1887

Chapter 1 : Taxonomy and Physiology of

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in
Zoomout

Taxonomy and Physiology of , Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555815608/9781555814601_Chap01-1.gif /docserver/preview/fulltext/10.1128/9781555815608/9781555814601_Chap01-2.gif

Abstract:

The species, representing a large and heterogeneous group within the , have increasingly been identified as pathogens over the past several decades. 16S rRNA gene-based phylogenetic trees offer a useful advantage to compare both easily recognizable species from different genera as well as difficult-to-identify or noncultivable isolates from the environment. The between-cluster hybridization experiments yielded hybridization values that were above the postulated 70% value for the distinction of genetic species, indicating that strains from the four clusters belong to the species. The assignment of to the genus was supported by data from sequences showing the highest level of similarities between the four clusters and species than for and by phenotypic characteristics. species are straight rods, are motile by peritrichous flagella, are facultatively anaerobic, grow readily on laboratory media, and ferment glucose with the production of acid and gas. The susceptibility of to antibiotics is of interest, because it has a direct impact on the effectiveness of the treatment of patients in the hospitals.

Citation: Dauga C, Breeuwer P. 2008. Taxonomy and Physiology of , p 1-26. In Farber J, Forsythe S, Doyle M (ed), . ASM Press, Washington, DC. doi: 10.1128/9781555815608.ch1

Key Concept Ranking

Enterobacter cloacae
0.4902354
Enterobacter sakazakii
0.48722783
Enterobacter asburiae
0.4872278
0.4902354
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of Figure 1
Figure 1

Neighbor-joining tree of and related clinical and environmental isolates based on partial 16S rRNA gene (550 bp) sequences. Sequences were obtained from EMBL or were kindly provided by S. J. Forsythe. Alignment was performed by ClustalX 1.83. The phylogenetic tree was built using the K81 evolutionary model, a gamma parameter at 0.76, and the bioNJ algorithm, implemented in PAUP 40b10 software.

Citation: Dauga C, Breeuwer P. 2008. Taxonomy and Physiology of , p 1-26. In Farber J, Forsythe S, Doyle M (ed), . ASM Press, Washington, DC. doi: 10.1128/9781555815608.ch1
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2
Figure 2

Maximum-likelihood tree of the including strains of and related species based on (1,192 bp) sequences. The phylogenetic tree was built using the K81 evolutionary model, a gamma parameter at 0.935, and a heuristic strategy with tree bisection reconnection (TBR) branch swapping.

Citation: Dauga C, Breeuwer P. 2008. Taxonomy and Physiology of , p 1-26. In Farber J, Forsythe S, Doyle M (ed), . ASM Press, Washington, DC. doi: 10.1128/9781555815608.ch1
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 3
Figure 3

Neighbor-joining tree of and related species based on partial (343 bp) sequences. The phylogenetic tree was built using the Tamura-Nei (TrN) evolutionary model, a gamma parameter at 0.6, and the bioNJ algorithm.

Citation: Dauga C, Breeuwer P. 2008. Taxonomy and Physiology of , p 1-26. In Farber J, Forsythe S, Doyle M (ed), . ASM Press, Washington, DC. doi: 10.1128/9781555815608.ch1
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 4
Figure 4

Survival of at 4°C (top) and 8°C (bottom) in brain heart infusion broth. Abbreviations: Es, ; Ec, Kp, ; Se, serovar Enteritidis. All strains were in stationary phase, except for the Es 1387 exp strain, which was in exponentional phase.

Citation: Dauga C, Breeuwer P. 2008. Taxonomy and Physiology of , p 1-26. In Farber J, Forsythe S, Doyle M (ed), . ASM Press, Washington, DC. doi: 10.1128/9781555815608.ch1
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555815608.ch01
1. Agogué, H.,, E.O. Casamayor,, M. Bourrain,, I. Obernosterer,, F. Joux,, G. J. Herndl, and, P. Lebaron. 2005. A survey on bacteria inhabiting the sea surface microlayer of coastal ecosystems. FEMS Microbiol. Ecol. 54:269280.
2. Agostoni, C.,, I. Axelsson,, C. Braegger,, O. Goulet,, B. Koletzko,, K. F. Michaelsen,, J. Rigo,, R. Shamir,, H. Szajewska,, D. Turck, and, L. T. Weaver. 2004. Probiotic bacteria in dietetic products for infants: a commentary by the ESPGHAN Committee on Nutrition. J. Pediatr. Gastroenterol. Nutr. 38:365374.
3. Block, C.,, O. Peleg,, N. Minster,, B. Bar-Oz,, A. Simhon,, I. Arad, and, M. Shapiro. 2002. Cluster of neonatal infections in Jerusalem due to unusual biochemical variant of Enterobacter sakazakii. Euro. J. Clin. Microbiol. Infect. Dis. 21:613616.
4. Boy, K., and, D. S. Hansen. 2003. Sequencing of 16S rDNA of Klebsiella: taxonomic relations within the genus and to other Enterobacteriaceae. Int. J. Med. Microbiol. 292:495503.
5. Breeuwer, P., 2005. Unpublished data.
6. Breeuwer, P.,, A. Lardeau,, M. Peterz, and, H. M. Joosten. 2003. Desiccation and heat tolerance of Enterobacter sakazakii. J. Appl. Microbiol. 95:967973.
7. Breeuwer, P.,, L. Michot, and, H. Joosten. 2004. Genetic basis of dry stress resistance on Enterobacter sakazakii, abstr. 175. Abstr. 91st Ann. Meet. Int. Assn. Food Protect. IAFP, Des Moines, Iowa.
8. Brenner, D. J.,, C. Richard,, A. G. Steigerwalt,, M. A. Asbury, and, M. Mandel. 1980. Enterobacter gergoviae sp. nov.: a new species of Enterobacteriaceae found in clinical specimens and the environment. Int. J. Syst. Bacteriol. 30:16.
9. Brenner, D. J.,, A. C. McWhorter,, A. Kai,, A. G. Steigerwalt, and, J. J. Farmer III., 1986. Enterobacter asburiae sp. nov., a new species found in clinical specimens, and reassignment of Erwinia dissolvens and Erwinia nimipressuralis to the genus Enterobacter as Enterobacter dissolvens comb. nov. and Enterobacter nimipressuralis comb. nov. J. Clin. Microbiol. 23: 11141120.
10. Brenner, D. J., and, J. J. Farmer III., 2005. Order XIII “Enterobacteriales” family I. Enterobacteriaceae, vol. 2, part B, p. 587607. In D. J. Brenner,, N. R. Krieg,, J. T. Staley, and, G. M. Garrity (ed.), Bergey’s Manual of Systematic Bacteriology, 2nd ed. The Williams & Wilkins Co., Baltimore, Md.
11. Caubilla-Barron, J., and, S. J. Forsythe. 2006. Long-term persistence and recovery of Enterobacter sakazakii and other Enterobacteriaceae from powdered infant milk formula, abstr. P-019, p. 444. Abstr. 106th Gen. Meet. Am. Soc. Microbiol. American Society for Microbiology, Washington, DC.
12. Clark, N. C.,, B. C. Hill,, C. M. O’Hara,, O. Steingrimsson, and, R. C. Cooksey. 1990. Epidemiologic typing of Enterobacter sakazakii in two neonatal nosocomial outbreaks. Diagn. Microbiol. Infect. Dis. 13:467472.
13. Davin-Regli, A.,, C. Bosi,, R. Charrel,, E. Ageron,, L. Papazian,, P. A. D. Grimont,, A. Cremieux, and, C. Bollet. 1997. A nosocomial outbreak due to Enterobacter cloacae strains with the E. hormaechei genotype in patients treated with fluoroquinolones. J. Clin. Microbiol. 35:10081010.
14. Dennison, S. K., and, J. Morris. 2002. Multiresistant Enterobacter sakazakii wound infection in an adult. Infect. Med. 19:533535.
15. Dickey, R. S., and, C. H. Zumoff. 1988. Emended description of Enterobacter cancerogenus comb. nov. (formerly Erwinia cancerogena). Int. J. Syst. Bacteriol. 38:371374.
16. Diep, B., and, P. Breeuwer. 2006. Resistance of Enterobacter sakazakii to desiccation, abstr. 089. 10th Int. Symp. Genet. Indust. Microorg., Prague, Czech Republic, 24 to 28 June 2006.
17. Dunn, A. K., and, E. V. Stabb. 2005. Culture-independent characterization of the microbiota of the ant lion Myrmeleon mobilis (Neuroptera: Myrmeleontidae). Appl. Environ. Microbiol. 71:87848794.
18. Edelson-Mammel, S. G., and, R. L. Buchanan. 2004. Thermal inactivation of Enterobacter sakazakii in rehydrated infant formula. J. Food Protect. 67:6063.
19. Edelson-Mammel, S. G.,, M. K. Porteous, and, R. L. Buchanan. 2005. Survival of Enterobacter sakazakii in a dehydrated powdered infant formula. J. Food Protect. 68:19001902.
20. Farmer, J. J. I.,, M. A. Asbury,, F. W. Hickman,, D. J. Brenner and The Enterobacteriaceae Study Group. 1980. Enterobacter sakazakii: a new species of “Enterobacteriaceae” isolated from clinical specimens. Int. J. System. Bacteriol. 30:569584.
21. Farmer, J. J.,III,, G. R. Fanning,, B. R. Davis,, C. M. O’Hara,, C. Riddle,, F. W. Hickmann-Brenner,, M. A. Asbury,, V. A. Lowery III, and, D. J. Brenner. 1985. Escherichia fergusonii and Enterobacter taylorae, two new species of Enterobacteriaceae isolated from clinical specimens. J. Clin. Microbiol. 21:7781.
22. Fernandez-Baca, V.,, F. Ballestros,, J. A. Hervas,, P. Villalon,, M. A. Dominguez,, V. J. Benedi, and, S. Alberti. 2001. Molecular epidemiological typing of Enterobacter cloacae isolates from a neonatal intensive care unit: three years of prospective study. J. Hosp. Infect. 49:173182.
23. Food and Agriculture Organization-World Health Organization (FAO-WHO). 2004. Enterobacter sakazakii and other microorganisms in powdered infant formula: meeting report. Microbiological Risk Assessment Series 6. World Health Organization-Food and Agriculture Organization of the United Nations, Geneva and Rome. WHO Press, Geneva, Switzerland. http://www.who.int/foodsafety/publications/micro/mra6/en/index.html.
24. Food and Agriculture Organization-World Health Organization (FAO-WHO). 2006. Enterobacter sakazakii and Salmonella in powdered infant formula: meeting report. Microbiological Risk Assessment Series 10. World Health Organization-Food and Agriculture Organization of the United Nations, Geneva and Rome. WHO Press, Geneva, Switzerland. http://www.who.int/foodsafety/publications/micro/mra10/en/index.html.
26. Ganeswire, R.,, K. L. Thong, and, S. D. Puthucheary. 2003. Nosocomial outbreak of Enterobacter gergoviae bacteraemia in a neonatal intensive care unit. J. Hosp. Infect. 53:292296.
27. Garazzino, S.,, A. Apreto,, A. Maiello,, A. Massé,, A. Biasibetti,, F. G. de Rosa, and, G. Di Perri. 2005. Osteomyelitis caused by Enterobacter cancerogenus infection following a traumatic injury: case report and review of the literature. J. Clin. Microbiol. 43:14591461.
28. Girlich, D.,, L. Poirel,, A. Leelaporn,, A. Karim,, C. Tribuddharat,, M. Fennewald, and, P. Nordmann. 2001. Molecular epidemiology of the integron-located VEB-1 extended-spectrum beta-lactamase in nosocomial enterobacterial isolates in Bangkok, Thailand. J. Clin. Microbiol. 39:175182.
29. Guillaume-Gentil, O.,, V. Sonnard,, M. C. Kandhai,, J. D. Marugg, and, H. Joosten. 2005. A simple and rapid cultural method for detection of Enterobacter sakazakii in environmental samples. J. Food Protect. 68:6469.
30. Gurtler, J. B.,, J. L. Kornacki, and, L. R. Beuchat. 2005. Enterobacter sakazakii: a coliform of increased concern to infant health. Int. J. Food. Microbiol. 104:134.
31. Hoffmann, H., and, A. Roggenkamp. 2003. Population genetics of the nomenspecies Enterobacter cloacae. Appl. Environ. Microbiol. 69:53065318.
32. Hoffmann, H.,, S. Schmoldt,, K. Trülzsch,, A. Stumpf,, S. Bengsch,, T. Blankenstein,, J. Heesemann, and, A. Roggenkamp. 2005a. Nosocomial urosepsis caused by Enterobacter kobei with aberrant phenotype. Diagn. Microbiol. Infect. Dis. 53:143147.
33. Hoffmann, H.,, S. Stindl,, W. Ludwig,, A. Stumpf,, A. Mehlen,, J. Heesemann,, D. Monget,, K. H. Schleifer, and, A. Roggenkamp. 2005b. Reassignment of Enterobacter dissolvens to Enterobacter cloacae as E. cloacae subspecies dissolvens comb. nov. and emended description of Enterobacter asburiae and Enterobacter kobei. Syst. Appl. Microbiol. 28:196205.
34. Hoffmann, H.,, S. Stindl,, W. Ludwig,, A. Stumpf,, A. Mehlen,, D. Monget,, D. Pierard,, S. Ziesing,, J. Heesemann,, A. Roggenkamp, and, K. H. Schleifer. 2005c. E. hormaechei subsp. ohara subsp. nov., E. hormaechei subsp. hormaechei comb. nov., and E. hormaechei subsp. steigerwaltii subsp. nov., three new subspecies of clinical importance. J. Clin. Microbiol. 43:32973303.
35. Hoffmann, H.,, S. Stindl,, S. Stumpf,, A. Mehlen,, D. Monget,, J. Heesemann,, K. H. Schleifer, and, A. Roggenkamp. 2004. Description of Enterobacter ludwigii sp. nov. A novel Enterobacter species of clinical relevance. Syst. Appl. Microbiol. 28:206212.
36. Isaacs, C. E.,, R. E. Litov, and, H. Thormar. 1995. Antimicrobial activity of lipids added to human milk, infant formula, and bovine milk. J. Nutr. Biochem. 6:362366.
37. Iversen, C., and, S. Forsythe. 2004. Isolation of Enterobacter sakazakii and other Enterobacteriaceae from powdered infant formula milk and related products. Food Microbiol. 21:771777.
38. Iversen, C.,, M. Lane, and, S. J. Forsythe. 2004a. The growth profile, thermotolerance and biofilm formation of Enterobacter sakazakii grown in infant formula milk. Lett. Appl. Microbiol. 38:378382.
39. Iversen, C.,, M. Waddington,, S. L. W. On, and, S. Forsythe. 2004b. Identification and phylogeny of Enterobacter sakazakii relative to Enterobacter and Citrobacter. J. Clin. Microbiol. 42:53685370.
40. Iversen, C.,, L. Lancashire,, M. Waddington,, S. Forsythe, and, G. Ball. 2006a. Identification of Enterobacter sakazakii from closely related species: the use of artificial neural networks in the analysis of biochemical and 16S rDNA data. BMC Microbiol. 6:28.
41. Iversen, C.,, M. Waddington,, J. J. Farmer andIII,, S. J. Forsythe. 2006b. The biochemical differentiation of Enterobacter sakazakii genotypes. BMC Microbiol. 6:94.
42. Joosten, H. M., and, A. Lardeau. 2004. Enhanced microbiological safety of acidified infant formulas tested in vitro. S. Afr. J. Clin. Nutr. 17:8792.
43. Kämpfer, P.,, S. Ruppel, and, R. Remus. 2005. Enterobacter radicincitans sp. nov., a plant growth promoting species of the family Enterobacteriaceae. Syst. Appl. Microbiol. 28:213221.
44. Kandhai, M. C., 2005. Personal communication.
45. Kandhai, M. C.,, M. W. Reij,, L. G. Gorris,, O. Guillaume-Gentil, and, M. van Schothorst. 2004. Occurrence of Enterobacter sakazakii in food production environments and households. Lancet 363:3940.
46. Kandhai, M. C.,, M. W. Reij,, C. Grognou,, M. van Schothorst, and, M. H. Zwietering. 2006. The effect of pre-culturing conditions on the lag time and the specific growth rate of Enterobacter sakazakii in reconstituted powdered infant formula. Appl. Environ. Microbiol. 72:27212729.
47. Kosako, Y.,, K. Tamura,, R. Sakazaki, and, K. Miki. 1996. Enterobacter kobei sp. nov., a new species of the family Enterobacteriaceae resembling Enterobacter cloacae. Curr. Microbiol. 33:261265.
48. Lai, K. K., 2001. Enterobacter sakazakii infections among neonates, infants, children, and adults. Case reports and a review of the literature. Medicine (Baltimore) 80:113122.
49. Lehner, A.,, K. Riedel,, L. Eberl,, P. Breeuwer,, B. Diep, and, R. Stephan. 2005. Biofilm formation, extracellular polysaccharide production, and cell-to-cell signaling in various Enterobacter sakazakii strains: aspects promoting environmental persistence. J. Food Protect. 68:22872294.
50. Muytjens, H. L.,, H. Roelofs-Willemse, and, G. H. Jaspar. 1988. Quality of powdered substitutes for breast milk with regard to members of the family Enterobacteriaceae. J. Clin. Microbiol. 26:743746.
51. Muytjens, H. L., and, J. van der Ros-van de Repe. 1986. Comparative in vitro susceptibilities of eight Enterobacter species, with special reference to Enterobacter sakazakii. Antimicrob. Agents Chemother. 29:367370.
52. Muytjens, H. L.,, H. C. Zanen,, H. J. Sonderkamp,, L. A. Kollee,, I. K. Wachsmuth, and, J. J. Farmer III., 1983. Analysis of eight cases of neonatal meningitis and sepsis due to Enterobacter sakazakii. J. Clin. Microbiol. 18:115120.
53. Nair, M. K.,, J. Joy, and, K. S. Venkitanarayanan. 2004. Inactivation of Enterobacter sakazakii in reconstituted infant formula by monocaprylin. J. Food Protect. 67:28152819.
54. Nazarowec-White, M., and, J. M. Farber. 1997a. Incidence, survival, and growth of Enterobacter sakazakii in infant formula. J. Food Protect. 60:226230.
55. Nazarowec-White, M., and, J. M. Farber. 1997b. Thermal resistance of Enterobacter sakazakii in reconstituted dried-infant formula. Lett. Appl. Microbiol. 24:913.
56. Nazarowec-White, M., and, J. M. Farber. 1997c. Enterobacter sakazakii: a review. Int. J. Food Microbiol. 34:103113.
57. Nazarowec-White, M.,, R. C. McKellar, and, P. Piyasena. 1999. Predictive modelling of Enterobacter sakazakii inactivation in bovine milk during high-temperature short-time pasteurization. Food Res. Int. 32:375379.
58. No, H. K.,, N. Y. Park,, S. H. Lee,, H. J. Hwang, and, S. P. Meyers. 2002. Antibacterial activities of chitosans and chitosan oligomers with different molecular weights on spoilage bacteria isolated from tofu. J. Food Sci. 67:15111514.
59. O’Hara, C. M.,, A. G. Steigerwalt,, B. C. Hill,, J. J. FarmerIII,, G. R. Fanning, and, D. J. Brenner. 1989. Enterobacter hormaechei, a new species of the family Enterobacteriaceae formerly known as enteric group 75. J. Clin. Microbiol. 27:20462049.
60. Paterson, D. L.,, F. Rossi,, F. Baquero,, P. R. Hsueh,, G. L.W oods,, V. Satishchandran,, T. A. Snyder,, C. M. Harvey,, H. Teppler,, M. J. Dinubile, and, J. W. Chow. 2005. In vitro susceptibilities of aerobic and facultative gram-negative bacilli isolated from patients with intraabdominal infections worldwide: the 2003 Study for Monitoring Antimicrobial Resistance Trends (SMART). J. Antimicrob. Chemother. 55:965973.
61. Pitout, J. D.,, E. S. Moland,, C. C. Sanders,, K. S. Thomson, and, S. R. Fitzsimmons. 1997. Beta-lactamases and detection of beta-lactam resistance in Enterobacter spp. Antimicrob. Agents Chemother. 41:3539.
62. Richards, G. M.,, J. B. Gurtler, and, L. R. Beuchat. 2005. Survival and growth of Enterobacter sakazakii in infant rice cereal reconstituted with water, milk, liquid infant formula, or apple juice. J. Appl. Microbiol. 99:844850.
63. Schonheyder, H. C.,, K. T. Jensen, and, W. Frederiksen. 1994. Taxonomic notes: synonymy of Enterobacter cancerogenus (Urosevic 1966) Dickey and Zumoff 1988 and Enterobacter taylorae Farmer et al. 1985 and resolution of an ambiguity in the biochemical profile. Int. J. Syst. Bacteriol. 44:586587.
64. Songjinda, P.,, J. Nakayama,, Y. Kuroki,, S. Tanaka,, S. Fukuda,, C. Kiyohara,, T. Yamamoto,, K. Izuchi,, T. Shirakawa, and, K Sonomoto. 2005. Molecular monitoring of the developmental bacterial community in the gastrointestinal tract of Japanese infants. Biosci. Biotechnol. Biochem. 69:638641.
65. Stewart, J. M., and, J. R. Quirk. 2001. Community-acquired pneumonia caused by Enterobacter asburiae. Am. J. Med. 111:8283.
66. Stock, I., and, B. Wiedemann. 2002. Natural antibiotic susceptibility of Enterobacter amnigenus, Enterobacter cancerogenus, Enterobacter gergoviae and Enterobacter sakazakii strains. Clin. Microbiol. Infect. 8:564578.
67. Swofford, D. L., 1998. PAUP. Phylogenetic Analysis Using Parsimony, Version 3.1.1. Illinois National History Survey, University of Illinois, Champaign.
68. Tamaru, Y.,, Y. Takani,, T. Yoshida, and, T. Sakamoto. 2005. Crucial role of extracellular poly-saccharides in desiccation and freezing tolerance in the terrestrial cyanobacterium Nostoc commune. Appl. Environ. Microbiol. 71:73277333.
69. Urmenyi, A. M. C., and, A. W. Franklin. 1961. Neonatal death from pigmented coliform infection. Lancet i:313315.
70. Williams, T. L.,, S. R. Monday,, S. Edelson-Mammel,, R. Buchanan, and, S. M. Musser. 2005. A top-down proteomics approach for differentiating thermal resistant strains of Enterobacter sakazakii. Proteomics 5:41614169.
71. Willis, J., and, J. E. Robinson. 1988. Enterobacter sakazakii meningitis in neonates. Pediatr. Infect. Dis. J. 7:196199.

Tables

Generic image for table
Table 1

DNA relatedness of strains

Citation: Dauga C, Breeuwer P. 2008. Taxonomy and Physiology of , p 1-26. In Farber J, Forsythe S, Doyle M (ed), . ASM Press, Washington, DC. doi: 10.1128/9781555815608.ch1
Generic image for table
Table 2

Percent similarity between the sequences of strains and other species and

Citation: Dauga C, Breeuwer P. 2008. Taxonomy and Physiology of , p 1-26. In Farber J, Forsythe S, Doyle M (ed), . ASM Press, Washington, DC. doi: 10.1128/9781555815608.ch1
Generic image for table
Table 3

Biochemical characteristics of and

Citation: Dauga C, Breeuwer P. 2008. Taxonomy and Physiology of , p 1-26. In Farber J, Forsythe S, Doyle M (ed), . ASM Press, Washington, DC. doi: 10.1128/9781555815608.ch1
Generic image for table
Table 4

Biochemical differentiation of species

Citation: Dauga C, Breeuwer P. 2008. Taxonomy and Physiology of , p 1-26. In Farber J, Forsythe S, Doyle M (ed), . ASM Press, Washington, DC. doi: 10.1128/9781555815608.ch1

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error