Chapter 28 : Quorum Sensing in Fungi

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in

Quorum Sensing in Fungi, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555815578/9781555814045_Chap28-1.gif /docserver/preview/fulltext/10.1128/9781555815578/9781555814045_Chap28-2.gif


The most well studied of the more recently identified quorum-sensing molecules in fungi are small primary alcohols, thus chemically different from the acyl-homoserine lactones and modified peptides preferred by bacteria. These primary alcohols include farnesol and tyrosol in , and phenylethanol and tryptophol in . This chapter talks about molecules after a review of the mating pheromones and a more detailed discussion of the primary alcohol quorum-sensing molecules. In , members of the same mitogen-activated protein kinase (MAPK) signaling cascade are involved in both pheromone response and agar invasion in haploid cells, and in , the loci expressed in response to mating pheromone contain genes involved in filamentous growth and pathogenicity. This coordination between mating and morphogenesis in fungi is analogous to the connection between competence and virulence in and other gram-positive bacteria, which is also regulated by quorum-sensing peptides. In addition to the mating pheromones and four primary alcohols discussed, there are various examples of quorum-sensing-like phenomena and molecules in the literature, indicating that quorum sensing may indeed be as ubiquitous among fungi as it is among bacteria.

Citation: Tseng C, Fink G. 2008. Quorum Sensing in Fungi, p 443-451. In Winans S, Bassler B (ed), Chemical Communication among Bacteria. ASM Press, Washington, DC. doi: 10.1128/9781555815578.ch28

Key Concept Ranking

Aromatic Amino Acids
Fungal Pathogenesis
Highlighted Text: Show | Hide
Loading full text...

Full text loading...


Image of FIGURE 1

Structures of various molecules used by fungi for cell-cell communication.

Citation: Tseng C, Fink G. 2008. Quorum Sensing in Fungi, p 443-451. In Winans S, Bassler B (ed), Chemical Communication among Bacteria. ASM Press, Washington, DC. doi: 10.1128/9781555815578.ch28
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2

Biosynthetic pathways of tyrosol, tryptophol, and phenylethanol in .

Citation: Tseng C, Fink G. 2008. Quorum Sensing in Fungi, p 443-451. In Winans S, Bassler B (ed), Chemical Communication among Bacteria. ASM Press, Washington, DC. doi: 10.1128/9781555815578.ch28
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 3

Quorum-signaling pathway involving tryptophol and phenylethanol in . Adapted from Chen and Fink ( ). See text for details.

Citation: Tseng C, Fink G. 2008. Quorum Sensing in Fungi, p 443-451. In Winans S, Bassler B (ed), Chemical Communication among Bacteria. ASM Press, Washington, DC. doi: 10.1128/9781555815578.ch28
Permissions and Reprints Request Permissions
Download as Powerpoint


1. Alem, M. A. S.,, M. D. Y. Oteef,, T. H. Flowers,, and L. J. Douglas. 2006. Production of tyrosol by Candida albicans biofilms and its role in quorum sensing and biofilm development. Eukaryot. Cell 5:17701779.
2. Anderegg, R. J.,, R. Betz,, S. A. Carr,, J. W. Crabb,, and W. Duntze. 1988. Structure of Saccharomyces cerevisiae mating hormone a-factor. J. Biol. Chem. 263:1823618240.
3. Cao, Y.-Y.,, Y.-B. Cao,, Z. Xu,, K. Ying,, Y. Li,, Y. Xie,, Z.-Y. Zhu,, W.-S. Chen,, and Y.-Y. Jiang. 2005. cDNA microarray analysis of differential gene expression in Candida albicans biofilm exposed to farnesol. Antimicrob. Agents Chemother. 49:548549.
4. Chen, H.,, and G. R. Fink. 2006. Feedback control of morphogenesis in fungi by aromatic alcohols. Genes Dev. 20:11501161.
5. Chen, H.,, M. Fujita,, Q. Feng,, J. Clardy,, and G. R. Fink. 2004. Tyrosol is a quorum-sensing molecule in Candida albicans. Proc. Natl. Acad. Sci. USA 101:50485052.
6. Davey, J. 1992. Mating pheromones of the fission yeast Schizosaccharomyces pombe: purification and structural characterization of M-factor and isolation and analysis of two genes encoding the pheromone. EMBO J. 11:951960.
7. Dickinson, J. R.,, L. E. J. Salgado,, and M. J. E. Hewlins. 2003. The catabolism of amino acids to long chain and complex alcohols in Saccharomyces cerevisiae. J. Biol. Chem. 278:80288034.
8. Ehrlich, F. 1907. Über die Bedingungen der Fuselölbildung und über ihren Zusammenhang mit dem Eiweiβaufbau der Hefe. Ber. Dtsch. Chem. Ges. 40:10271047.
9. Enjalbert, B.,, and M. Whiteway. 2005. Release from quorum-sensing molecules triggers hyphal formation during Candida albicans resumption of growth. Eukaryot. Cell 4:12031210.
10. Farley, F. W.,, B. Satterberg,, E. J. Goldsmith,, and E. A. Elion. 1999. Relative dependence of different outputs of the Saccharomyces cerevisiae pheromone response pathway on the MAP kinase Fus3p. Genetics 151:14251444.
11. Hartmann, H. A.,, R. Kahmann,, and M. Bölker. 1996. The pheromone response factor coordinates filamentous growth and pathogenicity in Ustilago maydis. EMBO J. 15:16321641.
12. Hayashi, M.,, K. Ohkuni,, and I. Yamashita. 1998. An extracellular meiosis-promoting factor in Saccharomyces cerevisiae. Yeast 14:617622.
13. Hemmerlin, A.,, and T. J. Bach. 2000. Farnesol-induced cell death and stimulation of 3-hydroxy-3-methylglutaryl-coenzyme A reductase activity in tobacco cv Bright Yellow-2 cells. Plant Physiol. 123:12571268.
14. Hornby, J. M.,, S. M. Jacobitz-Kizzier,, D. J. McNeel,, E. C. Jensen,, D. S. Treves,, and K. W. Nickerson. 2004. Inoculum size effect in dimorphic fungi: extracellular control of yeast-mycelium dimorphism in Ceratocystis ulmi. Appl. Environ. Microbiol. 70:13561359.
15. Hornby, J. M.,, E. C. Jensen,, A. D. Lisec,, J. J. Tasto,, B. Jahnke,, R. Shoemaker,, P. Dussault,, and K. W. Nickerson. 2001. Quorum sensing in the dimorphic fungus Candida albicans is mediated by farnesol. Appl. Environ. Microbiol. 67:29822992.
16. Hornby, J. M.,, B. W. Kebaara,, and K. W. Nickerson. 2003. Farnesol biosynthesis in Candida albicans: cellular response to sterol inhibition by zaragozic acid B. Antimicrob. Agents Chemother. 47:23662369.
17. Hornby, J. M.,, and K. W. Nickerson. 2004. Enhanced production of farnesol by Candida albicans treated with four azoles. Antimicrob. Agents Chemother. 48:23052307.
18. Jabra-Rizk, M. A.,, W. A. Falkler,, and T. F. Meiller. 2004. Fungal biofilms and drug resistance. Emerg. Infect. Dis. 10:1419.
19. Kamiya, Y.,, A. Sakurai,, S. Tamura,, N. Takahashi,, K. Abe,, E. Tsuchiya,, S. Fukui,, C. Kitada,, and M. Fujino. 1978. Structure of rhodoturucine A, a novel lipopeptide, inducing mating tube formation in Rhodosporidium toruloides. Biochem. Biophys. Res. Commun. 83:10771083.
20. Kruppa, M.,, B. P. Krom,, N. Chauhan,, A. V. Bambach,, R. L. Cihlar,, and R. A. Calderone. 2004. The two-component signal transduction protein Chk1p regulates quorum sensing in Candida albicans. Eukaryot. Cell 3:10621065.
21. Kubo, I.,, H. Muroi,, and A. Kubo. 1994. Naturally occurring antiacne agents. J. Nat. Prod. 57:917.
22. Kügler, S.,, T. S. Sebghati,, L. G. Eissenberg,, and W. E. Goldman. 2000. Phenotypic variation and intracellular parasitism by Histoplasma capsulatum. Proc. Natl. Acad. Sci. USA 97:87948798.
23. Lingappa, B. T.,, M. Prasad,, Y. Lingappa,, D. F. Hunt,, and K. Biemann. 1969. Phenethyl alcohol and tryptophol: autoantibiotics produced by the fungus Candida albicans. Science 163:192194.
24. Lo, W.-S.,, and A. M. Dranginis. 1998. The cell surface flocculin Flo11 is required for pseudohyphae formation and invasion by Saccharomyces cerevisiae. Mol. Biol. Cell 9:161171.
25. Machida, K.,, T. Tanaka,, Y. Yano,, S. Otani,, and M. Taniguchi. 1999. Farnesol-induced growth inhibition in Saccharomyces cerevisiae by a cell cycle mechanism. Microbiology 145:293299.
26. Madhani, H. D. 2007. From a to α: Yeast as a Model for Cellular Differentiation. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.
27. Madhani, H. D.,, and G. R. Fink. 1998. The control of filamentous differentiation and virulence in fungi. Trends Cell Biol. 8:348353.
28. Melnykovych, G.,, J. S. Haug,, and C. M. Goldner. 1992. Growth inhibition of leukemia cell line CEM-C1 by farnesol: effets of phosphatidylcholine and diacylglycerol. Biochem. Biophys. Res. Commun. 186:543548.
29. Moore, S. A. 1983. Comparison of dose-response curves for α factor-induced cell division arrest, agglutination, and projection formation of yeast cells. J. Biol. Chem. 258:1384913856.
30. Moreno, J. J. 2003. Effect of olive oil minor components on oxidative stress and arachidonic acid mobilization and metabolism by macrophages RAW 264.7. Free Radic. Biol. Med. 35:10731081.
31. Narayanan, T. K.,, and G. R. Rao. 1976. Production of β-(4-hydroxyphenyl)ethanol and β-(4-hydroxyphenyl)lactic acid by Candida species. Can. J. Microbiol. 22:384389.
32. Navarathna, D., H. M. L. P.,, J. M. Hornby,, N. Hoerrmann,, A. M. Parkhurst,, G. E. Dunhamel,, and K. W. Nickerson. 2005. Enhanced pathogenicity of Candida albicans pre-treated with subinhibitory concentrations of fluconazole in a mouse model of disseminated candidiasis. J. Antimicrob. Chemother. 56:11561159.
33. Nickerson, K. W.,, A. L. Atkin,, and J. M. Hornby. 2006. Quorum sensing in dimorphic fungi: farnesol and beyond. Appl. Environ. Microbiol. 72:38053813.
34. Oh, K.-B.,, H. Miyazawa,, T. Naito,, and H. Matsuoka. 2001. Purification and characterization of an autoregulatory substance capable of regulating the morphological transition in Candida albicans. Proc. Natl. Acad. Sci. USA 98:46644668.
35. Ohkuni, K.,, M. Hayashi,, and I. Yamashita. 1998. Bicarbonate-mediated social communication stimulates meiosis and sporulation of Saccharomyces cerevisiae. Yeast 14:623631.
36. Palecek, S. P.,, A. S. Parikh,, and S. J. Kron. 2002. Sensing, signalling and integrating physical processes during Saccharomyces cerevisiae invasive and filamentous growth. Microbiology 148:893907.
37. Palková, Z.,, B. Janderová,, J. Gabriel,, B. Zikánová,, M. Pospíšek,, and J. Forstová. 1997. Ammonia medicated communication between yeast colonies. Nature 390:532536.
38. Ramage, G.,, S. P. Saville,, B. L. Wickes,, and J. L. López-Ribot. 2002. Inhibition of Candida albicans biofilm formation by farnesol, a quorum-sensing molecule. Appl. Environ. Microbiol. 68:54595463.
39. Ramage, G.,, K. VandeWalle,, J. L. López-Ribot,, and B. L. Wickes. 2002. The filamentation pathway controlled by the Efg1 regulator protein is required for normal biofilm formation and development in Candida albicans. FEMS Microbiol. Lett. 214:95100.
40. Reynolds, T. B.,, and G. R. Fink. 2001. Bakers’ yeast, a model for fungal biofilm formation. Science 291:806807.
41. Roberts, R. L.,, and G. R. Fink. 1994. Elements of a single MAP kinase cascade in Saccharomyces cerevisiae mediate two developmental programs in the same cell type: mating and invasive growth. Genes Dev. 8:29742985.
42. Schachtschabel, D.,, C. Schimek,, J. Wöste-meyer,, and W. Boland. 2005. Biological activity of trisporoids and trisporoid analogues in Mucor mucedo (–). Phytochemistry 66:13581365.
43. Semighini, C. P.,, J. M. Hornby,, R. Dumitru,, K. W. Nickerson,, and S. D. Harris. 2006. Farnesol-induced apoptosis in Aspergillus nidulans reveals a possible mechanism for antagonistic interactions between fungi. Mol. Microbiol. 59:753764.
44. Sentheshanmuganathan, S.,, and S. R. Elsden. 1958. The mechanism of the formation of tyrosol by Saccharomyces cerevisiae. Biochem. J. 69:210218.
45. Shchepin, R.,, R. Dumitru,, K. W. Nickerson,, M. Lund,, and P. H. Dussault. 2005. Biologically active fluorescent farnesol analogs. Chem. Biol. 12:639641.
46. Shchepin, R.,, J. M. Hornby,, E. Burger,, T. Niessen,, P. Dussault,, and K. W. Nickerson. 2003. Quorum sensing in Candida albicans:probing farnesol’s mode of action with 40 natural and synthetic farnesol analogs. Chem. Biol. 10:743750.
47. Spellig, T.,, M. Bölker,, F. Lottspeich,, R. W. Frank,, and R. Kahmann. 1994. Pheromones trigger filamentous growth in Ustilago maydis EMBO J. 13:16201627.
48. Stötzler, D.,, H.-H. Kiltz,, and W. Duntze. 1976. Primary structure of α-factor peptides from Saccharomyces cerevisiae. Eur. J. Biochem. 69:397400.
49. Suntharalingam, P.,, and D. G. Cvitkovitch. 2005. Quorum sensing in streptococcal biofilm formation. Trends Microbiol. 13:36.
50. Tachibana, A.,, T. Tanaka,, M. Taniguchi,, and S. Oi. 1996. Evidence for farnesol-mediated isoprenoid synthesis regulation in a halophilic archaeon, Haloferax volcanii. FEBS Lett. 379:4346.
51. Urrestarazu, A.,, S. Vissers,, I. Iraqui,, and M. Grenson. 1998. Phenylalanine- and tyrosineauxotrophic mutants of Saccharomyces cerevisiae impaired in transamination. Mol. Gen. Genet. 257:230237.
52. Waters, C. M.,, and B. L. Bassler. 2005. Quorum sensing: cell-to-cell communication in bacteria. Annu. Rev. Cell Dev. Biol. 21:319346.
53. Westwater, C.,, E. Balish,, and D. A. Schofield. 2005. Candida albicans-conditioned medium protects yeast cells from oxidative stress: a possible link between quorum sensing and oxidative stress resistance. Eukaryot. Cell 4:16541661.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error