microbial biofilms: from ecology to molecular genetics. Microbiol. Mol. Biol. Rev. 64:847867.
10. Deich, R. A.,, and L. C. Hoyer. 1982. Generation and release of DNA-binding vesicles by Haemophilus influenzae during induction and loss of competence. J. Bacteriol. 152:855864.
11. Deziel, E.,, F. Lepine,, S. Milot,, J. He,, M. N. Mindrinos,, R. G. Tompkins,, and L. G. Rahme. 2004. Analysis of Pseudomonas aeruginosa 4-hydroxy-2-alkylquinolines (HAQs) reveals a role for 4-hydroxy-2-heptylquinoline in cell-to-cell communication. Proc. Natl. Acad. Sci. USA 101:13391344.
12. Dorward, D. W.,, C. F. Garon,, and R. C. Judd. 1989. Export and intercellular transfer of DNA via membrane blebs of Neisseria gonorrhoeae. J. Bacteriol. 171:24992505.
13. Fiocca, R.,, V. Necchi,, P. Sommi,, V. Ricci,, J. Telford,, T. L. Cover,, and E. Solcia. 1999. Release of Helicobacter pylori vacuolating cytotoxin by both a specific secretion pathway and budding of outer membrane vesicles. Uptake of released toxin and vesicles by gastric epithelium. J. Pathol. 188:220226.
14. Gankema, H.,, J. Wensink,, P. A. Guinee,, W. H. Jansen,, and B. Witholt. 1980. Some characteristics of the outer membrane material released by growing enterotoxigenic Escherichia coli. Infect. Immun. 29:704713.
15. Giwercman, B.,, P. A. Lambert,, V. T. Rosdahl,, G. H. Shand,, and N. Hoiby. 1990. Rapid emergence of resistance in Pseudomonas aeruginosa in cystic fibrosis patients due to in-vivo selection of stable partially derepressed beta-lactamase producing strains. J. Antimicrob. Chemother. 26:247259.
16. Grenier, D.,, and M. Belanger. 1991. Protective effect of Porphyromonas gingivalis outer membrane vesicles against bactericidal activity of human serum. Infect. Immun. 59:30043008.
17. Hayashi, J.,, N. Hamada,, and H. K. Kuramitsu. 2002. The autolysin of Porphyromonas gingivalis is involved in outer membrane vesicle release. FEMS Microbiol. Lett. 216:217222.
18. Hoekstra, D.,, J. W. van der Laan,, L. de Leij,, and B. Witholt. 1976. Release of outer membrane fragments from normally growing Escherichia coli. Biochim. Biophys. Acta 455: 889899.
19. Horstman, A. L.,, and M. J. Kuehn. 2000. Enterotoxigenic Escherichia coli secretes active heat-labile enterotoxin via outer membrane vesicles. J. Biol. Chem. 275:1248912496.
20. Inouye, M. 1975. Biosynthesis and assembly of the outer membrane proteins of Escherichia coli, p. 351–391. In A. Tzagoloff (ed.), Membrane Biogenesis. Plenum Publishing Corporation, New York, NY.
21. Jander, G.,, L. G. Rahme,, and F. M. Ausubel. 2000. Positive correlation between virulence of Pseudomonas aeruginosa mutants in mice and insects. J. Bacteriol. 182:38433845.
22. Kadurugamuwa, J. L.,, and T. J. Beveridge. 1996. Bacteriolytic effect of membrane vesicles from Pseudomonas aeruginosa on other bacteria including pathogens: conceptually new antibiotics. J. Bacteriol. 178:27672774.
23. Kadurugamuwa, J. L.,, and T. J. Beveridge. 1995. Virulence factors are released from Pseudomonas aeruginosa in association with membrane vesicles during normal growth and exposure to gentamicin: a novel mechanism of enzyme secretion. J. Bacteriol. 177:39984008.
24. Kahn, M. E.,, G. Maul,, and S. H. Goodgal. 1982. Possible mechanism for donor DNA binding and transport in Haemophilus. Proc. Natl. Acad. Sci. USA 79:63706374.
25. Kato, S.,, Y. Kowashi,, and D. R. Demuth. 2002. Outer membrane-like vesicles secreted by Actinobacillus actinomycetemcomitans are enriched in leukotoxin. Microb. Pathog. 32:113.
26. Kesty, N. C.,, K. M. Mason,, M. Reedy,, S. E. Miller,, and M. J. Kuehn. 2004. Enterotoxigenic Escherichia coli vesicles target toxin delivery into mammalian cells. EMBO J. 23:45384549.
27. Kolling, G. L.,, and K. R. Matthews. 1999. Export of virulence genes and Shiga toxin by membrane vesicles of Escherichia coli O157:H7. Appl. Environ. Microbiol. 65:18431848.
28. Kuehn, M. J.,, and N. C. Kesty. 2005. Bacterial outer membrane vesicles and the host-pathogen interaction. Genes Dev. 19:26452655.
29. Lally, E. T.,, E. E. Golub,, I. R. Kieba,, N. S. Taichman,, J. Rosenbloom,, J. C. Rosenbloom,, C. W. Gibson,, and D. R. Demuth. 1989. Analysis of the Actinobacillus actinomycetemcomitans leukotoxin gene. Delineation of unique features and comparison to homologous toxins. J. Biol. Chem. 264:1545115456.
30. Lepine, F.,, S. Milot,, E. Deziel,, J. He,, and L. G. Rahme. 2004. Electrospray/mass spectrometric identification and analysis of 4-hydroxy-2-alkylquinolines (HAQs) produced by Pseudomonas aeruginosa. J. Am. Soc. Mass. Spectrom. 15:862869.
31. Li, Z.,, A. J. Clarke,, and T. J. Beveridge. 1998. Gram-negative bacteria produce membrane vesicles which are capable of killing other bacteria. J. Bacteriol. 180:54785483.
32. Li, Z.,, A. J. Clarke,, and T. J. Beveridge. 1996. A major autolysin of Pseudomonas aeruginosa: subcellular distribution, potential role in cell growth and division and secretion in surface membrane vesicles. J. Bacteriol. 178:24792488.
33. Livermore, D. M. 1987. Clinical significance of beta-lactamase induction and stable derepression in gram-negative rods. Eur. J. Clin. Microbiol. 6:439445.
34. Machan, Z. A.,, G. W. Taylor,, T. L. Pitt,, P. J. Cole,, and R. Wilson. 1992. 2-Heptyl-4-hydroxyquinoline N-oxide, an antistaphylococcal agent produced by Pseudomonas aeruginosa. J. Antimicrob. Chemother. 30:615623.
35. Mashburn, L. M.,, A. M. Jett,, D. R. Akins,, and M. Whiteley. 2005. Staphylococcus aureus serves as an iron source for Pseudomonas aeruginosa during in vivo coculture. J. Bacteriol. 187:554566.
36. Mashburn, L. M.,, and M. Whiteley. 2005. Membrane vesicles traffic signals and facilitate group activities in a prokaryote. Nature 437:422425.
37. Mashburn-Warren, L. M.,, and M. Whiteley. 2006. Special delivery: vesicle trafficking in prokaryotes. Mol. Microbiol. 61:839846.
38. Palmer, K. L.,, L. M. Mashburn,, P. K. Singh,, and M. Whiteley. 2005. Cystic fibrosis sputum supports growth and cues key aspects of Pseudomonas aeruginosa physiology. J. Bacteriol. 187:52675277.
39. Parsek, M. R.,, and E. P. Greenberg. 2000. Acyl-homoserine lactone quorum sensing in gram-negative bacteria: a signaling mechanism involved in associations with higher organisms. Proc. Natl. Acad. Sci. USA 97:87898793.
40. Pearson, J. P.,, M. Feldman,, B. H. Iglewski,, and A. Prince. 2000. Pseudomonas aeruginosa cell-to-cell signaling is required for virulence in a model of acute pulmonary infection. Infect. Immun. 68:43314334.
41. Pearson, J. P.,, C. Van Delden,, and B. H. Iglewski. 1999. Active efflux and diffusion are involved in transport of Pseudomonas aeruginosa cell-to-cell signals. J. Bacteriol. 181:12031210.
42. Pesci, E. C.,, J. B. Milbank,, J. P. Pearson,, S. McKnight,, A. S. Kende,, E. P. Greenberg,, and B. H. Iglewski. 1999. Quinolone signaling in the cell-to-cell communication system of Pseudomonas aeruginosa. Proc. Natl. Acad. Sci. USA 96:1122911234.
43. Pettit, R. K.,, and R. C. Judd. 1992. The interaction of naturally elaborated blebs from serum-susceptible and serum-resistant strains of Neisseria gonorrhoeae with normal human serum. Mol. Microbiol. 6:729734.
44. Renelli, M.,, V. Matias,, R. Y. Lo,, and T. J. Beveridge. 2004. DNA-containing membrane vesicles of Pseudomonas aeruginosa PAO1 and their genetic transformation potential. Microbiology 150:21612169.
45. Schooling, S. R.,, and T. J. Beveridge. 2006. Membrane vesicles: an overlooked component of the matrices of biofilms. J. Bacteriol. 188:59455957.
46. Schuster, M.,, C. P. Lostroh,, T. Ogi,, and E. P. Greenberg. 2003. Identification, timing, and signal specificity of Pseudomonas aeruginosa quorum-controlled genes: a transcriptome analysis. J. Bacteriol. 185:20662079.
47. Schuster, M.,, C. P. Lostroh,, T. Ogi,, and E. P. Greenberg. 2003. Identification, timing, and signal specificity of Pseudomonas aeruginosa quorum-controlled genes: a transcriptome analysis. J. Bacteriol. 185:20662079.
48. Smith, R. S.,, and B. H. Iglewski. 2003. P. aeruginosa quorum-sensing systems and virulence. Curr. Opin. Microbiol. 6:5660.
49. Wade, D. S.,, M. W. Calfee,, E. R. Rocha,, E. A. Ling,, E. Engstrom,, J. P. Coleman,, and E. C. Pesci. 2005. Regulation of Pseudomonas quinolone signal synthesis in Pseudomonas aeruginosa. J. Bacteriol. 187:43724380.
50. Wagner, V. E.,, D. Bushnell,, L. Passador,, A. I. Brooks,, and B. H. Iglewski. 2003. Microarray analysis of Pseudomonas aeruginosa quorum-sensing regulons:effects of growth phase and environment. J. Bacteriol. 185:20802095.
51. Wagner, V. E.,, L. L. Li,, V. M. Isabella,, and B. H. Iglewski. 2007. Analysis of the hierarchy of quorum-sensing regulation in Pseudomonas aeruginosa. Anal. Bioanal. Chem. 387:469479.
52. Wai, S. N.,, B. Lindmark,, T. Soderblom,, A. Takade,, M. Westermark,, J. Oscarsson,, J. Jass,, A. Richter-Dahlfors,, Y. Mizunoe,, and B. E. Uhlin. 2003. Vesicle-mediated export and assembly of pore-forming oligomers of the enterobacterial ClyA cytotoxin. Cell 115:2535.
53. Wensink, J.,, and B. Witholt. 1981. Outer-membrane vesicles released by normally growing Escherichia coli contain very little lipoprotein. Eur. J. Biochem. 116:331335.
54. Xiao, G.,, E. Deziel,, J. He,, F. Lepine,, B. Lesic,, M. H. Castonguay,, S. Milot,, A. P. Tampakaki,, S. E. Stachel,, and L. G. Rahme. 2006. MvfR, a key Pseudomonas aeruginosa pathogenicity LTTR-class regulatory protein, has dual ligands. Mol. Microbiol. 62:16891699.
55. Yaron, S.,, G. L. Kolling,, L. Simon,, and K. R. Matthews. 2000. Vesicle-mediated transfer of virulence genes from Escherichia coli O157:H7 to other enteric bacteria. Appl. Environ. Microbiol. 66:44144420.
56. Zhou, L.,, R. Srisatjaluk,, D. E. Justus,, and R. J. Doyle. 1998. On the origin of membrane vesicles in gram-negative bacteria. FEMS Microbiol. Lett. 163:223228.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error