1887

Chapter 22 : Cooperative Regulation of Competence Development in : Cell-to-Cell Signaling via a Peptide Pheromone and an Alternative Sigma Factor

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in
Zoomout

Cooperative Regulation of Competence Development in : Cell-to-Cell Signaling via a Peptide Pheromone and an Alternative Sigma Factor, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555815578/9781555814045_Chap22-1.gif /docserver/preview/fulltext/10.1128/9781555815578/9781555814045_Chap22-2.gif

Abstract:

This chapter outlines the up-regulation of genes in response to the competence-stimulating peptide (CSP) , as well as a number of recent discoveries indicating that the coordination of gene expression mediated among neighboring cells by CSP makes important contributions to the interaction of this pathogen with its human host, and thus has significance beyond the acquisition of new genetic information that originally drew attention to the system. The sigma factor, ComX or sigma X, is encoded by two identical genes, which are located upstream of two separate 16s rRNA operons. Due to the unusual duplication, a role for this sigma in competence regulation was discovered not by genetic approaches, but only by reverse genetics: the protein was found as a minor component of RNA polymerase uniquely present in competent cultures. Identification of the peptide pheromone, the corresponding signal transduction pathway, and several downstream regulons has revealed many elements of the competence regulatory mechanism. The importance of cell-cell signaling via the competence system in biofilm formation is common in the related oral streptococci. Some of the principal pneumococcal phenotypes related to competence gene expression in biofilm and during infection are summarized. Although expression in bacteremic sepsis was found to be very low for competence genes, no data are yet available for colonization or even the intracellular life of .

Citation: Oggioni M, Morrison D. 2008. Cooperative Regulation of Competence Development in : Cell-to-Cell Signaling via a Peptide Pheromone and an Alternative Sigma Factor, p 345-362. In Winans S, Bassler B (ed), Chemical Communication among Bacteria. ASM Press, Washington, DC. doi: 10.1128/9781555815578.ch22

Key Concept Ranking

Two-Component Signal Transduction Systems
0.47929007
0.47929007
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of FIGURE 1
FIGURE 1

Network of regulation leading to the X state. Regulatory interactions among the early genes, shown at left, coordinate the response to pheromone, stress, and other unknown signals. ComABCDE establish an autocatalytic positive feedback circuit, while ComX and ComW establish a link to transcription of downstream late genes. Principal functions provided by respresentative late gene operons are illustrated at the right.

Citation: Oggioni M, Morrison D. 2008. Cooperative Regulation of Competence Development in : Cell-to-Cell Signaling via a Peptide Pheromone and an Alternative Sigma Factor, p 345-362. In Winans S, Bassler B (ed), Chemical Communication among Bacteria. ASM Press, Washington, DC. doi: 10.1128/9781555815578.ch22
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2
FIGURE 2

-acting regulatory sites at early and late CSP-induced loci. (A) Bases matching the direct repeat ComE consensus upstream of early genes are bold. Apparent canonical –10 promoter sites are underlined. (B) DNA sequences located upstream of late gene clusters. Base pairs to the start codon of the first open reading frame are shown. Matches to combox consensus octamer are in bold; mismatches, in lowercase.

Citation: Oggioni M, Morrison D. 2008. Cooperative Regulation of Competence Development in : Cell-to-Cell Signaling via a Peptide Pheromone and an Alternative Sigma Factor, p 345-362. In Winans S, Bassler B (ed), Chemical Communication among Bacteria. ASM Press, Washington, DC. doi: 10.1128/9781555815578.ch22
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 3
FIGURE 3

Comparative counts of sessile and planktonic cells of different strains incubated for 18 h with CSP. Counts of sessile cells are reported in gray, and counts of planktonic cells of the same wells are reported in black. Graphs A and B report the same values with different scales. (A) The CFUs are reported on a log scale that highlights differences in sessile cells. (B) The CFUs are reported on a linear scale, evidencing variations affecting planktonic growth. Strains carrying the 1 allele were incubated with CSP1; D39 (diamond), G54 (circle), ATCC 6302 (open square), ATCC 6303 (open triangle) and ATCC 6305 (open circle). Strains carrying the 2 allele were incubated with CSP2;TIGR4 (square), A66 (triangle), and ATCC 6307 (inverted triangle).

Citation: Oggioni M, Morrison D. 2008. Cooperative Regulation of Competence Development in : Cell-to-Cell Signaling via a Peptide Pheromone and an Alternative Sigma Factor, p 345-362. In Winans S, Bassler B (ed), Chemical Communication among Bacteria. ASM Press, Washington, DC. doi: 10.1128/9781555815578.ch22
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555815578.ch22
1. Allegrucci, M.,, F. Z. Hu,, K. Shen,, J. Hayes,, G. D. Ehrlich,, J. C. Post,, and K. Sauer. 2006. Phenotypic characterization of Streptococcus pneumoniae biofilm development. J. Bacteriol. 188:23252335.
2. Alloing, G.,, C. Granadel,, D. A. Morrison,, and J. P. Claverys. 1996. Competence pheromone, oligopeptide permease, and induction of competence in Streptococcus pneumoniae. Mol. Microbiol. 21:471478.
3. Alloing, G.,, B. Martin,, C. Granadel,, and J. P. Claverys. 1998. Development of competence in Streptococcus pneumonaie: pheromone autoinduction and control of quorum sensing by the oligopeptide permease. Mol. Microbiol. 29:7583.
4. Austrian, R. 1952. Observations on the transformation of pneumococcus in vivo. Bull. Johns Hopkins Hosp. 91:189196.
5. Bartilson, M.,, A. Marra,, J. Christine,, J. S. Asundi,, W. P. Schneider,, and A. E. Hromockyj. 2001. Differential fluorescence induction reveals Streptococcus pneumoniae loci regulated by competence stimulatory peptide. Mol. Microbiol. 39:12635.
6. Bergé, M. 2002. Compétence pour la transformation gènétique chez la bactérie à Gram positif Streptococcus pneumoniae: étude du gène tardif dprA. Ph. D. thesis, Université Paul Sabatier de Toulouse (Sciences).
7. Bergé, M.,, I. Mortier-Barrière,, B. Martin,, and J. P. Claverys. 2003. Transformation of Streptococcus pneumoniae relies on DprA- and RecA-dependent protection of incoming DNA single strands. Mol. Microbiol. 50:527536.
8. Bergé, M.,, M. Moscoso,, M. Prudhomme,, B. Martin,, and J. P. Claverys. 2002. Uptake of transforming DNA in gram-positive bacteria: a view from Streptococcus pneumoniae. Mol. Microbiol. 45:411421.
9. Budhani, R. K.,, and J. K. Struthers. 1997. The use of sorbarod biofilms to study the antimicrobial susceptbility of a strain of Streptococcus pneumoniae. J. Antimicrob. Chemother. 40:601602.
10. Burghout, P.,, H. J. Bootsma,, T. G. Kloosterman,, J. J. E. Bijlsma,, C. E. de Jongh,, O. P. Kuipers,, and P. W. Hermans. 2007. Search for genes essential for pneumococcal transformation: the RADA DNA repair protein plays a role in genomic recombination of donor DNA. J. Bacteriol. 189:65406550.
11. Campbell, E. A.,, S. Y. Choi,, and H. R. Masure. 1998. A competence regulon in Streptococcus pneumoniae revealed by genomic analysis. Mol. Microbiol. 27:929939.
12. Chastanet, A.,, M. Prudhomme,, J. P. Claverys,, and T. Msadek. 2001. Regulation of Streptococcus pneumoniae clp genes and their role in competence development and stress survival. J. Bacteriol. 183:72957307.
13. Chen, J. D.,, and D. A. Morrison. 1987. Modulation of competence for genetic transformation in Streptococcus pneumoniae. J. Gen. Microbiol. 133:19591967.
14. Claverys, J. P.,, B. Grossiord,, and G. Alloing. 2000. Is the Ami-AliA/B oligopeptide permease of Streptococcus pneumoniae involved in sensing environmental conditions? Res. Microbiol. 151:457463.
15. Claverys, J. P.,, and L. S. Havarstein. 2002. Extracellular-peptide control of competence for genetic transformation in Streptococcus pneumoniae. Front. Biosci. 7:17981814.
16. Claverys, J. P.,, M. Prudhomme,, and B. Martin. 2006. Induction of competence regulons as a general response to stress in gram-positive bacteria. Annu. Rev. Microbiol. 60:451475.
17. Claverys, J. P.,, M. Prudhomme,, I. Mortier-Barriere,, and B. Martin. 2000. Adaptation to the environment: Streptococcus pneumoniae, a paradigm for recombination-mediated genetic plasticity? Mol. Microbiol. 35:251259.
18. Conant, J. E.,, and W. D. Sawyer. 1967. Transformation during mixed pneumococcal infection of mice. J. Bacteriol. 6:18691875.
19. Coomaraswamy, G. 1996. Control of competence in Streptococcus pneumoniae by synthetic peptide pheromones. Ph. D. thesis, University of Illinois at Chicago, Chicago.
20. Cvitkovitch, D. G.,, Y. H. Li,, and R. P. Ellen. 2003. Quorum sensing and biofilm formation in streptococcal infections. J. Clin. Invest. 112:16261632.
21. Dagkessamanskaia, A.,, M. Moscoso,, V. Henard,, S. Guiral,, K. Overweg,, M. Reuter,, B. Martin,, J. Wells,, and J. P. Claverys. 2004. Interconnection of competence, stress and CiaR regulons in Streptococcus pneumoniae: competence triggers stationary phase autolysis of ciaR mutant cells. Mol. Microbiol. 51:10711086.
22. Dawson, M. H. 1928. The interconvertibility of R and S forms of pneumococcus. J. Exp. Med. 47:577591.
23. Desai, B. V.,, and D. A. Morrison. 2006. An unstable competence-induced protein, CoiA, promotes processing of donor DNA after uptake during genetic transformation in Streptococcus pneumoniae. J. Bacteriol. 188:51775186.
24. Donlan, R. M.,, J. A. Piede,, C. D. Heyes,, L. Sanii,, R. Murga,, P. Edmonds,, I. El-Sayed,, and M. A. El-Sayed. 2004. Model system for growing and quantifying Streptococcus pneumoniae biofilms in situ and in real time. Appl. Environ. Microbiol. 70:49804988.
25. Dunny, G. M., and S. C. Winans (ed.). 1999. Cell-Cell Signalling in Bacteria. ASM Press, Washington, DC.
26. Echenique, J.,, A. Kadioglu,, S. Romao,, P. W. Andrew,, and M. C. Trombe. 2004. Protein serine/threonine kinase StkP positively controls virulence and competence in Streptococcus pneumoniae. Infect. Immun. 72:24342437.
27. Ephrussi-Taylor, H. 1955. Current status of bacterial transformations. Adv. Virus Res. 3:275307.
28. Giammarinaro, P.,, M. Sicard,, and A. M. Gasc. 1999. Genetic and physiological studies of the CiaH-CiaR two-component signal-transducing system involved in cefotaxime resistance and competence of Streptococcus pneumoniae. Microbiology 145:18591869.
29. Gilmore, K. S.,, P. Srinivas,, D. R. Akins,, K. L. Hatter,, and M. S. Gilmore. 2003. Growth, development, and gene expression in a persistent Streptococcus gordonii biofilm. Infect. Immun. 71:47594766.
30. Griffith, F. 1928. The significance of pneumococcal types. J. Hyg. 27:113159.
31. Guenzi, E.,, A. M. Gasc,, M. A. Sicard,, and R. Hakenbeck. 1994. A two-component signal-transducing system is involved in competence and penicillin susceptibility in laboratory mutants of Streptococcus pneumoniae. Mol. Microbiol. 12:505515.
32. Guiral, S.,, V. Henard,, C. Granadel,, B. Martin,, and J. P. Claverys. 2006. Inhibition of competence development in Streptococcus pneumoniae by increased basal-level expression of the ComDE two-component regulatory system. Microbiology 152:323331.
33. Guiral, S.,, T. J. Mitchell,, B. Martin,, and J.-P. Claverys. 2005. Competence-programmed predation of noncompetent cells in the human pathogen Streptococcus pneumoniae: genetic requirements. Proc. Natl. Acad. Sci. USA 102:87108715.
34. Hall, R. H.,, and G. O. Gale. 1959. New observations on pneumococcal transformation in vivo. Proc. Soc. Exp. Biol. Med. 101:487491.
35. Hall-Stoodley, L.,, F. Z. Hu,, A. Gieseke,, L. Nistico,, D. Nguyen,, J. Hayes,, M. Forbes,, D. P. Greenberg,, B. Dice,, A. Burrows,, P. A. Wackym,, P. Stoodley,, J. C. Post,, G. D. Ehrlich,, and J. E. Kerschner. 2006. Direct detection of bacterial biofilms on the middle-ear mucosa of children with chronic otitis media. JAMA 296:202211.
36. Håvarstein, L. S.,, G. Coomaraswamy,, and D. A. Morrison. 1995. An unmodified heptadecapeptide pheromone induces competence for genetic transformation in Streptococcus pneumoniae. Proc. Natl. Acad. Sci. USA 92:1114011144.
37. Håvarstein, L. S.,, D. B. Diep,, and I. F. Nes. 1995. A family of bacteriocin ABC transporters carry out proteolytic processing of their substrates concomitant with export. Mol. Microbiol. 16:229240.
38. Håvarstein, L. S.,, P. Gaustad,, I. F. Nes,, and D. A. Morrison. 1996. Identification of the streptococcal competence-pheromone receptor. Mol. Microbiol. 21:863869.
39. Håvarstein, L. S.,, R. Hakenbeck,, and P. Gaustad. 1997. Natural competence in the genus Streptococcus: evidence that streptococci can change pherotype by interspecies recombinational exchanges. J. Bacteriol. 179:65896594.
40. Håvarstein, L. S.,, B. Martin,, O. Johnsborg,, C. Granadel,, and J.-P. Claverys. 2006. New insights into the pneumococcal fratricide:relationship to clumping and identification of a novel immunity factor. Mol. Microbiol. 59:12971307.
41. Håvarstein, L. S.,, and D. A. Morrison. 1998. Quorum-sensing and peptide pheromones, p. 9–26. In G. M. Dunny, and S. C. Winans (ed.), Cell-Cell Signaling in Bacteria. ASM Press, Washington, DC.
42. Humbert, O.,, M. Prudhomme,, R. Haken-beck,, C. G. Dowson,, and J. P. Claverys. 1995. Homeologous recombination and mismatch repair during transformation in Streptococcus pneumoniae: saturation of the Hex mismatch repair system. Proc. Natl. Acad. Sci. USA 92:90529056.
43. Iannelli, F.,, M. R. Oggioni,, and G. Pozzi. 2005. Sensor domain of histidine kinase ComD confers competence pherotype specificity in Streptoccoccus pneumoniae. FEMS Microbiol. Lett. 252:321326.
44. Kausmally, L.,, O. Johnsborg,, M. Lunde,, E. Knutsen,, and L. S. Håvarstein. 2005. Choline-binding protein D (CbpD) in Streptococcus pneumoniae is essential for competence-induced cell lysis. J. Bacteriol. 187:43384345.
45. Lacks, S. A. 2004. Transformation, p. 89–115. In E. I. Tuomanen (ed.), The Pneumococcus. ASM Press, Washington, DC.
46. Lacks, S. A.,, S. Ayalew,, A. G. de la Campa,, and B. Greenberg. 2000. Regulation of competence for genetic transformation in Streptococcus pneumoniae: expression of dpnA, a late competence gene encoding a DNA methyltransferase of the DpnII restriction system. Mol. Microbiol. 35:10891098.
47. Lacks, S. A.,, and B. Greenberg. 2001. Constitutive competence for genetic transformation in Streptococcus pneumoniae caused by mutation of a transmembrane histidine kinase. Mol. Microbiol. 42:10351045.
48. Lee, M. S.,, and D. A. Morrison. 1999. Identification of a new regulator in Streptococcus pneumoniae linking quorum sensing to competence for genetic transformation. J. Bacteriol. 181:50045016.
49. Lefrançois, J.,, M. M. Samrakandi,, and A. M. Sicard. 1998. Electrotransformation and natural transformation of Streptococcus pneumoniae: requirement of DNA processing for recombination. Microbiology 144:30613068.
50. Li, Y. H.,, N. Tang,, M. B. Aspiras,, P. C. Lau,, J. H. Lee,, R. P. Ellen,, and D. G. Cvitkovitch. 2002. A quorum-sensing signaling system essential for genetic competence in Streptococcus mutans is involved in biofilm formation. J. Bacteriol. 184:26992708.
51. Loo, C. Y.,, D. Corliss,, and N. Ganeshkumar. 2000. Streptococcus gordonii biofilm formation:identification of genes that code for biofilm phenotypes. J. Bacteriol. 182:13741382.
52. Luo, P. 2003. Genetic transformation in Streptococcus pneumoniae:regulation by ComX, an alternative sigma factor. Ph. D. thesis, University of Illinois at Chicago, Chicago.
53. Luo, P.,, H. Li,, and D. A. Morrison. 2003. ComX is a unique link between multiple quorum sensing outputs and competence in Streptococcus pneumoniae. Mol. Microbiol. 50:623633.
54. Luo, P.,, H. Li,, and D. A. Morrison. 2004. Identification of ComW as a new component in the regulation of genetic transformation in Streptococcus pneumoniae. Mol. Microbiol. 54:172183.
55. Luo, P.,, and D. A. Morrison. 2003. Transient association of an alternative sigma factor, ComX, with RNA polymerase during the period of competence for genetic transformation in Streptococcus pneumoniae. J. Bacteriol. 185:349358.
56. Martin, B.,, M. Prudhomme,, G. Alloing,, C. Granadel,, and J. P. Claverys. 2000. Cross-regulation of competence pheromone production and export in the early control of transformation in Streptococcus pneumoniae. Mol. Microbiol. 38:867878.
57. Martin, B.,, Y. Quentin,, G. Fichant,, and J.-P. Claverys. 2006. Independent evolution of competence regulatory cascades in streptococci? Trends Microbiol. 14:339345.
58. Mascher, T.,, D. Zahner,, M. Merai,, N. Balmelle,, A. B. de Saizieu,, and R. Hakenbeck. 2003. The Streptococcus pneumoniae cia regulon: CiaR target sites and transcription profile analysis. J. Bacteriol. 185:6070.
59. McEllistrem, M. C.,, J. Ransford,, and S. Khan. 2007. Characterisation of in vitro biofilm-associated pneumococcal phase variants of a clinically-relevant serotype 3 clone. J. Clin. Microbiol. 45:97101.
60. Méjean, V.,, and J. P. Claverys. 1993. DNA processing during entry in transformation of Streptococcus pneumoniae. J. Biol. Chem. 268:55945599.
61. Morrison, D. A. 1997. Streptococcal competence for genetic transformation: regulation by peptide pheromones. Microb. Drug Resist. 3:2737.
62. Morrison, D. A.,, and M. F. Baker. 1979. Competence for genetic transformation in pneumococcus depends on synthesis of a small set of proteins. Nature 282:215217.
63. Mortier-Barrière, I.,, M. Velten,, P. Dupaigne,, N. Mirouze,, O. Piétrement,, S. McGovern,, G. Fichant,, B. Martin,, P. Noirot,, E. Le Cam,, P. Polard,, and J. P. Claverys. 2007. A key presynaptic role in transformation for a widespread bacterial protein: DprA conveys incoming ssDNA to RecA. Cell 130:824836.
64. Moscoso, M.,, and J. P. Claverys. 2004. Release of DNA into the medium by competent Streptococcus pneumoniae: kinetics, mechanism and stability of the liberated DNA. Mol. Microbiol. 54:783794.
65. Moscoso, M.,, E. Garcia,, and R. Lopez. 2006. Biofilm formation by Streptococcus pneumoniae: role of choline, extracellular DNA, and capsular polysaccharide in microbial accretion. J. Bacteriol. 188:77857795.
66. Neufeld, F.,, and W. Levinthal. 1928. Beitraege zur variabilitaet der pneumokokken. Zeitschrift fuer Immunitaetsforschung 55:324340.
67. Oggioni, M. R.,, F. Iannelli,, S. Ricci,, D. Chiavolini,, R. Parigi,, C. Trappetti,, J. P. Claverys,, and G. Pozzi. 2004. Antibacterial activity of a competence-stimulating peptide in experimental sepsis caused by Streptococcus pneumoniae. Antimicrob. Agents Chemother. 48:47254732.
68. Oggioni, M. R.,, C. Trappetti,, A. Kadioglu,, M. Cassone,, F. Iannelli,, S. Ricci,, P. W. Andrew,, and G. Pozzi. 2006. Switch from planktonic to sessile life: a major event in pne mococcal pathogenesis. Mol. Microbiol. 61:11961210.
69. Orihuela, C. J.,, J. N. Radin,, J. E. Sublett,, G. Gao,, D. Kaushal,, and E. I. Tuomanen. 2004. Microarray analysis of pneumococcal gene expression during invasive disease. Infect. Immun. 72:55825596.
70. Ottolenghi, E. 1963. Genetic transformation among living pneumococci in the mouse. Genetics 50:417419.
71. Ottolenghi-Nightingale, E. 1969. Spontaneously occurring bacterial transformation in mice. J. Bacteriol. 100:445452.
72. Ottolenghi-Nightingale, E. 1972. Competence of pneumococcal isolates and bacterial transformation in man. Infect. Immun. 6:785792.
73. Pakula, R.,, and W. Walczak. 1963. On the nature of competence of transformable streptococci. J. Gen. Microbiol. 31:125133.
74. Pearce, B. J.,, A. M. Naughton,, E. A. Campbell,, and H. R. Masure. 1995. The reclocus, a competence-induced operon in Streptococcus pneumoniae. J. Bacteriol. 177:8693.
75. Pestova, E. V.,, L. S. Håvarstein,, and D. A. Morrison. 1996. Regulation of competence for genetic transformation in Streptococcus pneumoniae by an auto-induced peptide pheromone and a two-component regulatory system. Mol. Microbiol. 21:853862.
76. Pestova, E. V.,, and D. A. Morrison. 1998. Isolation and characterization of three Streptococcus pneumoniae transformation-specific loci by use of a lacZ reporter insertion vector. J. Bacteriol. 180:27012710.
77. Petersen, F. C.,, D. Pecharki,, and A. A. Scheie. 2004. Biofilm mode of growth of Streptococcus intermedius favored by a competence-stimulating signaling peptide. J. Bacteriol. 186:63276331.
78. Petersen, F. C.,, L. Tao,, and A. A. Scheie. 2005. DNA binding-uptake system: a link between cell-to-cell communication and biofilm formation. J. Bacteriol. 187:43924400.
79. Peterson, S.,, R. T. Cline,, H. Tettelin,, V. Sharov,, and D. A. Morrison. 2000. Gene expression analysis of the Streptococcus pneumoniae competence regulons by use of DNA microarrays. J. Bacteriol. 182:61926202.
80. Peterson, S. N.,, C. K. Sung,, R. Cline,, B. V. Desai,, E. C. Snesrud,, P. Luo,, J. Walling,, H. Li,, M. Mintz,, G. Tsegaye,, P. C. Burr,, Y. Do,, S. Ahn,, J. Gilbert,, R. D. Fleischmann,, and D. A. Morrison. 2004. Identification of competence pheromone responsive genes in Streptococcus pneumoniae by use of DNA microarrays. Mol. Microbiol. 51:10511070.
81. Pozzi, G.,, L. Masala,, F. Iannelli,, R. Manganelli,, L. S. Håvarstein,, L. Piccoli,, D. Simon,, and D. A. Morrison. 1996. Competence for genetic transformation in encapsulated strains of Streptococcus pneumoniae: two allelic variants of the peptide pheromone. J. Bacteriol. 178:60876090.
82. Prudhomme, M.,, L. Attaiech,, G. Sanchez,, B. Martin,, and J. P. Claverys. 2006. Antibiotic stress induces genetic transformability in the human pathogen Streptococcus pneumoniae. Science 313:8992.
83. Prudhomme, M.,, V. Libante,, and J. P. Claverys. 2002. Homologous recombination at the border: insertion-deletions and the trapping of foreign DNA in Streptococcus pneumoniae. Proc. Natl. Acad. Sci. USA 99:21002105.
84. Qi, F.,, J. Kreth,, C. M. Levesque,, O. Kay,, R. W. Mair,, W. Shi,, D. G. Cvitkovitch,, and S. D. Goodman. 2006. Peptide pheromone induced cell death of Streptococcus mutans. FEMS Microbiol. Lett. 251:321326.
85. Ramirez, M.,, D. A. Morrison,, and A. Tomasz. 1997. Ubiquitous distribution of the competence related genes comA and comC among isolates of Streptococcus pneumoniae. Microb. Drug Resist. 3:3952.
86. Redfield, R. J. 2002. Is quorum sensing a side effect of diffusion sensing? Trends Microbiol. 10:365370.
87. Rimini, R.,, B. Jansson,, G. Feger,, T. C. Roberts,, M. de Francesco,, A. Gozzi,, F. Faggioni,, E. Domenici,, D. M. Wallace,, N. Frandsen,, and A. Polissi. 2000. Global analysis of transcription kinetics during competence development in Streptococcus pneumoniae using high density DNA arrays. Mol. Microbiol. 36:12791292.
88. Risoen, P. A.,, M. B. Brurberg,, V. G. Eijsink,, and I. F. Nes. 2000. Functional analysis of promoters involved in quorum sensing-based regulation of bacteriocin production in Lactobacillus. Mol. Microbiol. 37:619628.
89. Robertson, G. T.,, W. L. Ng,, J. Foley,, R. Gilmour,, and M. E. Winkler. 2002. Global transcriptional analysis of clpP mutations of type 2 Streptococcus pneumoniae and their effects on physiology and virulence. J. Bacteriol. 184:35083520.
90. Romao, S.,, G. Memmi,, M. R. Oggioni,, and M. C. Trombe. 2006. LuxS impacts on LytA-dependent autolysis and on competence in Streptococcus pneumoniae. Microbiology 152:333341.
91. Sebert, M. E.,, K. P. Patel,, M. Plotnick,, and J. N. Weiser. 2005. Pneumococcal HtrA protease mediates inhibition of competence by the CiaRH two-component signaling system. J. Bacteriol. 187:39693979.
92. Steinmoen, H.,, E. Knutsen,, and L. S. Håvarstein. 2002. Induction of natural competence in Streptococcus pneumoniae triggers lysis and DNA release from a subfraction of the cell population. Proc. Natl. Acad. Sci. USA 99:76817686.
93. Steinmoen, H.,, A. Teigen,, and L. S. Håvarstein. 2003. Competence-induced cells of Streptococcus pneumoniae lyse competence-deficient cells of the same strain during cocultivation. J. Bacteriol. 185:71767183.
94. Sturme, M. H.,, M. Kleerebezem,, J. Nakayama,, A. D. Akkermans,, E. E. Vaugha,, and W. M. de Vos. 2002. Cell to cell communication by autoinducing peptides in gram-positive bacteria. Antonie Van Leeuwenhoek 81:233243.
95. Sung, C. K.,, and D. A. Morrison. 2005. Two distinct functions of ComW in stabilization and activation of the alternative sigma factor ComX in Streptococcus pneumoniae. J. Bacteriol. 187:30523061.
96. Suntharalingam, P.,, and D. G. Cvitkovitch. 2005. Quorum sensing in streptococcal biofilm formation. Trends Microbiol. 13:36.
97. Surette, M. G.,, M. B. Miller,, and B. L. Bassler. 1999. Quorum sensing in Escherichia coli, Salmonella typhimurium, and Vibrio harveyi:a new family of genes responsible for autoinducer production. Proc. Natl. Acad. Sci. USA 96:16391644.
98. Tettelin, H.,, K. E. Nelson,, I. T. Paulsen,, J. A. Eisen,, T. D. Read,, S. Peterson,, J. Heidelberg,, R. T. DeBoy,, D. H. Haft,, R. J. Dodson,, A. S. Durkin,, M. Gwinn,, J. F. Kolonay,, W. C. Nelson,, J. D. Peterson,, L. A. Umayam,, O. White,, S. L. Salzberg,, M. R. Lewis,, D. Radune,, E. Holtzapple,, H. Khouri,, A. M. Wolf,, T. R. Utterback,, C. L. Hansen,, L. A. McDonald,, T. V. Feldblyum,, S. Angiuoli,, T. Dickinson,, E. K. Hickey,, I. E. Holt,, B. J. Loftus,, F. Yang,, H. O. Smith,, J. C. Venter,, B. A. Dougherty,, D. A. Morrison,, S. K. Hollingshead,, and C. M. Fraser. 2001. Complete genome sequence of a virulent isolate of Streptococcus pneumoniae. Science 293:498506.
99. Thomas, R. 1955. Recherches sur la cinétique des transformations bactériennes. Biochim. Biophys. Acta 18:467481.
100. Tomasz, A. 1966. Model for the mechanism controlling the expression of competent state in Pneumococcus cultures. J. Bacteriol. 91:10501061.
101. Tomasz, A. 1970. Cellular metabolism in genetic transformation of pneumococci: requirement for protein synthesis during induction of competence. J. Bacteriol. 101:860871.
102. Tomasz, A.,, and R. D. Hotchkiss. 1964. Regulation of the transformability of pneumococcal cultures by macromolecular cell products. Proc. Natl. Acad. Sci. USA 51:480487.
103. Tomasz, A.,, and J. L. Mosser. 1966. On the nature of the pneumococcal activator substance. Proc. Natl. Acad. Sci. USA 55:5866.
104. Visick, K. L.,, and C. Fuqua. 2005. Decoding microbial chatter: cell-cell communication in bacteria. J. Bacteriol. 187:55075519.
105. Wagner, C.,, A. Saizieu Ad,, H. J. Schonfeld,, M. Kamber,, R. Lange,, C. J. Thompson,, and M. G. Page. 2002. Genetic analysis and functional characterization of the Streptococcus pneumoniae vic operon. Infect. Immun. 70:61216128.
106. Waite, R. D.,, J. K. Struthers,, and C. G. Dowson. 2001. Spontaneous sequence duplication within an open reading frame of the pneumococcal type 3 capsule locus causes high-frequency phase variation. Mol. Microbiol. 42:12231232.
107. Waters, C. M.,, and B. L. Bassler. 2005. Quorum sensing: cell-to-cell communication in bacteria. Ann. Rev. Cell Devel. Biol. 21:319346.
108. Ween, O.,, P. Gaustad,, and L. S. Håvarstein. 1999. Identification of DNA binding sites for ComE, a key regulator of natural competence in Streptococcus pneumoniae. Mol. Microbiol. 33:817827.
109. Woodbury, R. L.,, X. Wang,, and C. P. Moran, Jr. 2006. Sigma X induces competence gene expression in Streptococcus pyogenes. Res. Microbiol. 157:851856.
110. Zahner, D.,, T. Grebe,, E. Guenzi,, J. Krauss,, M. van der Linden,, K. Terhune,, J. B. Stock,, and R. Hakenbeck. 1996. Resistance determinants for beta-lactam antibiotics in laboratory mutants of Streptococcus pneumoniae that are involved in genetic competence. Microb. Drug Resist. 2:187191.
111. Zahner, D.,, K. Kaminski,, M. van der Linden,, T. Mascher,, M. Meral,, and R. Hakenbeck. 2002. The ciaR/ciaH regulatory network of Streptococcus pneumoniae. J. Mol. Microbiol. Biotechnol. 4:211216.

Tables

Generic image for table
TABLE 1

Competence gene expression in vitro in liquid culture and biofilm and during infection in vivo by TIGR4 ( )

Citation: Oggioni M, Morrison D. 2008. Cooperative Regulation of Competence Development in : Cell-to-Cell Signaling via a Peptide Pheromone and an Alternative Sigma Factor, p 345-362. In Winans S, Bassler B (ed), Chemical Communication among Bacteria. ASM Press, Washington, DC. doi: 10.1128/9781555815578.ch22
Generic image for table
TABLE 2

Competence-related phenotypes in vitro and during infection

Citation: Oggioni M, Morrison D. 2008. Cooperative Regulation of Competence Development in : Cell-to-Cell Signaling via a Peptide Pheromone and an Alternative Sigma Factor, p 345-362. In Winans S, Bassler B (ed), Chemical Communication among Bacteria. ASM Press, Washington, DC. doi: 10.1128/9781555815578.ch22

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error