Chapter 24 : Quorum Quenching: Impact and Mechanisms

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in

Quorum Quenching: Impact and Mechanisms, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555815578/9781555814045_Chap24-1.gif /docserver/preview/fulltext/10.1128/9781555815578/9781555814045_Chap24-2.gif


This chapter focuses on the impact and molecular mechanisms of quorum quenching, with emphasis on quorum-quenching enzymes and other signal disruption mechanisms. There are five key processes in quorum-sensing circuit, (i) signal generation, (ii) signal transportation, (iii) signal accumulation, (iv) signal recognition, and (v) signal autoinduction. The authors have confirmed recently that replacement of His with alanine in AiiA almost completely abolishes the enzyme activity. By sequence alignment, it was found that all the residues implicated in metal coordination are conserved in the reported acyl-homoserine lactone (AHL)-lactonases. In contrast to the three groups of enzymes, i.e., AHL-lactonase, PON enzymes, and AHL-acylase, which degrade AHL signals by breaking the bond in either the lactone ring or in the junction connecting fatty acid moiety and homoserine lactone component, AHL-oxidoreductase modifies the 3-oxo group of the AHL signals with the corresponding substitution to generate corresponding 3-hydroxy derivatives. The small GTPase proteins Rac2, Cdc42, and Rap1A are involved in the assembly and activation of the NADPH oxidase. This system is arranged vectorially in the phagosome membrane so that electrons pass through it from the NADPH-oxidizing site to the O reducing site, resulting in the production of superoxide anion and, consequently, the generation of reactive oxygen species such as HO, ONOO, and HOCl. The biological importance of quorum-sensing communication in bacterial pathogens and fair understanding of the general molecular mechanisms have significantly propelled our effort in searching for effective quorum-quenching mechanisms.

Citation: Wang L, Dong Y, Zhang L. 2008. Quorum Quenching: Impact and Mechanisms, p 379-392. In Winans S, Bassler B (ed), Chemical Communication among Bacteria. ASM Press, Washington, DC. doi: 10.1128/9781555815578.ch24

Key Concept Ranking

Microbial Ecology
Reactive Oxygen Species
Highlighted Text: Show | Hide
Loading full text...

Full text loading...


Image of FIGURE 1

Schematic representation of the AHL-dependent quorum-sensing system in gram-negative bacteria. The critical processes in quorum-sensing communication that could be targeted by quorum-quenching approaches are indicated. I, the LuxI-type AHL synthase; R, the LuxR-type transcription factor; triangle, AHL signals.

Citation: Wang L, Dong Y, Zhang L. 2008. Quorum Quenching: Impact and Mechanisms, p 379-392. In Winans S, Bassler B (ed), Chemical Communication among Bacteria. ASM Press, Washington, DC. doi: 10.1128/9781555815578.ch24
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2

Schematic representation of enzymatic reactions of various quorum-sensing signal degradation and modification enzymes. (A) AHL signal inactivation, where R represents either 3-oxo substituent or absence of substitution. (B) AIP signal inactivation by the reactive oxygen or nitrogen intermediates generated by NADPH oxidase complex.

Citation: Wang L, Dong Y, Zhang L. 2008. Quorum Quenching: Impact and Mechanisms, p 379-392. In Winans S, Bassler B (ed), Chemical Communication among Bacteria. ASM Press, Washington, DC. doi: 10.1128/9781555815578.ch24
Permissions and Reprints Request Permissions
Download as Powerpoint


1. Aendekerk, S.,, B. Ghysels,, P. Cornelis,, and C. Baysse. 2002. Characterization of a new efflux pump, MexGHI-OpmD, from Pseudomonas aeruginosa that confers resistance to vanadium. Microbiology 148:23712381.
2. Billecke, S.,, D. Draganov,, R. Counsell,, P. Stetson,, C. Watson,, C. Hsu,, and B. N. La Du. 2000. Human serum paraoxonase (PON1) isozymes Q and R hydrolyze lactones and cyclic carbonate esters. Drug Metab. Dispos. 28:13351342.
3. Calfee, M. W.,, J. P. Coleman,, and E. C. Pesci. 2001. Interference with Pseudomonas quinolone signal synthesis inhibits virulence factor expression by Pseudomonas aeruginosa. Proc. Natl. Acad. Sci. USA 98:1163311637.
4. Cameron, A. D.,, M. Ridderstrom,, B. Olin,, and B. Mannervik. 1999. Crystal structure of human glyoxalase II and its complex with a glutathione thiolester substrate analogue. Structure 7:10671078.
5. Carlier, A.,, S. Uroz,, B. Smadja,, R. Fray,, X. Latour,, Y. Dessaux,, and D. Faure. 2003. The Ti plasmid of Agrobacterium tumefaciens harbors an attM-paralogous gene, aiiB, also encoding N-acyl homoserine lactonase activity. Appl. Environ. Microbiol. 69:49894993.
6. Chan, Y. Y.,, and K. L. Chua. 2005. The Burkholderia pseudomallei BpeAB-OprB efflux pump: expression and impact on quorum sensing and virulence. J. Bacteriol. 187:47074719.
7. Cheng, Z.,, Y. Kumagai,, M. Lin,, C. Zhang,, and Y. Rikihisa. 2006. Intra-leukocyte expression of two-component systems in Ehrlichia chaffeensis and Anaplasma phagocytophilum and effects of the histi-dine kinase inhibitor closantel. Cell Microbiol. 8:12411252.
8. Chun, C. K.,, E. A. Ozer,, M. J. Welsh,, J. Zabner,, and E. P. Greenberg. 2004. Inactivation of a Pseudomonas aeruginosa quorum-sensing signal by human airway epithelia. Proc. Natl. Acad. Sci. USA 101:35873590.
9. de la Sierra-Gallay, I. L.,, O. Pellegrini,, and C. Condon. 2005. Structural basis for substrate binding, cleavage and allostery in the tRNA maturase RNase Z. Nature 433:657661.
10. Dong, Y. H.,, A. R. Gusti,, Q. Zhang,, J. L. Xu,, and L. H. Zhang. 2002. Identification of quorum-quenching N-acyl homoserine lactonases from Bacillus species. Appl. Environ. Microbiol. 68:17541759.
11. Dong, Y. H.,, L. H. Wang,, J. L. Xu,, H. B. Zhang,, X. F. Zhang,, and L. H. Zhang. 2001. Quenching quorum sensing-dependent bacterial infection by an N-acyl homoserine lactonase. Nature 411:813817.
12. Dong, Y. H.,, J. L. Xu,, X. Z. Li,, and L. H. Zhang. 2000. AiiA, an enzyme that inactivates the acylhomoserine lactone quorum-sensing signal and attenuates the virulence of Erwinia carotovora. Proc. Natl. Acad. Sci. USA 97:35263531.
13. Dong, Y. H.,, and L. H. Zhang. 2005. Quorum sensing and quorum-quenching enzymes. J. Microbiol. 43:101109.
14. Dong, Y. H.,, X. F. Zhang,, J. L. Xu,, and L. H. Zhang. 2004. Insecticidal Bacillus thuringiensis silences Erwinia carotovora virulence by a new form of microbial antagonism—signal interference. Appl. Environ. Microbiol. 70:954960.
15. Draganov, D. I.,, and B. N. La Du. 2004. Pharmacogenetics of paraoxonases: a brief review. Naunyn Schmiedebergs Arch. Pharmacol. 369:7888.
16. Draganov, D. I.,, J. F. Teiber,, A. Speelman,, Y. Osawa,, R. Sunahara,, and B. N. La Du. 2005. Human paraoxonases (PON1, PON2, and PON3) are lactonases with overlapping and distinct substrate specificities. J. Lipid Res. 46:12391247.
17. Guide, S. V.,, F. Stock,, V. J. Gill,, V. L. Anderson,, H. L. Malech,, J. I. Gallin,, and S. M. Holland. 2003. Reinfection, rather than persistent infection, in patients with chronic granulomatous disease. J. Infect. Dis. 187:845853.
18. Harel, M.,, A. Aharoni,, L. Gaidukov,, B. Brumshtein,, O. Khersonsky,, R. Meged,, H. Dvir,, R. Ravelli,, A. McCarthy,, L. Toker,, I. Silman,, J. L. Sussman,, and D. S. Tawfik. 2004. Structure and evolution of the serum paraoxonase family of detoxifying and anti-atherosclerotic enzymes. Nat. Struct. Mol. Biol. 11:412419.
19. Hentzer, M.,, H. Wu,, J. B. Andersen,, K. Riedel,, T. B. Rasmussen,, N. Bagge,, N. Kumar,, M. A. Schembri,, Z. Song,, P. Kristoffersen,, M. Manefield,, J. W. Costerton,, S. Molin,, L. Eberl,, P. Steinberg,, S. Kjelleberg,, N. Hoiby,, and M. Givskov. 2003. Attenuation of Pseudomonas aeruginosa virulence by quorum sensing inhibitors. EMBO J. 22:38033815.
20. Hoang, T. T.,, and H. P. Schweizer. 1999. Characterization of Pseudomonas aeruginosa enoyl-acyl carrier protein reductase (FabI): a target for the antimicrobial triclosan and its role in acylated homoserine lactone synthesis. J. Bacteriol. 181:54895497.
21. Hu, J. Y.,, F. Yang,, Y. H. Lin,, H. B. Zhang,, S. L. Ong,, N. Dong,, J. L. Xu,, W. J. Ng,, and L. H. Zhang. 2003. Microbial diversity and prevalence of virulent pathogens in biofilms developed in a water reclamation system. Res. Microbiol. 154:623629.
22. Huang, J. J.,, J. I. Han,, L. H. Zhang,, and J. R. Leadbetter. 2003. Utilization of acylhomoserine lactone quorum signals for growth by a soil pseudomonad and Pseudomonas aeruginosa PAO1. Appl. Environ. Microbiol. 69:59415949.
23. Huang, J. J.,, A. Petersen,, M. Whiteley,, and J. R. Leadbetter. 2006. Identification of QuiP, the product of gene PA1032, as the second acylhomoserine lactone acylase of Pseudomonas aeruginosa PAO1. Appl. Environ. Microbiol. 72:11901197.
24. Jackson, S. H.,, J. I. Gallin,, and S. M. Holland. 1995. The p47phox mouse knock-out model of chronic granulomatous disease. J. Exp. Med. 182:751758.
25. Kato, N.,, T. Morohoshi,, T. Nozawa,, H. Matsumoto,, and T. Ikeda. 2006. Control of gram-negative bacterial quorum sensing with cyclodextrin immobilized cellulose ether gel. J. Incl. Phenom. Macro. 56:5559.
26. Kaufmann, G. F.,, R. Sartorio,, S. H. Lee,, J. M. Mee,, L. J. Altobell,, D. P. Kujawa,, E. Jeffries,, B. Clapham,, M. M. Meijler,, and K. D. Janda. 2006. Antibody interference with N-acyl homoserine lactone-mediated bacterial quorum sensing. J. Am. Chem. Soc. 128:28022803.
27. Kim, M. H.,, W. C. Choi,, H. O. Kang,, J. S. Lee,, B. S. Kang,, K. J. Kim,, Z. S. Derewenda,, T. K. Oh,, C. H. Lee,, and J. K. Lee. 2005. The molecular structure and catalytic mechanism of a quorum-quenching N-acyl-l-homoserine lactone hydrolase. Proc. Natl. Acad. Sci. USA 102:1760617611.
28. Kim, Y.,, Y. H. Yoon,, Y. Khang,, S. Turley,, and W. G. J. Hol. 2000. The 2.0 Å crystal structure of cephalosporin acylase. Structure 8:10591068.
29. Kohler, T.,, C. van Delden,, L. K. Curty,, M. M. Hamzehpour,, and J. C. Pechere. 2001. Over-expression of the MexEF-OprN multidrug efflux system affects cell-to-cell signaling in Pseudomonas aeruginosa. J. Bacteriol. 183:52135222.
30. Leadbetter, J. R.,, and E. P. Greenberg. 2000. Metabolism of acylhomoserine lactone quorum-sensing signals by Variovorax paradoxus. J. Bacteriol. 182:69216926.
31. Lee, S. J.,, S. Y. Park,, J. J. Lee,, D. Y. Yum,, B. T. Koo,, and J. K. Lee. 2002. Genes encoding the N-acyl homoserine lactone-degrading enzyme are widespread in many subspecies of Bacillus thuringiensis. Appl. Environ. Microbiol. 68:39193924.
32. Lin, Y. H.,, J. L. Xu,, J. Hu,, L. H. Wang,, S. L. Ong,, J. R. Leadbetter,, and L. H. Zhang. 2003. Acyl-homoserine lactone acylase from Ralstonia strain XJ12B represents a novel and potent class of quorum-quenching enzymes. Mol. Microbiol. 47:849860.
33. Liu, D. L.,, B. W. Lepore,, G. A. Petsko,, P. W. Thomas,, E. M. Stone,, W. Fast,, and D. Ringe. 2005. Three-dimensional structure of the quorum-quenching N-acyl homoserine lactone hydrolase from Bacillus thuringiensis. Proc. Natl. Acad. Sci. USA 102:1188211887.
34. Lu, X.,, Y. Yuan,, X. L. Xue,, G. P. Zhang,, and S. N. Zhou. 2006. Identification of the critical role of Tyr-194 in the catalytic activity of a novel N-acylhomoserine lactonase from marine Bacillus cereus strain Y2. Curr. Microbiol. 53:346350.
35. Lyon, G. J.,, P. Mayville,, T. W. Muir,, and R. P. Novick. 2000. Rational design of a global inhibitor of the virulence response in Staphylococcus aureus, based in part on localization of the site of inhibition to the receptor-histidine kinase, AgrC. Proc. Natl. Acad. Sci. USA 97:1333013335.
36. Manefield, M.,, T. B. Rasmussen,, M. Henzter,, J. B. Andersen,, P. Steinberg,, S. Kjelleberg,, and M. Givskov. 2002. Halogenated furanones inhibit quorum sensing through accelerated LuxR turnover. Microbiology 148:11191127.
37. MDowell, P.,, Z. Affas,, C. Reynolds,, M. T. Holden,, S. J. Wood,, S. Saint,, A. Cockayne,, P. J. Hill,, C. E. Dodd,, B. M. Bycroft,, W. C. Chan,, and P. Williams. 2001. Structure, activity and evolution of the group I thiolactone peptide quorum-sensing system of Staphylococcus aureus. Mol. Microbiol. 41:503512.
38. Miyairi, S.,, K. Tateda,, E. T. Fuse,, C. Ueda,, H. Saito,, T. Takabatake,, Y. Ishii,, M. Horikawa,, M. Ishiguro,, T. J. Standiford,, and K. Yamaguchi. 2006. Immunization with 3-oxododecanoyl-l-homoserine lactone-protein conjugate protects mice from lethal Pseudomonas aeruginosa lung infection. J. Med. Microbiol. 55:13811387.
39. Molina, L.,, F. Constantinescu,, L. Michel,, C. Reimmann,, B. Duffy,, and G. Défago. 2003. Degradation of pathogen quorum-sensing molecules by soil bacteria:a preventive and curative biological control mechanism. FEMS Microbiol. Ecol. 45:7181.
40. Momb, J.,, P. W. Thomas,, R. M. Breece,, D. L. Tierney,, and W. Fast. 2006. The quorum-quenching metallo-γ-lactonase from Bacillus thuringiensis exhibits a leaving group thio effect. Biochemistry 45:1338513393.
41. Moré, M. I.,, L. D. Finger,, J. L. Stryker,, C. Fuqua,, A. Eberhard,, and S. C. Winans. 1996. Enzymatic synthesis of a quorum-sensing autoinducer through use of defined substrates. Science 272:16551658.
42. Müh, U.,, B. J. Hare,, B. A. Duerkop,, M. Schuster,, B. L. Hanzelka,, R. Heim,, E. R. Olson,, and E. P. Greenberg. 2006. A structurally unrelated mimic of a Pseudomonas aeruginosa acylhomoserine lactone quorum-sensing signal. Proc. Natl. Acad. Sci. USA 103:1694816952.
43. Nakayama, K.,, Y. Ishida,, M. Ohtsuka,, H. Kawato,, K. Yoshida,, Y. Yokomizo,, S. Hosono,, T. Ohta,, K. Hoshino,, H. Ishida,, K. Yoshida,, T. E. Renau,, R. Leger,, J. Z. Zhang,, V. J. Lee,, and W. J. Watkins. 2003. MexAB-OprM-specific efflux pump inhibitors in Pseudomonas aeruginosa. Part 1: discovery and early strategies for lead optimization. Bioorg. Med. Chem. Lett. 13:42014204.
44. Ng, C. J.,, D. M. Shih,, S. Y. Hama,, N. Villa,, M. Navab,, and S. T. Reddy. 2005. The paraoxonase gene family and atherosclerosis. Free Radic. Biol. Med. 38:153163.
45. Novick, R. P. 2003. Autoinduction and signal transduction in the regulation of staphylococcal virulence. Mol. Microbiol. 48:14291449.
46. Ozer, E. A.,, A. Pezzulo,, D. M. Shih,, C. Chun,, C. Furlong,, A. J. Lusis,, E. P. Greenberg,, and J. Zabner. 2005. Human and murine paraoxonase 1 are host modulators of Pseudomonas aeruginosa quorum-sensing. FEMS Microbiol. Lett. 253:2937.
47. Park, S. Y.,, B. J. Hwang,, M. H. Shin,, J. A. Kim,, H. K. Kim,, and J. K. Lee. 2006. N-acylhomoserine lactonase producing Rhodococcus spp. with different AHL-degrading activities. FEMS Microbiol. Lett. 261:102108.
48. Park, S. Y.,, H. O. Kang,, H. S. Jang,, J. K. Lee,, B. T. Koo,, and D. Y. Yum. 2005. Identification of extracellular N-acylhomoserine lactone acylase from a Streptomyces sp. and its application to quorum quenching. Appl. Environ. Microbiol. 71:26322641.
49. Park, S. Y.,, S. J. Lee,, T. K. Oh,, J. W. Oh,, B. T. Koo,, D. Y. Yum,, and J. K. Lee. 2003. AhlD, an N-acylhomoserine lactonase in Arthrobacter sp., and predicted homologues in other bacteria. Microbiology 149:15411550.
50. Parsek, M. R.,, D. L. Val,, B. L. Hanzelka,, J. E. Cronan Jr.,, and E. P. Greenberg. 1999. Acyl homoserine-lactone quorum-sensing signal generation. Proc. Natl. Acad. Sci. USA 96:43604365.
51. Passador, L.,, K. D. Tucker,, K. R. Guertin,, M. P. Journet,, A. S. Kende,, and B. H. Iglewski. 1996. Functional analysis of the Pseudomonas aeruginosa autoinducer PAI. J. Bacteriol. 178:59956000.
52. Pearson, J. P.,, C. Van Delden,, and B. H. Iglewski. 1999. Active efflux and diffusion are involved in transport of Pseudomonas aeruginosa cell-to-cell signals. J. Bacteriol. 181:12031210.
53. Pollock, J. D.,, D. A. Williams,, M. A. Gifford,, L. L. Li,, X. Du,, J. Fisherman,, S. H. Orkin,, C. M. Doerschuk,, and M. C. Dinauer. 1995. Mouse model of X-linked chronic granulomatous disease, an inherited defect in phagocyte superoxide production. Nat. Genet. 9:202209.
54. Rasmussen, T. B.,, M. E. Skindersoe,, T. Bjarnsholt,, R. K. Phipps,, K. B. Christensen,, P. O. Jensen,, J. B. Andersen,, B. Koch,, T. O. Larsen,, M. Hentzer,, L. Eberl,, N. Hoiby,, and M. Givskov. 2005. Identity and effects of quorum-sensing inhibitors produced by Penicillium species. Microbiology 151:13251340.
55. Reimmann, C.,, N. Ginet,, L. Michel,, C. Keel,, P. Michaux,, V. Krishnapillai,, M. Zala,, K. Heurlier,, K. Triandafillu,, H. Harms,, G. Defago,, and D. Haas. 2002. Genetically programmed autoinducer destruction reduces virulence gene expression and swarming motility in Pseudomonas aeruginosa PAO1. Microbiology 148:923932.
56. Rothfork, J. M.,, G. S. Timmins,, M. N. Harris,, X. Chen,, A. J. Lusis,, M. Otto,, A. L. Cheung,, and H. D. Gresham. 2004. Inactivation of a bacterial virulence pheromone by phagocyte-derived oxidants: new role for the NADPH oxidase in host defense. Proc. Natl. Acad. Sci. USA 101:1386713872.
57. Schaefer, A. L.,, D. L. Val,, B. L. Hanzelka,, J. E. Cronan, Jr.,, and E. P. Greenberg. 1996. Generation of cell-to-cell signals in quorum sensing:acyl homoserine lactone synthase activity of a purified Vibrio fischeri LuxI protein. Proc. Natl. Acad. Sci. USA 93:95059509.
58. Sekar, K.,, B. Z. Yu,, J. Rogers,, J. Lutton,, X. H. Liu,, X. Chen,, M. D. Tsai,, M. K. Jain,, and M. Sundaralingam. 1997. Phospholipase A2 engineering. Structural and functional roles of the highly conserved active site residue aspartate-99. Biochemistry 36:31043114.
59. Sheppard, F. R.,, M. R. Kelher,, E. E. Moore,, N. J. D. McLaughlin,, A. Banerjee,, and C. C. Silliman. 2005. Structural organization of the neutrophil NADPH oxidase: phosphorylation and translocation during priming and activation. J. Leukoc. Biol. 78:10251042.
60. Singh, V.,, W. Shi,, S. C. Almo,, G. B. Evans,, R. H. Furneaux,, P. C. Tyler,, G. F. Painter,, D. H. Lenz,, S. Mee,, R. Zheng,, and V. L. Schramm. 2006. Structure and inhibition of a quorum sensing target from Streptococcus pneumoniae. Biochemistry 45:1292912941.
61. Sio, C. F.,, L. G. Otten,, R. H. Cool,, S. P. Diggle,, P. G. Braun,, R. Bos,, M. Daykin,, M. Camara,, P. Williams,, and W. J. Quax. 2006. Quorum quenching by an N-acylhomoserine lactone acylase from Pseudomonas aeruginosa PAO1. Infect. Immun. 74:16731682.
62. Smith, R. S.,, S. G. Harris,, R. Phipps,, and B. Iglewski. 2002. The Pseudomonas aeruginosa quorum-sensing molecule N-(3-oxododecanoyl) homoserine lactone contributes to virulence and induces inflammation in vivo. J. Bacteriol. 184:11321139.
63. Stephenson, K.,, Y. Yamaguchi,, and J. A. Hoch. 2000. The mechanism of action of inhibitors of bacterial two-component signal transduction systems. J. Biol. Chem. 275:3890038904.
64. Tateda, K.,, Y. Ishii,, M. Horikawa,, T. Matsumoto,, S. Miyairi,, J. C. Pechere,, T. J. Standiford,, M. Ishiguro,, and K. Yamaguchi. 2003. The Pseudomonas aeruginosa autoinducer N-3-oxododecanoyl homoserine lactone accelerates apoptosis in macrophages and neutrophils. Infect. Immun. 71:57855793.
65. Telford, G.,, D. Wheeler,, P. Williams,, P. T. Tomkins,, P. Appleby,, H. Sewell,, G. S. Stewart,, B. W. Bycroft,, and D. I. Pritchard. 1998. The Pseudomonas aeruginosa quorum-sensing signal molecule N-(3-oxododecanoyl)-l-homoserine lactone has immunomodulatory activity. Infect. Immun. 66:3642.
66. Thomas, P. W.,, E. M. Stone,, A. L. Costello,, D. L. Tierney,, and W. Fast. 2005. The quorum-quenching lactonase from Bacillus thuringiensis is a metalloprotein. Biochemistry 44:75597569.
67. Ulrich, R. L. 2004. Quorum quenching: enzymatic disruption of N-acylhomoserine lactone-mediated bacterial communication in Burkholderia thailandensis. Appl. Environ. Microbiol. 70:61736180.
68. Uroz, S.,, S. R. Chhabra,, M. Camara,, P. Williams,, P. Oger,, and Y. Dessaux. 2005. N-acylhomoserine lactone quorum-sensing molecules are modified and degraded by Rhodococcus erythropolis W2 by both amidolytic and novel oxidoreductase activities. Microbiology 151:33133322.
69. Wang, L. H.,, L. X. Weng,, Y. H. Dong,, and L. H. Zhang. 2004. Specificity and enzyme kinetics of the quorum-quenching N-acyl homoserine lactone lactonase (AHL-lactonase). J. Biol. Chem. 14:1364513651.
70. Waters, C. M.,, and B. L. Bassler. 2005. Quorum sensing: cell-to-cell communication in bacteria. Annu. Rev. Cell Dev. Biol. 21:319346.
71. Yang, F.,, L. H. Wang,, J. Wang,, Y. H. Dong,, J. Y. Hu,, and L. H. Zhang. 2005. Quorum quenching enzyme activity is widely conserved in the sera of mammalian species. FEBS Lett. 579:37133717.
72. Yoshida, K.,, K. Nakayama,, N. Kuru,, S. Kobayashi,, M. Ohtsuka,, M. Takemura,, K. Hoshino,, H. Kanda,, J. Z. Zhang,, V. J. Lee,, and W. J. Watkins. 2006. MexAB-OprM specific efflux pump inhibitors in Pseudomonas aeruginosa. Part 5: Carbon-substituted analogues at the C-2 position. Bioorg. Med. Chem. 14:19932004.
73. Zelinski, T.,, and M. R. Kula. 1994. A kinetic study and application of a novel carbonyl reductase isolated from Rhodococcus erythroplis. Bioorg. Med. Chem. 2:421428.
74. Zelinski, T.,, J. Peters,, and M. R. Kula. 1994. Purification and characterization of a novel carbonyl reductase isolated from Rhodococcus erythropolis. J. Biotechnol. 33:283292.
75. Zhang, H. B.,, L. H. Wang,, and L. H. Zhang. 2002. Genetic control of quorum-sensing signal turnover in Agrobacterium tumefaciens. Proc. Natl. Acad. Sci. USA 99:46384643.
76. Zhu, J.,, J. W. Beaber,, M. I. More,, C. Fuqua,, A. Eberhard,, and S. C. Winans. 1998. Analogs of the autoinducer 3-oxooctanoyl-homoserine lactone strongly inhibit activity of the TraR protein of Agrobacterium tumefaciens. J. Bacteriol. 180:53985405.


Generic image for table

List of AHL quorum-quenching enzymes and antibody

Citation: Wang L, Dong Y, Zhang L. 2008. Quorum Quenching: Impact and Mechanisms, p 379-392. In Winans S, Bassler B (ed), Chemical Communication among Bacteria. ASM Press, Washington, DC. doi: 10.1128/9781555815578.ch24

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error