1887

Chapter 23 : The A Factor Regulatory Cascade That Triggers Secondary Metabolism and Morphological Differentiation in

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in
Zoomout

The A Factor Regulatory Cascade That Triggers Secondary Metabolism and Morphological Differentiation in , Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555815578/9781555814045_Chap23-1.gif /docserver/preview/fulltext/10.1128/9781555815578/9781555814045_Chap23-2.gif

Abstract:

This chapter deals with the study of the biology and chemistry of γ-butyrolactone-type autoregulators that switch on secondary metabolism and morphological differentiation in . The A factor and receptor system in acts as an all-or-nothing switch for both morphological and physiological differentiation. carrying produces two new substances that are absent in the broth of without with their m/z 241 and 213 and the same MS/MS fragmentation pattern as A factor. AfsA is thus the key enzyme for the biosynthesis of γ-butyrolactones. Interestingly, a database search predicts that and its homologs are distributed only in actinomycetes. In , A factor production is controlled directly or indirectly by in a two-step regulatory feedback loop. The major streptomycin resistance determinant, , located just downstream of , encoding streptomycin-6-phosphotransferase, is also transcribed by read-through from the A factor-dependent promoter. The cotranscription of and accounts for the prompt induction of streptomycin resistance by A factor and achieves a rapid increase in self-resistance just before induction of streptomycin biosynthesis.

Citation: Horinouchi S. 2008. The A Factor Regulatory Cascade That Triggers Secondary Metabolism and Morphological Differentiation in , p 363-377. In Winans S, Bassler B (ed), Chemical Communication among Bacteria. ASM Press, Washington, DC. doi: 10.1128/9781555815578.ch23

Key Concept Ranking

Fatty Acid Biosynthesis
0.4653833
Streptomyces griseus
0.45762694
Streptomyces antibioticus
0.45374876
DNA Microarray Analysis
0.42942533
0.4653833
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of FIGURE 1
FIGURE 1

γ-Butyrolactones in . The differences in chemical structure among the γ-butyrolactones are the length and branching of the acyl chain and the reduction state, either a keto or a hydroxyl group, at position 6.

Citation: Horinouchi S. 2008. The A Factor Regulatory Cascade That Triggers Secondary Metabolism and Morphological Differentiation in , p 363-377. In Winans S, Bassler B (ed), Chemical Communication among Bacteria. ASM Press, Washington, DC. doi: 10.1128/9781555815578.ch23
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2
FIGURE 2

The A factor regulatory cascade. The A factor signal, starting with the A factor biosynthesis gene , is transferred to the receptor ArpA, to a transcriptional activator AdpA, and finally to a variety of genes required for morphological development and secondary metabolite formation. See the text for details of the target genes of AdpA. Through this cascade, morphological and physiological differentiation occurs at a specific time of growth, when the intracellular concentration reaches a critical level at or near the middle of the exponential growth.

Citation: Horinouchi S. 2008. The A Factor Regulatory Cascade That Triggers Secondary Metabolism and Morphological Differentiation in , p 363-377. In Winans S, Bassler B (ed), Chemical Communication among Bacteria. ASM Press, Washington, DC. doi: 10.1128/9781555815578.ch23
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 3
FIGURE 3

The whole A factor biosynthesis pathway. The major pathway, highlighted by shadowing, and an alternative pathway are shown. In the major pathway, AfsA catalyzes the condensation of DHAP [] and a β-keto acid derivative [] to yield an 8-methyl-3-oxononanoyl-DHAP ester []. The fatty acid ester is nonenzymatically converted to a butenolide phosphate [] by intramolecular aldol condensation. The butenolide phosphate is then reduced by BprA to yield a butanolide []. The last dephosphorylation step yields A factor []. In the alternative pathway, the 8-methyl-3-oxononanoyl-DHAP ester [] is first dephosphorylated to yield a dephosphorylated ester [], which is then nonenzymatically condensed, resulting in a butenolide []. The C=C double bond of the butenolide [] is reduced to yield A factor [].

Citation: Horinouchi S. 2008. The A Factor Regulatory Cascade That Triggers Secondary Metabolism and Morphological Differentiation in , p 363-377. In Winans S, Bassler B (ed), Chemical Communication among Bacteria. ASM Press, Washington, DC. doi: 10.1128/9781555815578.ch23
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555815578.ch23
1. Ando, N.,, N. Matsumori,, S. Sakuda,, T. Beppu,, and S. Horinouchi. 1997. Involvement of AfsA in A factor biosynthesis as a key enzyme. J. Antibiot. 50:847852.
2. Ando, N.,, K. Ueda,, and S. Horinouchi. 1997. A Streptomyces griseus gene (sgaA) suppresses the growth disturbance caused by high osmolality and a high concentration of A factor during early growth. Microbiology 143:27152723.
3. Bassler, B. L.,, and R. Losick. 2006. Bacterially speaking. Cell 125:237246.
4. Chater, K. F.,, and S. Horinouchi. 2003. Signalling early developmental events in two highly diverged Streptomyces species. Mol. Microbiol. 48:915.
5. Folcher, M.,, H. Gaillard,, L. T. Nguyen,, K. T. Nguyen,, P. Lacroix,, N. Bamas-Jacques,, M. Rinkel,, and C. J. Thompson. 2001. Pleiotropic functions of a Streptomyces pristinaespiralis autoregulator receptor in development, antibiotic biosynthesis, and expression of a superoxide dismutase. J. Biol. Chem. 276:4429744306.
6. Funa, N.,, M. Funabashi,, Y. Ohnishi,, and S. Horinouchi. 2005. Biosynthesis of hexahydroxyperylenequinone melanin via oxidative aryl coupling by cytochrome P-450 in Streptomyces griseus. J. Bacteriol. 187:81498155.
7. Funa, N.,, Y. Ohnishi,, I. Fujii,, M. Shibuya,, Y. Ebizuka,, and S. Horinouchi. 1999. A new pathway for polyketide synthesis in microorganisms. Nature 400:897899.
8. Fuqua, W. C.,, S. C. Winans,, and E. P. Greenberg. 1994. Quorum sensing in bacteria: the LuxR-LuxI family of cell density-responsive transcriptional regulators. J. Bacteriol. 176:269275.
9. Hara, O.,, and T. Beppu. 1982. Mutants blocked in streptomycin production in Streptomyces griseus—the role of A factor. J. Antibiot. 35:349358.
10. Hara, O.,, S. Horinouchi,, T. Uozumi,, and T. Beppu. 1983. Genetic analysis of A factor synthesis in Streptomyces coelicolor A3(2) and Streptomyces griseus. J. Gen. Microbiol. 129:29392944.
11. Hashimoto, K.,, T. Nihira,, S. Sakuda,, and Y. Yamada. 1992. IM-2, a butyrolactone autoregulator, induces production of several nucleoside antibiotics in Streptomyces sp. FRI-5. J. Ferment. Bioeng. 73:449455.
12. Higashi, T.,, Y. Iwasaki,, Y. Ohnishi,, and S. Horinouchi. 2007. A factor and phosphate-depletion signals are transmitted to the grixazone biosynthesis genes via the pathway-specific transcriptional activator GriR. J. Bacteriol. 189:35153524.
13. Hirano, S.,, J. Kato,, Y. Ohnishi,, and S. Horinouchi. 2006. Control of the Streptomyces subtilisin inhibitor gene by AdpA in the A factor regulatory cascade in Streptomyces griseus. J. Bacteriol. 188:62076216.
14. Horinouchi, S. 2003. AfsR as an integrator of signals that are sensed by multiple serine/threonine kinases in Streptomyces coelicolor A3(2). J. Ind. Microbiol. Biotechnol. 30:462467.
15. Horinouchi, S. 2007. Mining and polishing of the treasure trove in the bacterial genus Streptomyces. Biosci. Biotechnol. Biochem. 71:283299.
16. Horinouchi, S.,, and T. Beppu. 1990. Autoregulatory factors of secondary metabolism and morphogenesis in actinomycetes. Crit. Rev. Biotechnol. 10:191204.
17. Horinouchi, S.,, and T. Beppu. 1992. Autoregulatory factors and communication in actinomycetes. Annu. Rev. Microbiol. 46:377398.
18. Horinouchi, S.,, and T. Beppu. 1994. A factor as a microbial hormone that controls cellular differentiation and secondary metabolism in Streptomyces griseus. Mol. Microbiol. 12:859864.
19. Horinouchi, S.,, Y. Kumada,, and T. Beppu. 1984. Unstable genetic determinant of A factor biosynthesis in streptomycin-producing organisms: cloning and characterization. J. Bacteriol. 158:481487.
20. Horinouchi, S.,, H. Suzuki,, M. Nishiyama,, and T. Beppu. 1989. Nucleotide sequence and transcriptional analysis of the Streptomyces griseus gene (afsA) responsible for A factor biosynthesis. J. Bacteriol. 171:12061210.
21. Kang, D.-K.,, X.-M. Li,, K. Ochi,, and S. Horinouchi. 1999. Possible involvement of cAMP in aerial mycelium formation and secondary metabolism in Streptomyces griseus. Microbiology 145:11611172.
22. Kato, J.,, W.-J. Chi,, Y. Ohnishi,, S.-K. Hong,, and S. Horinouchi. 2005. Transcriptional control by A factor of two trypsin genes in Streptomyces griseus. J. Bacteriol. 187:286295.
23. Kato, J.,, N. Funa,, H. Watanabe,, Y. Ohnishi,, and S. Horinouchi. 2007. Biosynthesis of g-butyrolactone autoregulators that switch on secondary metabolism and morphological development in Streptomyces. Proc. Natl. Acad. Sci. USA 104:23782383.
24. Kato, J.,, I. Miyahisa,, M. Mashiko,, Y. Ohnishi,, and S. Horinouchi. 2004. A single target is sufficient to account for the biological effects of the A factor receptor protein of Streptomycesgriseus. J. Bacteriol. 186:22062211.
25. Kato, J.,, Y. Ohnishi,, and S. Horinouchi. 2005. Autorepression of AdpA of the AraC/XylS family, a key transcriptional activator in the A factor regulatory cascade in Streptomyces griseus. J. Mol. Biol. 350:1226.
26. Kato, J.,, A. Suzuki,, H. Yamazaki,, Y. Ohnishi,, and S. Horinouchi. 2002. Control by A factor of a metalloendopeptidase gene involved in aerial mycelium formation in Streptomyces griseus. J. Bacteriol. 184:60166025.
27. Kawaguchi, T.,, M. Azuma,, S. Horinouchi,, and T. Beppu. 1988. Effect of B-factor and its analogues on rifamycin biosynthesis in a Nocardia sp. J. Antibiot. 41:360365.
28. Khokhlov, A. S.,, I. I. Tovarova,, L. N. Borisova,, S. A. Pliner,, L. A. Schevchenko,, E. Y. Kornitskaya,, N. S. Ivkina,, and I. A. Rapoport. 1967. A factor responsible for the biosynthesis of streptomycin by a mutant strain of Actinomyces streptomycini. Dokl. Akad. Nauk. SSSR 177:232235.
29. Kim, D.-W.,, K. Chater,, K.-J. Lee,, and A. Hesketh. 2005. Changes in the extracellular proteome caused by the absence of the bldA gene product, a developmentally significant tRNA, reveal a new target for the pleiotropic regulator AdpA in Streptomyces coelicolor. J. Bacteriol. 187:29572966.
30. Kinoshita, H.,, H. Ipposi,, S. Okamoto,, H. Nakano,, T. Nihira,, and Y. Yamada. 1997. Butyrolactone autoregulator receptor protein (BarA) as a transcriptional regulator in Streptomyces virginiae. J. Bacteriol. 179:69866993.
31. Kitani, S.,, H. Kinoshita,, T. Nihira,, and Y. Yamada. 1999. In vitro analysis of the butyrolactone autoregulator protein (FarA) of Streptomyces lavendulae FRI-5 reveals that FarA acts as a DNA-binding transcriptional regulator that controls its own synthesis. J. Bacteriol. 181:50815084.
32. Kodani, S.,, M. E. Hudson,, M. C. Durrant,, M. J. Buttner,, J. R. Nodwell,, and J. M. Willey. 2004. The SapB morphogen is a lantibiotic-like peptide derived from the product of the developmental gene ramS in Streptomyces coelicolor. Proc. Natl. Acad. Sci. USA 101:1144811453.
33. Lerat, E.,, and N. A. Moran. 2004. The evolutionary history of quorum-sensing systems in bacteria. Mol. Biol. Evol. 21:903913.
34. Lezhava, A.,, D. Kameoka,, H. Sugino,, K. Goshi,, H. Shinkawa,, O. Nimi,, S. Horinouchi,, T. Beppu,, and H. Kinashi. 1997. Chromosomal deletions in Streptomyces griseus that remove the afsA locus. Mol. Gen. Genet. 253:478483.
35. Miyake, K.,, S. Horinouchi,, M. Yoshida,, N. Chiba,, K. Mori,, N. Nogawa,, N. Morikawa,, and T. Beppu. 1989. Detection and properties of A factor-binding protein from Streptomyces griseus. J. Bacteriol. 171:42984302.
36. Miyake, K.,, T. Kuzuyama,, S. Horinouchi,, and T. Beppu. 1990. The A factor-binding protein of Streptomyces griseus negatively controls streptomycin production and sporulation. J. Bacteriol. 172:30033008.
37. Moré, M. I.,, L. D. Finger,, J. L. Stryker,, C. Fuqua,, A. Eberhard,, and S. C. Winans. 1996. Enzymatic synthesis of a quorum-sensing autoinducer through use of defined substrates. Science 272:16551658.
38. Mori, K. 1983. Revision of the absolute configuration of A factor, the inducer of streptomycin biosynthesis, basing on the reconfirmed (R)-configuration of (+)-paraconic acid. Tetrahedron 39:31073109.
39. Natsume, R.,, Y. Ohnishi,, T. Senda,, and S. Horinouchi. 2004. Crystal structure of a γ-butyrolactone autoregulator receptor protein in Streptomyces coelicolor A3(2). J. Mol. Biol. 336:409419.
40. Nishida, H.,, Y. Ohnishi,, T. Beppu,, and S. Horinouchi. 2007. Evolution of γ-butyrolactone synthases and receptors in Streptomyces. Environ. Microbiol. 9:19861994.
41. Ohnishi, Y.,, Y. Furusho,, T. Higashi,, H.-K. Chun,, K. Furihata,, S. Sakuda,, and S. Horinouchi. 2004. Structures of grixazone A and B, A factor-dependent yellow pigments produced under phosphate depletion by Streptomyces griseus. J. Antibiot. 57:218223.
42. Ohnishi, Y.,, and S. Horinouchi. 2004. The A factor regulatory cascade that leads to morphological development and secondary metabolism in Streptomyces. Biofilms 1:319328.
43. Ohnishi, Y.,, S. Kameyama,, H. Onaka,, and S. Horinouchi. 1999. The A factor regulatory cascade leading to streptomycin biosynthesis in Streptomyces griseus: identification of a target gene of the A factor receptor. Mol. Microbiol. 34:102111.
44. Ohnishi, Y.,, H. Yamazaki,, J. Kato,, A. Tomono,, and S. Horinouchi. 2005. AdpA, a central transcriptional regulator in the A factor regulatory cascade that leads to morphological development and secondary metabolism in Streptomyces griseus. Biosci. Biotechnol. Biochem. 69:431439.
45. Okamoto, S.,, K. Nakamura,, T. Nihira,, and Y. Yamada. 1995. Virginiae butanolide binding protein from Streptomyces virginiae: evidence that VbrA is not the virginiae butanolide binding protein and reidentification of the true binding protein. J. Biol. Chem. 270:1231912326.
46. Onaka, H.,, N. Ando,, T. Nihira,, Y. Yamada,, T. Beppu,, and S. Horinouchi. 1995. Cloning and characterization of the A factor receptor gene from Streptomyces griseus. J. Bacteriol. 177:60836092.
47. Onaka, H.,, and S. Horinouchi. 1997. DNA-binding activity of the A factor receptor protein and its recognition DNA sequences. Mol. Microbiol. 24:9911000.
48. Onaka, H.,, T. Nakagawa,, and S. Horinouchi. 1998. Involvement of two A factor receptor homologues in Streptomyces coelicolor A3(2) in the regulation of secondary metabolism and morphogenesis. Mol. Microbiol. 28:743753.
49. Onaka, H.,, M. Sugiyama,, and S. Horinouchi. 1997. A mutation at proline-115 in the A factor receptor protein of Streptomyces griseus abolishes DNA-binding ability but not ligand-binding ability. J. Bacteriol. 179:27482752.
50. Orth, P.,, D. Schnappinger,, W. Hillen,, W. Saenger,, and W. Hinrichs. 2000. Structural basis of gene regulation by the tetracycline inducible Tet repressor-operator system. Nat. Struct. Biol. 7:215219.
51. Recio, E.,, A. Colinas,, A. Rumbero,, J. F. Aparicio,, and J. F. Martin. 2004. PI factor, a novel type quorum-sensing inducer elicits pimaricin production in Streptomyces natalensis. J. Biol. Chem. 279:4158641593.
52. Retzlaff, L.,, and J. Distler. 1995. The regulator of streptomycin gene expression, StrR, of Streptomyces griseus is a DNA binding activator protein with multiple recognition sites. Mol. Microbiol. 18:151162.
53. Sakuda, S.,, S. Tanaka,, K. Mizuno,, O. Sukcharoen,, T. Nihira,, and Y. Yamada. 1993. Biosynthetic studies on virginiae butanolide A, a butyrolactone autoregulator from Streptomyces. Part 2. Preparation of possible biosynthetic intermediates and conversion experiments in a cell-free system. J. Chem. Soc., Perkin Trans. 1 1993:23092315.
54. Schumacher, M. A.,, M. C. Miller,, S. Grkovic,, M. H. Brown,, R. A. Skurray,, and R. G. Brennan. 2001. Structural mechanisms of QacR induction and multidrug recognition. Science 294:21582163.
55. Shikura, N.,, J. Yamamura,, and T. Nihira. 2002. barS1, a gene for biosynthesis of a γ-butyrolactone autoregulator, a microbial signaling molecule eliciting antibiotic production in Streptomyces species. J. Bacteriol. 184:51515157.
56. Stratigopoulos, G.,, A. R. Gandecha,, and E. Cundliffe. 2002. Regulation of tylosin production and morphological differentiation in Streptomyces fradiae by TylR, a deduced γ-butyrolactone receptor. Mol. Microbiol. 45:735744.
57. Sugiyama, M.,, H. Onaka,, T. Nakagawa,, and S. Horinouchi. 1998. Site-directed mutagenesis of the A factor receptor protein:Val-41 important for DNA-binding and Trp-119 important for ligand-binding. Gene 222:133144.
58. Süsstrunk, U.,, J. Pidoux,, S. Taubert,, A. Ull-mann,, and C. J. Thompson. 1998. Pleiotropic effects of cAMP on germination, antibiotic biosynthesis and morphological development in Streptomyces coelicolor. Mol. Microbiol. 30:3346.
59. Suzuki, H.,, Y. Ohnishi,, Y. Furusho,, S. Sakuda,, and S. Horinouchi. 2006. Novel benzene ring biosynthesis from C3 and C4 primary metabolites by two enzymes. J. Biol. Chem. 281:3694436951.
60. Takano, E. 2006. g-Butyrolactones: Streptomyces signaling molecules regulating antibiotic production and differentiation. Curr. Opin. Microbiol. 9:18.
61. Takano, E.,, R. Chakaraburtty,, T. Nihira,, Y. Yamada,, and M. J. Bibb. 2001. A complex role for the g-butyrolactone SCB1 in regulating antibiotic production in Streptomyces coelicolor A3(2). Mol. Microbiol. 41:10151028.
62. Takano, E.,, T. Nihira,, Y. Hara,, J. J. Jones,, C. J. L. Gershater,, Y. Yamada,, and M. Bibb. 2000. Purification and structure determination of SCB1, a g-butyrolactone that elicits antibiotic production in Streptomyces coelicolor A3(2). J. Biol. Chem. 275:1101011016.
63. Tanaka, A.,, Y. Takano,, Y. Ohnishi,, and S. Horinouchi. 2007. AfsR recruits RNA polymerase to the afsS promoter: a model for transcriptional activation by SARPs. J. Mol. Biol. 369:322333.
64. Tomono, A.,, Y. Tsai,, Y. Ohnishi,, and S. Horinouchi. 2005. Three chymotrypsin genes are members of the AdpA regulon in the A factor regulatory cascade in Streptomyces griseus. J. Bacteriol. 187:63416353.
65. Tomono, A.,, Y. Tsai,, H. Yamazaki,, Y. Ohnishi,, and S. Horinouchi. 2005. Transcriptional control by A factor of strR, the pathway-specific transcriptional activator for streptomycin biosynthesis in Streptomyces griseus. J. Bacteriol. 187:55955604.
66. Ueda, K.,, K. Miyake,, S. Horinouchi,, and T. Beppu. 1993. A gene cluster involved in aerial mycelium formation in Streptomyces griseus encodes proteins similar to the response regulators of two-component regulatory systems and membrane translocators. J. Bacteriol. 175:20062016.
67. Ueda, K.,, K. Oinuma,, G. Ikeda,, K. Hosono,, Y. Ohnishi,, S. Horinouchi,, and T. Beppu. 2002. AmfS, an extracellular peptidic morphogen in Streptomyces griseus. J. Bacteriol. 184:14881492.
68. Umeyama, T.,, P.-C. Lee,, and S. Horinouchi. 2002. Protein serine/threonine kinases in signal transduction for secondary metabolism and morphogenesis in Streptomyces. Appl. Microbiol. Biotechnol. 59:419425.
69. Vujaklija, D.,, S. Horinouchi,, and T. Beppu. 1993. Detection of an A factor-responsive protein that binds to the upstream activation sequence of strR, a regulatory gene for streptomycin biosynthesis in Streptomyces griseus. J. Bacteriol. 175:26522661.
70. Vujaklija, D.,, K. Ueda,, S.-K. Hong,, T. Beppu,, and S. Horinouchi. 1991. Identification of an A factor-dependent promoter in the streptomycin biosynthetic gene cluster of Streptomyces griseus. Mol. Gen. Genet. 229:119128.
71. Waki, M.,, T. Nihira,, and Y. Yamada. 1997. Cloning and characterization of the gene (farA) encoding the receptor for an extracellular regulatory factor (IM-2) from Streptomyces sp. strain FRI-5. J. Bacteriol. 179:51315137.
72. Wallace, K. K.,, B. Zhao,, H. A. McArthur,, and K. A. Reynolds. 1995. In vivo analysis of straight-chain and branched-chain fatty acid biosynthesis in three actinomycetes. FEMS Microbiol. Lett. 131:227234.
73. Yamada, Y.,, and T. Nihira. 1998. Microbial hormones and microbial chemical ecology, p. 377–413. In D. H. R. Barton, and K. Nakanishi (ed.), Comprehensive Natural Products Chemistry, vol. 8. Elsevier Science, Heidelberg, Germany.
74. Yamada, Y.,, K. Sugamura,, K. Kondo,, M. Yanagimoto,, and H. Okada. 1987. The structure of inducing factors for virginiamycin production in Streptomyces virginiae. J. Antibiot. 40:496504.
75. Yamazaki, H.,, Y. Ohnishi,, and S. Horinouchi. 2000. An A factor-dependent extracytoplasmic function sigma factor (σAdsA) that is essential for morphological development in Streptomyces griseus. J. Bacteriol. 182:45964605.
76. Yamazaki, H.,, Y. Ohnishi,, and S. Horinouchi. 2003. Transcriptional switch on of ssgA by A factor, which is essential for spore septum formation in Streptomyces griseus. J. Bacteriol. 185:12731283.
77. Yamazaki, H.,, Y. Takano,, Y. Ohnishi,, and S. Horinouchi. 2003. amfR, an essential gene for aerial mycelium formation, is a member of the AdpA regulon in the A factor regulatory cascade in Streptomyces griseus. Mol. Microbiol. 50:11731187.
78. Yamazaki, H.,, A. Tomono,, Y. Ohnishi,, and S. Horinouchi. 2004. DNA-binding specificity of AdpA, a transcriptional activator in the A factor regulatory cascade in Streptomyces griseus. Mol. Microbiol. 53:555572.
79. Yang, K.,, L. Han,, and L. C. Vining. 1995. Regulation of jadomycin B production in Streptomyces venezuelae ISP5230: involvement of a receptor gene, jadR2. J. Bacteriol. 177:61116117.
80. Yonekawa, T.,, Y. Ohnishi,, and S. Horinouchi. 2005. A calmodulin-like protein in the bacterial genus Streptomyces. FEMS Microbiol. Lett. 244:315321.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error