1887

Chapter 6 : Production of Powdered Infant Formulae and Microbiological Control Measures

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in
Zoomout

Production of Powdered Infant Formulae and Microbiological Control Measures, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555815608/9781555814601_Chap06-1.gif /docserver/preview/fulltext/10.1128/9781555815608/9781555814601_Chap06-2.gif

Abstract:

This chapter talks about infant formulae that have been included in the Commission Directives and linked to outbreaks related to the presence of as well as of and therefore need to be manufactured according to the principles i.e., according to very stringent hygiene measures. Powdered infant formulae can be subdivided into different product categories. Milk-based formulae are based on either casein or whey as the predominant source of proteins, with some of them being based on partially hydrolyzed proteins to reduce their allergenicity. The wet-mix and combined processes can be subdivided into two very distinct parts: (i) the wet part, from the reception of raw materials and ingredients up to the drying, and (ii) the dry part, from the drying up to the filling. In the dry-mix processes, all operations performed after the drying and up to the filling are exclusively dry operations. Effective monitoring plans are based on the analysis of different types of samples, reflecting the relevant elements that have an impact on the microbiological quality of the powdered infant formulae. Recommendations made by manufacturers on the safe use of the products are related to the storage and handling conditions after reconstitution of the powders.

Citation: Cordier J. 2008. Production of Powdered Infant Formulae and Microbiological Control Measures, p 145-185. In Farber J, Forsythe S, Doyle M (ed), . ASM Press, Washington, DC. doi: 10.1128/9781555815608.ch6

Key Concept Ranking

Salmonella enterica
0.72826433
Food Safety
0.5026277
Enterobacter sakazakii
0.49918592
0.72826433
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of Figure 1
Figure 1

Example illustration of a processing line with the wet-processing and the dry-processing steps. (1) Unprocessed agricultural raw materials; (2) dissolution of processed ingredients; (3) standardization tanks; (4) clarification; (5) heat treatment (direct steam injection; CCP); (6) evaporation; (7) addition of vegetable oils (dry-mix ingredient); (8) high-pressure pumping; (9) spray drying in tower; (10) drying in after-dryer; (11) addition of vitamins (dry-mix ingredients); (12) filling. This is only an example, and different layouts and processing steps are possible (e.g., mixing and intermediate storage in the dry-processing part of the process).

Citation: Cordier J. 2008. Production of Powdered Infant Formulae and Microbiological Control Measures, p 145-185. In Farber J, Forsythe S, Doyle M (ed), . ASM Press, Washington, DC. doi: 10.1128/9781555815608.ch6
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2
Figure 2

Impact of improved hygiene measures on the occurrence of in skim-milk powder (U.S. Department of Agriculture surveillance program data); adapted from Mettler ( ).

Citation: Cordier J. 2008. Production of Powdered Infant Formulae and Microbiological Control Measures, p 145-185. In Farber J, Forsythe S, Doyle M (ed), . ASM Press, Washington, DC. doi: 10.1128/9781555815608.ch6
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 3
Figure 3

Illustration of the fluctuations in the levels of in environmental samples from high-hygiene areas as a function of the presence of water. In case of an ingress of at very low levels (which would have occurred between days 270 and 330) remaining undetected during monitoring, the presence of water would invariably lead to an increase of the pathogen, putting the production lines and the product at risk (a hypothetical example is used for illustration).

Citation: Cordier J. 2008. Production of Powdered Infant Formulae and Microbiological Control Measures, p 145-185. In Farber J, Forsythe S, Doyle M (ed), . ASM Press, Washington, DC. doi: 10.1128/9781555815608.ch6
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 4
Figure 4

Evolution of the levels of environmental following the implementation of the stringent hygiene measures described in the text at around the fourth month. The target level is <10 CFU/g. Values of >10 CFU/g, <100 CFU/g, and >100 CFU/g automatically trigger an increase of the testing frequency of finished product for both and other . The question mark in the key at upper left indicates “>” (greater than).

Citation: Cordier J. 2008. Production of Powdered Infant Formulae and Microbiological Control Measures, p 145-185. In Farber J, Forsythe S, Doyle M (ed), . ASM Press, Washington, DC. doi: 10.1128/9781555815608.ch6
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 5
Figure 5

Comparison of the mean concentrations of (EB) (90% credibility interval) in powdered infant formulae manufactured in five different factories before (2002) and after (2004) the introduction of the more stringent control measures described in the text.

Citation: Cordier J. 2008. Production of Powdered Infant Formulae and Microbiological Control Measures, p 145-185. In Farber J, Forsythe S, Doyle M (ed), . ASM Press, Washington, DC. doi: 10.1128/9781555815608.ch6
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 6
Figure 6

Evolution of the levels of environmental in processing environments in a factory switching from the production of powdered infant formulae to other dry dairy products with different microbiological requirements ( must be absent from 1-g samples) but equivalent requirements for . The key at upper right indicates numbers per gram.

Citation: Cordier J. 2008. Production of Powdered Infant Formulae and Microbiological Control Measures, p 145-185. In Farber J, Forsythe S, Doyle M (ed), . ASM Press, Washington, DC. doi: 10.1128/9781555815608.ch6
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555815608.ch06
1. Agence Française de Sécurité Sanitaire des Aliments (AFSSA). 2005. Recommandations d’hygiène pour la préparation et la conservation des biberons, Juillet 2005. http://www.sante.gouv.fr/htm/actu/biberon/rapport_afssa.pdf.
2. Agostoni, C.,, J. Axelson,, O. Goulet,, B. Koletzko,, K. F. Michaelsen,, J. W. L. Puntis,, J. Rigo,, R. Shamir,, H. Saajewska,, D. Turck,, Y. Vandenplas, and , L. T. Neaves. 2004. Preparation and handling of powdered infant formula: a commentary by the ESPGHAN Committee on Nutrition. J. Pediatr. Gastroenterol. Nutr. 39:320322.
3. Allan, J. T.,, Z. Yan, and , J. L. Kornacki. 2004. Surface material, temperature, and soil effects on the survival of selected foodborne pathogens in the presence of condensate. J. Food Prot. 67:26662670.
4. Anonymous. 2005. Epidémie de salmonellose à Salmonella enterica sérotype Agona chez des nourrissons, France, Janvier–Avril 2005. Point final de l’investigation au 10 Juin 2005. www.invs.sante.fr/presse/2005/le_point_sur/salmonella_agona_150605/index.html.
5. Barness, L. A., 1987. History of infant feeding practices. Am. J. Clin. Nutr. 46:168170.
6. Benson, J. D., and , M. L. Masor. 1994. Infant formula development: past, present and future. Endocrin. Regul. 28:816.
7. Bielecka, M., and , A. Majkowska. 2000. Effect of spray drying temperature of yoghurt on the survival of starter cultures, moisture content and sensoric properties of yoghurt powder. Nahrung 44:257260.
8. Blackburn, B. O., and , E. M. Ellis. 1973. Lactose-fermenting Salmonella from dried milk and milk drying plants. Appl. Microbiol. 26:672674.
9. Breeuwer, P.,, A. Lardeau,, M. Peterz, and , H. M. Joosten. 2003. Dessication and heat tolerance of Enterobacter sakazakii. J. Appl. Microbiol. 95:967973.
10. Bremer, P. J.,, S. Fillery, and , A. J. McQuillan. 2006. Laboratory scale clean-in-place (CIP) studies on the effectiveness of different caustic and acid wash steps on the removal of dairy biofilms. Int. J. Food Microbiol. 106:254262.
11. Bylund, G., 1995. Dairy Processing Handbook. Tetra Pak Processing Systems, Lund, Sweden.
12. Carver, J. D. 2003. Advances in nutritional modifications of infant formulas. Am. J. Clin. Nutr. 77:1550S1554S.
13. Caubilla-Barron, J., and , S. J. Forsythe. 2006. Long-term persistence and recovery of Enterobacter sakazakii and other Enterobacteriaceae from powdered infant milk formula, P-019. Abstr. 106th Gen. Meet. Am. Soc. Microbiol. American Society for Microbiology, Washington, DC.
14. Chisti, Y., and , M. Moo-Young. 1994. Clean-in-place systems for industrial bioreactors: design, validation and operation. J. Ind. Microbiol. 13:201207.
15. Chopin, A.,, S. Tesone,, J. P. Vila,, Y. Le Groet, and , G. Mocquot. 1978. Survival of Staphylococcus aureus during preparation and conservation of dried skim milk. Problems of survivor enumeration. Can. J. Microbiol. 24:13711380.
16. Codex Alimentarius Commission (CAC). 1979. Recommended international code of hygienic practice for foods for infants and children. CAC/RCP 21-1979. Food and Agriculture Organization, Rome, Italy.
17. Codex Alimentarius Commission (CAC). 1981. Codex Standard for infant formula, Codex Stan 72-1981 and amendments in 1983, 1985, 1987 and 1997. Food and Agriculture Organization, Rome, Italy.
18. Codex Committee on Food Hygiene (CCFH). 2004. CX/FH 05/37/4. Codex Committee on Food Hygiene, 37th session, Buenos Aires, Argentina. Proposed Draft Revision of the Recommended International Code of Practice for Foods for Infants and Children. ftp://ftp.fao.org/codex/ccfh37/fh37_04e.pdf.
19. Codex Committee on Food Hygiene (CCFH). 2007. CX/FH 07/39/4. Codex Committee on Food Hygiene, 39th session, New Delhi, India. Proposed Draft Code of Hygienic Practice for Powdered Formulae for Infants and Young Children at Step 3. ftp://ftp.fao.org/codex/ccfh39/fh39_04e.pdf.
20. Coignard, B., and , V. Vaillant. 2006. Infections à Enterobacter sakazakii associées à la consommation d’une préparation en poudre pour nourrissons, p. 88. Rapport d’Investigation. Institut de Veille Sanitaire, Saint-Maurice, France.
21. Committee on the Evaluation of the Addition of Ingredients New to Infant Formula. 2004. Infant formula: evaluating the safety of new ingredients. The National Academics Press, Washington, DC.
22. Cordier, J. L. 2006. Enterobacteriaceae. In Y. Motarjemi and , M. Adams (ed.), Emerging Foodborne Pathogens. Woodhead Publishing Ltd., Cambridge, United Kingdom.
23. Corry, J. E. 1974. The effect of sugars and polyols on the heat resistance of salmonellae. J. Appl. Bacteriol. 36:3143.
24. Costa, E.,, N. Teixido,, J. Usall,, E. Tons,, V. Gimeno,, J. Delgado, and , I. Vinas. 2002. Survival of Pantoea agglomerans strain CPA-2 in a spray-drying process. J. Food Prot. 65:185191.
25. Cox, L. J.,, N. Keller, and , M. van Schothorst. 1988. Use and misuse of quantitative determinations of Enterobacteriaceae in food microbiology. Soc. Appl. Bacteriol. Symp. Ser. 17:237S249S.
26. Curiel, G. J.,, G. Hauser,, P. Peschel, and , D. A. Temperley. 1993a. Hygienic equipment design criteria. Document 10. European Hygienic Equipment Design Group, Brussels, Belgium.
27. Curiel, G. J.,, G. Hauser,, P. Peschel, and , D. A. Temperley. 1993b. Hygienic design of closed equipment for the processing of liquid food. Document 8. European Hygienic Equipment Design Group, Brussels, Belgium.
28. Daemen, A. L. M., and , H. J. van der Stege. 1982. The destruction of enzymes and bacteria during the spray drying of milk and whey., 2. The effect of the drying conditions. Neth. Milk Dairy J. 36:211229.
29. Danish Dairy Board. 2005. Danish dairy statistics: 8f exports of infant formula by market areas. http://www.mejeri.dk/smcms/danishdairyboard_dk/Facts_figures/Danish_dairy/8__Preserved_milk/8_f__Exports_of/Index.htm?ID=5189.
30. Deberghes, P.,, T. Cordier,, J. P. Vincent,, J. P. Hornez, and , M. Catteau. 1995. Amélioration de l’efficacité du prélèvement de surface par utilisation d’éponges. Microbiologie-Aliments-Nutrition 13:409412.
31. Dega, C. A.,, J. M. Goepfert, and , C. H. Amundson. 1972. Heat resistance of salmonellae in concentrated milk. Appl. Microbiol. 23:415420.
32. Den Aantrekker, E. D.,, R. M. Boom,, M. H. Zwietering, and , M. van Schothorst. 2003. Quantifying recontamination through factory environments—a review. Int. J. Food Microbiol. 80:117130.
33. Deutsches Institut für Normung (DIN). 1988. DIN-Fachbericht 18: Milchwirtschaftiche Anlagen, Reinigung und Desinfektion nach dem CIP-Verfahren. Beuth Verlag, Berlin, Germany.
34. Doyle, M. P.,, L. M. Meske, and , E. H. Marth. 1985. Survival of Listeria monocytogenes during the manufacture and storage of nonfat dry milk. J. Food Prot. 48:740742.
35. Duffey, J. L.,, G. Hauser,, H. Hutten,, K. Mager,, R. R. Maller,, K. Masters,, G. M. H. Meesters,, W. Rumpf, and , G. Schleining. 2001. General hygienic design criteria for the safe processing of dry particulate materials. Document 22. European Hygienic Equipment Design Group, Brussels, Belgium. CCFRA Technology Ltd., Chipping Campden, United Kingdom.
36. Duffey, J. L.,, G. Hauser,, H. Hutten,, K. Mager,, K. Masters,, G. M. H. Meesters,, J. Ossterom,, W. Rumpf,, G. Schleining, and , J. Roels. 2003. Hygienic engineering of plants for the processing of dry particulate materials, November 2003. Document 26. European Hygienic Equipment Design Group, Brussels, Belgium. CCFRA Technology Ltd., Chipping Campden, United Kingdom.
37. Edelson-Mammel, S. G., and , R. I. Buchanan. 2004. Thermal inactivation of Enterobacter sakazakii in rehydrated infant formula. J. Food Prot. 67:6063.
38. Edelson-Mammel, S. G.,, M. K. Porteous, and , R. I. Buchanan. 2005. Survival of Enterobacter sakazakii in a dehydrated powdered infant formula. J. Food Prot. 68:19001902.
39. Elmadfa, I.,, A. Titz, and , P. Burger. 1999. Expertengutachten zur Lebensmittelsicherheit – Lebensmittelbestrahlung. Bericht im Auftrag des Bundeskanzleiamts. Institut für Ernährungswissenschaften der Universität Wien, Vienna, Austria.
40. Espié, E.,, F. X. Weill,, C. Brouard,, J. Capek,, G. Delmas,, A. M. Forgues,, F. Grimont, and , H. de Valk. 2005. Nationwide outbreak of Salmonella enterica serotype Agona infections in infants in France, linked to infant milk formula, investigations ongoing. Eurosurveillance 10:54.
41. Espigares, E.,, A. Bueno,, M. Espigares, and , R. Galvez. 2006. Isolation of Salmonella serotypes in waste water effluent: effect of treatment and potential risk. Int. J. Hyg. Environ. Health 209:103107.
42. European Commission (EC). 1991. Commission Directive 91/321/EEC of 14 May 1991 on infant formulae and follow-on formula. Official J. Eur. Union L175, corrigendum Official J. Eur. Union L101 and amending acts 96/4/EC, 1999/50/EC, 2003/14/EC, and 2003/5/EC.
43. European Commission (EC). 1999. Commission Directive 1999/21/EC of 25 March 1999 on dietary foods for special medical purposes. Official J. Eur. Union L91/2936.
44. European Commission (EC). 2005. Commission regulation (EC) no. 2073/2005 of 15 November 2005 on microbiological criteria for foodstuffs. Official J. Eur. Union L338/126.
45. European Commission (EC). 2006. Commission Directive 2006/141/EC of 22 December 2006 on infant formulae and follow-on formulae and amending Directive 1999/21/EC. Official J. Eur. Union L401.
46. European Food Safety Authority (EFSA). 2004. Opinion of the Scientific Panel on Biological Hazards on the request from the Commission related to the microbiological risks in infant formulae and follow-on formulae. EFSA J. 113:135.
47. European Food Safety Authority (EFSA). 2007. Scientific opinion of BIOHAZ Panel on the request from the Commission for review of the opinion on microbiological risks in infant formulae and follow-on formulae with regard to Enterobacteriaceae as indicators. EFSA J. 444:114.
48. Eyles, M. J., and , J. A. Davey. 1989. Enteric indicator organisms in foods. In K. A. Buckle,, J. A. Davey,, M. J. Eyles,, A. D. Hocking,, K. G. Newton, and , E. J. Stuttard (ed.), Foodborne Microorganisms of Public Health Significance, 4th ed. AIFST Food Microbiology Group, Pymble, Australia.
49. Food and Agriculture Organization-World Health Organization (FAO-WHO)., 2004. Enterobacter sakazakii and other microorganisms in powdered infant formula: meeting report. Microbiological risk assessment series 6. World Health Organization-Food and Agriculture Organization of the United Nations, Geneva and Rome. WHO Press, Geneva, Switzerland. http://www.who.int/foodsafety/publications/micro/mra6/en/index.html.
50. Food and Agriculture Organization-World Health Organization (FAO-WHO). 2006. Enterobacter sakazakii and Salmonella in powdered infant formula: meeting report. Microbiological risk assessment series 10. World Health Organization-Food and Agriculture Organization of the United Nations, Geneva and Rome. WHO Press, Geneva, Switzerland. http://www.who.int/foodsafety/publications/micro/mra10/en/index.html.
51. Food and Drug Administration (FDA). 2004. Federal Food Drug and Cosmetic Act as amended through December 31, 2004, Chapter IV, Section 412—Requirements for infant formula. http://www.fda.gov/opacom/laws/fdcact/fdctoc.htm.
52. Food and Drug Administration (FDA). 2002. Health Professional Letter on Enterobacter sakazakii infections associated with use of powdered (dry) infant formulas in neonatal intensive care units. http://www.cfsan.fda.gov/~dms/inf-ltr3.html
53. Food Standards Agency UK (FSA). 2006. Guidance on preparing infant formula. http://www.food.gov.uk/news/newsarchive/2005/nov/infantformulastatementnov05.
54. Fomon, S. 2001. Infant feeding in the 20th century: formula and beikost. J. Nutr. 131: 409S420S.
55. Forsyth, J. R.,, N. M. Bennett,, S. Hogben,, E. M. Hutchinson,, G. Rouch,, A. Tan, and , J. Taplin. 2003. The year of the Salmonella seekers—1977. Aust. N. Z. J. Public Health 27:385389.
56. Gekas, V., and , K. Antelli. 2004. Evaporators. In H. Roginski,, J. Fuquay, and , P. Fox (ed.), Encyclopedia of Dairy Sciences. Elsevier Ltd., Philadelphia, PA.
57. Greer, F. R. 2001. Feeding the premature infant in the 20th century. J. Nutr. 131:426S430S.
58. Guillaume-Gentil, O.,, V. Sonnard,, M. C. Kandhai,, J. D. Marugg, and , H. Joosten. 2005. A simple and rapid cultural method for detection of Enterobacter sakazakii in environmental samples. J. Food Prot. 68:6469.
59. Haysom, I. W., and , K. Sharp. 2003. The survival and recovery of bacteria in vacuum cleaner dust. J. R. Soc. Health 123:3945.
60. Holah, J. 1999. Effective microbiological sampling of food processing environments. Guideline no., 20. Campden & Chorleywood Food Research Association, Chipping Campden, United Kingdom.
61. Infant Food Manufacturers (IFM). 2004. ISDI position on Enterobacter sakazakii in powdered infant formula. http://www.ifm.net/issues/esakazakii_position.htm.
62. International Commission on Microbiological Specifications for Foods (ICMSF). 1996. Microorganisms in foods, vol. 5. Characteristics of microbial pathogens. Blackie Academic & Professional, London, United Kingdom.
63. International Commission on Microbiological Specifications for Foods (ICMSF). 2002. Microorganisms in foods, vol. 7. Microbiological testing in food safety management. Kluwer Academic/Plenum Publishers, New York, NY.
64. International Commission on Microbiological Specifications for Foods (ICMSF). 2005. Microorganisms in foods, vol. 6. Microbial ecology of food commodities. Kluwer Academic/Plenum Publishers, New York, NY.
65. International Dairy Federation (IDF). 1991. IDF recommendations for the hygienic manufacture of spray dried milk powders. Bull. IDF 267:124.
66. International Organization for Standardization (ISO). 2004. Microbiology of food and animal feeding stuffs—horizontal methods for sampling techniques from surfaces using contact plates and swabs. Specification ISO 18593. ISO, Geneva, Switzerland.
67. International Organization for Standardization (ISO). 2006. Milk and milk products— detection of Enterobacter sakazakii. Technical specification ISO/TS 22964//IDF/RM 210. ISO, Geneva, Switzerland.
68. Iversen, C., and , S. J. Forsythe. 2004. Isolation of Enterobacter sakazakii and other Enterobacteriaceae from powdered infant formula milk and related products. Food Microbiol. 21:771776.
69. Iversen, C.,, M. Lane, and , S. J. Forsythe. 2004. The growth profile, thermotolerance and biofilm formation of Enterobacter sakazakii grown in infant formula milk. Lett. Appl. Microbiol. 38:378382.
70. Jeffery, S. L. A.,, T. C. S. Cubison,, C. Greenaway,, P. M. Gilbert, and , N. Parkhouse. 2000. Warming milk—a preventable cause of scalds in children. Br. Med. J. 520:235.
71. Jewell, K.,, P. Voysey, and , K. Hon-Yin Hau. 2003. An industrial microbiological risk assessment of salmonellae in dried powders. R&D report no. 185. Campden and Chorleywood Food Research Association, Chipping Campden, United Kingdom.
72. Jost, R. 15 January 2005, posting date. Milk and dairy products. In Ullmann’s Encyclopedia of Industrial Chemistry. http://www.mrw.interscience.wiley.com/ueic/articles/a16_589/frame.html.
73. Jung, M. K., and , J. H. Park. 2006. Prevalence and thermal stability of Enterobacter sakazakii from unprocessed ready-to-eat agricultural products and powdered infant formulas. Food Sci. Biotechnol. 15:152157.
74. Kandhai, M. C.,, M. W. Reij,, L. G. Gorris,, O. Guillaume-Gentil, and , M. van Schothorst. 2004. Occurrence of Enterobacter sakazakii in food production environments and households. Lancet 363:3940.
75. Kandhai, M. C.,, M. W. Reij,, C. Grognou,, M. van Schothorst,, L. G. Gorris, and , M. H. Zwietering. 2006. Effects of preculturing conditions on lag time and specific growth rate of Enterobacter sakazakii in reconstituted powdered infant formula. Appl. Environ. Microbiol. 72:27212729.
76. Kapperud, G., and , O. Rosef. 1983. Avian wildlife reservoir of Campylobacter fetus subsp. jejuni, Yersinia spp., and Salmonella spp. in Norway. Appl. Environ. Microbiol. 45:375380.
77. Koletzko, B.,, S. Baker,, G. Cleghorn,, U. Fagundes Neto,, S. Gopalan,, O. Hennell,, Q. S. Hock,, P. Jirapinyo,, B. Lennerdal,, P. Penharz,, H. Pzyrembel,, J. Ramirez-Mayans,, R. Shamir,, D. Turck,, Y. Yamashiro, and , D. Zong-Yi. 2005. Global standard for the composition of infant formula: recommendations of an ESPGHAN coordinated international expert group. J. Pediatr. Gastroenterol. Nutr. 41:584599.
78. Langfeldt, N.,, W. Heeschen, and , G. Hahn. 1988. Zum Vorkommen von Salmonellen in Milchpulver: Untersuchungen zur Kontamination durch Analyse kritischer Punkte. Kieler Milchwirtschftl. Forschungsber. 40:8190.
79. Lehner, A.,, S. Nitzsche,, P. Breeuwer,, B. Diep,, K. Thelen, and , R. Stephan. 2006. Comparison of two chromogenic media and evaluation of two molecular based identification systems for Enterobacter sakazakii detection. BMC Microbiol. 6:1530. [Epub ahead of print.]
80. Lelieveld, H. L.,, M. A. Mostert, and , J. Holah. 2005. Handbook of hygiene control in the food industry. Woodhead Publishing Ltd., Cambridge, United Kingdom.
81. Li, X.,, B. W. Sheldon, and , H. R. Ball. 2005. Thermal resistance of Salmonella enterica serotypes, Listeria monocytogenes, and Staphylococcus aureus in high solids liquid egg mixes. J. Food Prot. 68:703710.
82. Lian, W. C.,, H. C. Hsiao, and , C. C. Chou. 2002. Survival of bifidobacteria after spray drying. Int. J. Food Microbiol. 74:7986.
83. LiCari, J. J., and , N. N. Potter. 1970a. Salmonella survival during spray drying and subsequent handling of skimmilk powder. I. Salmonella enumeration. J. Dairy Sci. 53:865870.
84. LiCari, J. J., and , N. N. Potter. 1970b. Salmonella survival during spray drying and subsequent handling of skimmilk powder. II. Effect of drying conditions. J. Dairy Sci. 53:871876.
85. LiCari, J. J., and , N. N. Potter. 1970c. Salmonella survival differences in heated skimmilk and in spray drying of evaporated milk. J. Dairy Sci. 53:12871289.
86. Louie, K. K.,, A. M. Paccagnella,, H. Lior,, B. J. Francis, and , M. T. Osterholm. 1993. Salmonella serotype Tennessee in powdered milk and infant formula—Canada and United States, 1993. Morb. Mortal. Wkly. Rep. 42:516517.
87. Manas, P.,, R. Pagan,, F. J. Sala, and , S. Condon. 2001. Low molecular weight milk whey components protects Salmonella senftenberg 775W against heat by a mechanism involving divalent cations. J. Appl. Micobiol. 91:871877.
88. Meerburg, B. G.,, W. F. Jacobs-Reitsma,, J. A. Wagenaar, and , A. Kijlstra. 2006. Presence of Salmonella and Campylobacter spp. in wild small mammals on organic farms. Appl. Environ. Microbiol. 72:960962.
89. Mettler, A. E. 1989. Pathogens in milk powder—have we learned the lesson? J. Soc. Dairy Technol. 42:4853.
90. Mossel, D. A., and , C. B S truijk. 1995. Escherichia coli, other Enterobacteriaceae and additional indicators as markers of microbiologic quality of food: advantages and limitations. Microbiologia 11:7590.
91. Motil, K. J. 2000. Infant feeding: a critical look at infant formulas. Curr. Opinion Pediatr. 12:469476.
92. Murphy, P. M.,, D. Lynch, and , P. M. Kelly. 1999. Growth of thermophilic spore forming bacilli in milk during the manufacture of low heat powders. Int. J. Dairy Technol. 52:4550.
93. Nauta, M. J. 2005. Microbiological risk assessment models for partitioning and mixing during food handling. Int. J. Food Microbiol. 100:311322.
94. Nazarowec-White, M., and , J. M. Farber. 1997a. Thermal resistance of Enterobacter sakazakii in reconstituted dried infant formula. Lett. Appl. Microbiol. 24:913.
95. Nazarowec-White, M., and , J. M. Farber. 1997b. Incidence, survival, and growth of Enterobacter sakazakii in infant formula. J. Food Prot. 60:226230.
96. Nazarowec-White, M., and , J. M. Farber. 1999. Phenotypic and genotypic typing of food and clinical isolates of Enterobacter sakazakii. J. Med. Microbiol. 48:559567.
97. O’Callaghan, D. M., and , J. C. Wallingford. 2004. Infant formulae—new developments, pp. 13841392. In H. Roginski,, J. Fuquay, and , P. Fox (ed.), Encyclopedia of Dairy Sciences. Elsevier Ltd., Philadelphia, PA.
98. Oliveira, V.,, M. Prell,, D. Smallwood, and , E. Frazão. 2001. Infant formula prices and availability—final report to Congress. Economic Research Service, U.S. Department of Agriculture, Washington, DC.
99. Park, J. K.,, W. S. Seok,, B. J. Choi,, H. M. Kim,, B. K. Lim,, S. S. Yoon,, S. Kim,, Y. S. Kim, and , J. Y. Park. 2004. Salmonella enterica serovar London infections associated with consumption of infant formula. Yonsei Med. J. 29:4348.
100. Refstrup, E. 2004. Drying principles, p. 860871. In H. Roginski,, J. Fuquay, and , P. Fox (ed.), Encyclopedia of Dairy Sciences. Elsevier Ltd., Philadelphia, PA.
101. Rowan, N. J.,, J. G. Anderson, and , A. Anderton. 1997. The bacteriological quality of hospital prepared infant feeds. J. Hosp. Infect. 35:259267.
102. Rowe, B.,, N. T. Begg,, D. N. Hutchinson,, H. C. Dawkins,, R. J. Gilbert,, M. Jacob,, B. H. Hales,, F. A. Rae, and , M. Jepson. 1987. Salmonella ealing infections associated with consumption of infant dried milk. Lancet ii:900903.
103. Schanler, R. J. 2005. Human milk supplementation for preterm infants. Acta Paediatr. Suppl. 94:6467.
104. Schnebelen, C. 2005. Audit des pratiques professionelles dans les biberonneries: conduite d’une étude dans la région Rhône-Alpes. http://cclin-sudest.chu-lyon.fr/Audit/Biberonnerie/Audit_biberon.pdf.
105. Spillmann, H., and , I. Fedder. 1997. Thermophile Sporen in Milchpulver. DMZ Lebensmittelind. Milchwirtschaft. 118:6675.
106. Tatfeng, Y. M.,, M. U. Usuanlele,, A. Orupke,, A. K. Digban,, M. Okodua,, F. Oviasogie, and , A. A. Turay. 2005. Mechanical transmission of pathogenic organisms: the role of cockroaches. J. Vector Borne Dis. 42:129134.
107. Threlfall, E. J., and , J. A. Frost. 1990. The identification, typing and fingerprinting of Salmonella: laboratory aspects and epidemiological applications. J. Appl. Bacteriol. 68:516.
108. Tortorello, M. L. 2003. Indicator organisms for safety and quality—uses and methods for detection: minireview. J. AOAC Int. 86:12081217.
109. Trakumas, S.,, K. Willeke,, S. A. Grinshpun,, T. Reponen,, G. Mainelis, and , W. Friedman. 2001. Particle emission characteristics of filter-equipped vacuum cleaners. AIHAJ 62:482493.
110. Ustera, M. A.,, A. Echeita,, A. Aladueña,, M. C. Blanco,, R. Reymundo,, M. I. Prieto,, O. Tello,, R. Cano,, D. Herrera, and , F. Martinez-Navarro. 1996. Interregional foodborne salmonellosis outbreak due to powdered infant formula contaminated with lactose-fermenting Salmonella virchow. Eur. J. Epidemiol. 12:377381.
111. Van Donk, D. P., and , G. Gaalman. 2004. Food safety and hygiene: systematic layout planning of food processes. Chem. Eng. Res. Design 82:14851493.
112. Vivanco, A. B.,, J. Alvarez,, I. Laconcha,, N. Lopez-Molina,, A. Rementeria, and , J. Garaizar. 2004. Molecular genotyping and methods and computerized analysis for the study of Salmonella enterica. Methods Mol. Biol. 268:4958.
113. Walstra, P.,, J. T. Wouters, and , T. J. Geurt. 2006. Dairy Science and Technology. Taylor and Francis, London, United Kingdom.
114. Westergaard, V. 2004. Drying design, p. 871889. In H. Roginski,, J. Fuquay, and , P. Fox (ed.), Encyclopedia of Dairy Sciences. Elsevier Ltd., Philadelphia, PA.
115. Winokur, P. L. 2003. Molecular epidemiological techniques for Salmonella strain discrimination. Front. Biosci. 8:c14c24.
116. World Health Organization (WHO). 1981. International code of marketing breast-milk substitutes. WHO, Geneva, Switzerland.

Tables

Generic image for table
Table 1

Estimates of the worldwide production of infant formula

Citation: Cordier J. 2008. Production of Powdered Infant Formulae and Microbiological Control Measures, p 145-185. In Farber J, Forsythe S, Doyle M (ed), . ASM Press, Washington, DC. doi: 10.1128/9781555815608.ch6
Generic image for table
Table 2

Number of positive samples in three major dry-mix ingredients and illustration of the improvements over 2 to 3 years

Citation: Cordier J. 2008. Production of Powdered Infant Formulae and Microbiological Control Measures, p 145-185. In Farber J, Forsythe S, Doyle M (ed), . ASM Press, Washington, DC. doi: 10.1128/9781555815608.ch6
Generic image for table
Table 3

Current situation (2007) with respect to microbiological criteria for infant formulae at Codex Alimentarius and EC levels

Citation: Cordier J. 2008. Production of Powdered Infant Formulae and Microbiological Control Measures, p 145-185. In Farber J, Forsythe S, Doyle M (ed), . ASM Press, Washington, DC. doi: 10.1128/9781555815608.ch6

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error