1887

Chapter 3 : Structural Aspects of Aminoglycoside-Modifying Enzymes

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in
Zoomout

Structural Aspects of Aminoglycoside-Modifying Enzymes, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555815615/9781555813031_Chap03-1.gif /docserver/preview/fulltext/10.1128/9781555815615/9781555813031_Chap03-2.gif

Abstract:

Three structurally and functionally unrelated classes of inactivation enzymes are known: the aminoglycoside kinases (APH), the adenylyltransferases (ANT), and the acetyltransferases (AAC). The past decade has seen a dramatic increase in our understanding of the structure and function of members of each of these classes, and each is discussed separately in this chapter. It was subsequently demonstrated that APHs maintain vestigial protein kinases activity. In fact, since the structure determination of APH(3’)-IIIa, which represented the first distant relative of the protein kinases, this superfamily has further expanded and includes now lipid kinases and choline kinases. One of the most intriguing differences when comparing Ser/Thr and Tyr kinases with aminoglycoside kinases is the region of the enzymes involved in substrate binding. In fact, the activation loop is completely lacking in APH(3’)-IIIa, and vice versa there are no remnants of an aminoglycoside-binding loop segment in protein kinases. Aminoglycoside adenylyltransferases (ANTs) catalyze the transfer of AMP to aminoglycoside hydroxyl groups. Other members of the GNAT family include other small-molecule acyltransferases such as serotonin acetyltransferase and protein acetyltransferases such as the histone acetyltransferases. The realization following the determination of enzyme three-dimensional structure that aminoglycoside resistance enzymes are members of larger families of proteins that share similar structures and mechanisms has permitted insight into the origins and evolution of resistance. This information will arm us in the continuing efforts to meet the challenge of resistance at the molecular level and apply this work to the management of infectious disease.

Citation: Wright G, Berghuis A. 2007. Structural Aspects of Aminoglycoside-Modifying Enzymes, p 21-33. In Bonomo R, Tolmasky M (ed), Enzyme-Mediated Resistance to Antibiotics. ASM Press, Washington, DC. doi: 10.1128/9781555815615.ch3

Key Concept Ranking

Acetyl Coenzyme A
0.5070422
Outer Membrane Proteins
0.47728908
0.5070422
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of Figure 3.1
Figure 3.1

Structures and nomenclature of aminoglycoside antibiotics. For a more complete list, see reference .

Citation: Wright G, Berghuis A. 2007. Structural Aspects of Aminoglycoside-Modifying Enzymes, p 21-33. In Bonomo R, Tolmasky M (ed), Enzyme-Mediated Resistance to Antibiotics. ASM Press, Washington, DC. doi: 10.1128/9781555815615.ch3
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 3.2
Figure 3.2

Interaction of paromomycin with the A-site 16S rRNA. Paromomycin is shown in black. Nucleotides A1408, A1492, and A1493 are shown in gray. Upon binding of paromomycin, nucleotides A1492 and A1493 are flipped out in translation-competent mode.

Citation: Wright G, Berghuis A. 2007. Structural Aspects of Aminoglycoside-Modifying Enzymes, p 21-33. In Bonomo R, Tolmasky M (ed), Enzyme-Mediated Resistance to Antibiotics. ASM Press, Washington, DC. doi: 10.1128/9781555815615.ch3
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 3.3
Figure 3.3

Three-dimensional structures of APH(3′)-IIIa and related kinases. Conserved secondary structure elements are shown in the bottom half of the figure.

Citation: Wright G, Berghuis A. 2007. Structural Aspects of Aminoglycoside-Modifying Enzymes, p 21-33. In Bonomo R, Tolmasky M (ed), Enzyme-Mediated Resistance to Antibiotics. ASM Press, Washington, DC. doi: 10.1128/9781555815615.ch3
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 3.4
Figure 3.4

Aminoglycoside binding region of APH(3′)-IIIa. The 6-aminohexose (p ring) and 2-deoxystreptamine rings of neomycin (black) and kanamycin (gray) bind in identical fashion while the double prime (q) rings of both substrates bind in different sub-sites ( ).

Citation: Wright G, Berghuis A. 2007. Structural Aspects of Aminoglycoside-Modifying Enzymes, p 21-33. In Bonomo R, Tolmasky M (ed), Enzyme-Mediated Resistance to Antibiotics. ASM Press, Washington, DC. doi: 10.1128/9781555815615.ch3
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 3.5
Figure 3.5

Domain structure of ANT(4′). Each monomer in the active site is shown in a different shade of gray. The substrates kanamycin and the nonhydrolyzable ATP analogue AMPCPP are shown in black in the active sites situated at the dimer interface.

Citation: Wright G, Berghuis A. 2007. Structural Aspects of Aminoglycoside-Modifying Enzymes, p 21-33. In Bonomo R, Tolmasky M (ed), Enzyme-Mediated Resistance to Antibiotics. ASM Press, Washington, DC. doi: 10.1128/9781555815615.ch3
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 3.6
Figure 3.6

Aminoglycoside acetyltransferases are members of the GNAT superfamily.

Citation: Wright G, Berghuis A. 2007. Structural Aspects of Aminoglycoside-Modifying Enzymes, p 21-33. In Bonomo R, Tolmasky M (ed), Enzyme-Mediated Resistance to Antibiotics. ASM Press, Washington, DC. doi: 10.1128/9781555815615.ch3
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555815615.ch03
1. Aires, J. R.,, T. Kohler,, H. Nikaido, and, P. Plesiat. 1999. Involvement of an active efflux system in the natural resistance of Pseudomonas aeruginosa to aminoglycosides. Antimicrob. Agents Chemother. 43:26242628.
2. Basso, L. A., and, J. S. Blanchard. 1998. Resistance to antitu-bercular drugs. Adv. Exp. Med. Biol. 456:115144.
3. Boehr, D. D.,, K.-A. Draker, and, G. D. Wright. 2003. aminoglycosides and aminocyclitols, p. 155-184. In R. G. Finch,, D. Greenwood,, S. R. Norrby, and, R. J. Whitley (ed.), Antibiotics and Chemotherapy. Churchill Livingston, Edinburgh, Scotland.
4. Boehr, D. D.,, K. Draker,, K. Koteva,, M. Bains,, R. E. Hancock, and, G. D. Wright. 2003. Broad-spectrum peptide inhibitors of aminoglycoside antibiotic resistance enzymes. Chem. Biol. 10:189196.
5. Boehr, D. D.,, P. R. Thompson, and, G. D. Wright. 2001. Molecular mechanism of aminoglycoside antibiotic kinase APH(3′)-IIIa: roles of conserved active site residues. J. Biol. Chem. 276:2392923936.
6. Burk, D. L.,, N. Ghuman,, L. E. Wybenga-Groot, and, A. M. Berghuis. 2003. X-ray structure of the AAC(6′)-Ii antibiotic resistance enzyme at 1.8 Å resolution; examination of oligo-meric arrangements in GNAT superfamily members. Protein Sci. 12:426437.
7. Burk, D. L.,, W. C. Hon,, A. K. Leung, and, A. M. Berghuis. 2001. Structural analyses of nucleotide binding to an aminoglycoside phosphotransferase. Biochemistry 40:87568764.
8. Carter, A. P.,, W. M. Clemons,, D. E. Brodersen,, R. J. Morgan-Warren,, B. T. Wimberly, and, V. Ramakrishnan. 2000. Functional insights from the structure of the 30S ribosomal subunit and its interactions with antibiotics. Nature 407:340348.
9. Costa, Y.,, M. Galimand,, R. Leclercq,, J. Duval, and, P. Cour-valin. 1993. Characterization of the chromosomal aac(6p)-Ii gene specific for Enterococcus faecium. Antimicrob. Agents Chemother. 37:18961903.
10. Cundliffe, E. 1987. On the nature of antibiotic binding sites in ribosomes. Biochimie 69:863869.
11. Daigle, D. M.,, G. A. McKay,, P. R. Thompson, and, G. D. Wright. 1998. Aminoglycoside phosphotransferases required for antibiotic resistance are also serine protein kinases. Chem. Biol. 6:1118.
12. Daigle, D. M.,, G. A. McKay, and, G. D. Wright. 1997. Inhibition of aminoglycoside antibiotic resistance enzymes by protein kinase inhibitors. J. Biol. Chem. 272:2475524758.
13. Davies, J., and, B. D. Davis. 1968. Misreading of ribonucleic acid code words induced by aminoglycoside antibiotics. The effect of drug concentration. J. Biol. Chem. 243:33123316.
14. Davies, J.,, L. Gorini, and, B. D. Davis. 1965. Misreading of RNA codewords induced by aminoglycoside antibiotics. Mol. Pharmacol. 1:93106.
15. Davies, J.,, D. S. Jones, and, H. G. Khorana. 1966. A further study of misreading of codons induced by streptomycin and neomycin using ribopolynucleotides containing two nucleotides in alternating sequence as templates. J. Mol. Biol. 18:4857.
16. Davis, B. D. 1987. Mechanism of action of aminoglycosides. Microbiol. Rev. 51:341350.
17. Davis, B. D.,, L. L. Chen, and, P. C. Tai. 1986. Misread protein creates membrane channels: an essential step in the bactericidal action of aminoglycosides. Proc. Natl. Acad. Sci. USA 83:61646168.
18. Delarue, M.,, J. B. Boule,, J. Lescar,, N. Expert-Bezancon,, N. Jourdan,, N. Sukumar,, F. Rougeon, and, C. Papanicolaou. 2002. Crystal structures of a template-independent DNA polymerase: murine terminal deoxynucleotidyltransferase. EMBO J. 21:427439.
19. DiGiammarino, E. L.,, K. A. Draker,, G. D. Wright, and, E. H. Serpesu. 1997. Solution studies of isepamicin and conforma-tional comparisons between isepamicin and butirosin A when bound to an aminoglycoside 6-N-acetyltransferase determined by NMR spectroscopy. Biochemistry 37:36383644.
20. Draker, K. A.,, D. B. Northrop, and, G. D. Wright. 2003. Kinetic mechanism of the GCN5-related chromosomal aminoglycoside acetyltransferase AAC(6′)-Ii from Entero-coccus faecium: evidence of dimer subunit cooperativity. Biochemistry 42:65656574.
21. Dutnall, R. N.,, S. T. Tafrov,, R. Sternglanz, and, V. Ramak-rishnan. 1998. Structure of the histone acetyltransferase Hat1: a paradigm for the GCN5-related N-acetyltransferase superfamily. Cell 94:427438.
22. Dyda, F.,, D. C. Klein, and, A. B. Hickman. 2000. GCN5-related N-acetyltransferases: a structural overview. Annu. Rev. Biophys. Biomol. Struct. 29:81103.
23. Edson, R. S., and, C. L. Terrell. 1999. The aminoglycosides. Mayo Clin. Proc. 74:519528.
24. Ekman, D. R.,, E. L. DiGiammarino,, E. Wright,, E. D. Witter, and, E. H. Serpersu. 2001. Cloning, overexpression, and purification of aminoglycoside antibiotic nucleotidyltransferase (2″)-Ia: conformational studies with bound substrates. Biochemistry 40:70177024.
25. Finken, M.,, P. Kirschner,, A. Meier,, A. Wrede, and, E. C. Bottger. 1993. Molecular basis of streptomycin resistance in Mycobacterium tuberculosis: alterations of the ribosomal protein S12 gene and point mutations within a functional 16S ribosomal RNA pseudoknot. Mol. Microbiol. 9:12391246.
26. Fong, D. H., and, A. M. Berghuis. 2002. Substrate promiscuity of an aminoglycoside antibiotic resistance enzyme via target mimicry. EMBO J. 21:23232331.
27. Fourmy, D.,, M. I. Recht,, S. C. Blanchard, and, J. D. Puglisi. 1996. Structure of the A site of Escherichia coli 16S ribosomal RNA complexed with an aminoglycoside antibiotic. Science 274:13671371.
28. Fourmy, D.,, S. Yoshizawa, and, J. D. Puglisi. 1998. Paromo-mycin binding induces a local conformational change in the A-site of 16 S rRNA. J. Mol. Biol. 277:333345.
29. Galimand, M.,, P. Courvalin, and, T. Lambert. 2003. Plasmid-mediated high-level resistance to aminoglycosides in Entero-bacteriaceae due to 16S rRNA methylation. Antimicrob. Agents Chemother. 47:25652571.
30. Gates, C. A., and, D. B. Northrop. 1988. Alternative substrate and inhibition kinetics of aminoglycoside nucleotidyltransferase 2″-I in support of a Theorell-Chance kinetic mechanism. Biochemistry 27:38263833.
31. Gates, C. A., and, D. B. Northrop. 1988. Determination of the rate-limiting segment of aminoglycoside nucleotidyltransferase 2″-I by pH- and viscosity-dependent kinetics. Biochemistry 27:38343842.
32. Gates, C. A., and, D. B. Northrop. 1988. Substrate specificities and structure-activity relationships for the nucleotidylation of antibiotics catalyzed by aminoglycoside nucleotidyltransferase 2″-I. Biochemistry 27:38203825.
33. Gerratana, B.,, W. W. Cleland, and, L. A. Reinhardt. 2001. Regiospecificity assignment for the reaction of kanamycin nucleotidyltransferase from Staphylococcus aureus. Biochemistry 40:29642971.
34. Gerratana, B.,, P. A. Frey, and, W. W. Cleland. 2001. Characterization of the transition-state structure of the reaction of kanamycin nucleotidyltransferase by heavy-atom kinetic isotope effects. Biochemistry 40:29722977.
35. Grynberg, M.,, H. Erlandsen, and, A. Godzik. 2003. HEPN: a common domain in bacterial drug resistance and human neu-rodegenerative proteins. Trends Biochem. Sci. 28:224226.
36. Haddad, J.,, L. P. Kotra,, B. Llano-Sotelo,, C. Kim,, E. F. Azucena, Jr.,, M. Liu,, S. B. Vakulenko,, C. S. Chow, and, S. Mobashery. 2002. Design of novel antibiotics that bind to the ribosomal acyltransfer site. J. Am. Chem. Soc. 124:32293237.
37. Hancock, R. E. 1981. Aminoglycoside uptake and mode of action—with special reference to streptomycin and gentami-cin. I. Antagonists and mutants. J. Antimicrob. Chemother. 8:249276.
38. Hancock, R. E. 1981. Aminoglycoside uptake and mode of action—with special reference to streptomycin and gentami-cin. II. Effects of aminoglycosides on cells. J. Antimicrob. Chemother. 8:429445.
39. Hegde, S. S.,, T. K. Dam,, C. F. Brewer, and, J. S. Blanchard. 2002. Thermodynamics of aminoglycoside and acyl-coenzyme A binding to the Salmonella enterica AAC(6′)-Iy aminoglycoside N-acetyltransferase. Biochemistry 41:75197527.
40. Hegde, S. S.,, F. Javid-Majd, and, J. S. Blanchard. 2001. Over-expression and mechanistic analysis of chromosomally encoded aminoglycoside 2′-N-acetyltransferase (AAC(2′)-Ic) from Mycobacterium tuberculosis. J. Biol. Chem. 276:4587645881.
41. Holmes, D. J., and, E. Cundliffe. 1991. Analysis of a ribo-somal RNA methylase gene from Streptomyces tenebrarius which confers resistance to gentamicin. Mol. Gen. Genet. 229:229237.
42. Hon, W. C.,, G. A. McKay,, P. R. Thompson,, R. M. Sweet,, D. S. C. Yang,, G. D. Wright, and, A. M. Berghuis. 1997. Structure of an enzyme required for aminoglycoside resistance reveals homology to eukariotic protein kinases. Cell 89:887895.
43. Le Goffic, F.,, M. L. Capmau,, F. Tangy, and, M. Baillarge. 1979. Mechanism of action of aminoglycoside antibiotics. Binding studies of tobramycin and its 6′-N-acetyl derivative to the bacterial ribosome and its subunits. Eur. J. Biochem. 102:7381.
44. Llano-Sotelo, B.,, E. F. Azucena, Jr.,, L. P. Kotra,, S. Mobashery, and, C. S. Chow. 2002. Aminoglycosides modi-fied by resistance enzymes display diminished binding to the bacterial ribosomal aminoacyl-tRNA site. Chem. Biol. 9:455463.
45. Magnet, S.,, P. Courvalin, and, T. Lambert. 1999. Activation of the cryptic aac(6p)-Iy aminoglycoside resistance gene of Salmonella by a chromosomal deletion generating a transcriptional fusion. J. Bacteriol. 181:66506655.
46. McKay, G. A., and, G. D. Wright. 1996. Catalytic mechanism of enterococcal kanamycin kinase (APH(3′)-IIIa): viscosity, thio, and solvent isotope effects support a Theorell-Chance mechanism. Biochemistry 35:86808685.
47. McKay, G. A., and, G. D. Wright. 1995. Kinetic mechanism of aminoglycoside phosphotransferase type IIIa: evidence for a Theorell-Chance mechanism. J. Biol. Chem. 270:2468624692.
48. Melancon, P.,, C. Lemieux, and, L. Brakier-Gingras. 1988. A mutation in the 530 loop of Escherichia coli 16S ribosomal RNA causes resistance to streptomycin. Nucleic Acids Res. 16:96319639.
49. Moazed, D., and, H. F. Noller. 1987. Interaction of antibiotics with functional sites in 16S ribosomal RNA. Nature 27:389394.
50. Moore, R. A.,, D. DeShazer,, S. Reckseidler,, A. Weissman, and, D. E. Woods. 1999. Efflux-mediated aminoglycoside and macrolide resistance in Burkholderia pseudomallei. Antimicrob. Agents Chemother. 43:465470.
51. Muir, M. E.,, D. R. Hanwell, and, B. J. Wallace. 1981. Characterization of a respiratory mutant of Escherichia coli with reduced uptake of aminoglycoside antibiotics. Biochim. Biophys. Acta 638:234241.
52. Nurizzo, D.,, S. C. Shewry,, M. H. Perlin,, S. A. Brown,, J. N. Dholakia,, R. L. Fuchs,, T. Deva,, E. N. Baker, and, C. A. Smith. 2003. The crystal structure of aminoglycoside-3′-phosphotransferase-IIa, an enzyme responsible for antibiotic resistance. J. Mol. Biol. 327:491506.
53. Pedersen, L. C.,, M. M. Benning, and, H. M. Holden. 1995. Structural investigation of the antibiotic and ATP-binding sites in kanamycin nucleotidyltransferase. Biochemistry 34:1330513311.
54. Peisach, D.,, P. Gee,, C. Kent, and, Z. Xu. 2003. The crystal structure of choline kinase reveals a eukaryotic protein kinase fold. Structure 11:703713.
55. Piepersberg, W.,, J. Distler,, P. Heinzel, and, J.-A. Perez-Gonzalez. 1988. Antibiotic resistance by modification: many resistance genes could be derived from cellular control genes in actinomycetes. A hypothesis. Actinomycetology 2:8398.
56. Prammananan, T.,, P. Sander,, B. A. Brown,, K. Frischkorn,, G. O. Onyi,, Y. Zhang,, E. C. Bottger, and, R. J. Wallace, Jr. 1998. A single 16S ribosomal RNA substitution is responsible for resistance to amikacin and other 2-deoxystreptamine aminoglycosides in Mycobacterium abscessus and Mycobacterium chelonae. J. Infect. Dis. 177:15731581.
57. Rao, V. D.,, S. Misra,, I. V. Boronenkov,, R. A. Anderson, and, J. H. Hurley. 1998. Structure of type IIbeta phosphatidylinositol phosphate kinase: a protein kinase fold flattened for interfacial phosphorylation. Cell 94:829839.
58. Ryu, D. H.,, A. Litovchick, and, R. R. Rando. 2002. Stereo-specificity of aminoglycoside-ribosomal interactions. Biochemistry 41:1049910509.
59. Ryu, D. H.,, C. H. Tan, and, R. R. Rando. 2003. Synthesis of (+),(-)-neamine and their positional isomers as potential antibiotics. Bioorg. Med. Chem. Lett. 13:901903.
60. Sakon, J.,, H. H. Liao,, A. M. Kanikula,, M. M. Benning,, I. Rayment, and, H. M. Holden. 1993. Molecular structure of kanamycin nucleotidyl transferase determined to 3 Å resolution. Biochemistry 32:1197711984.
61. Sawaya, M. R.,, H. Pelletier,, A. Kumar,, S. H. Wilson, and, J. Kraut. 1994. Crystal structure of rat DNA polymerase b: evidence for a common polymerase mechanism. Science 264:19301935.
62. Thompson, P. R.,, D. D. Boehr,, A. M. Berghuis, and, G. D. Wright. 2002. Mechanism of aminoglycoside antibiotic kinase APH(3′)-IIIa: role of the nucleotide positioning loop. Biochemistry 41:70017007.
63. Thompson, P. R.,, J. Schwartzenhauer,, D. W. Hughes,, A. M. Berghuis, and, G. D. Wright. 1999. The COOH terminus of aminoglycoside phosphotransferase (3′)-IIIa is critical for antibiotic recognition and resistance. J. Biol. Chem. 274:3069730706.
64. Vetting, M. W.,, S. S. Hegde,, F. Javid-Majd,, J. S. Blanchard, and, S. L. Roderick. 2002. Aminoglycoside 2′-N-acetyltransferase from Mycobacterium tuberculosis in complex with coenzyme A and aminoglycoside substrates. Nat. Struct. Biol. 9:653658.
65. Vetting, M. W.,, S. Magnet,, E. Nieves,, S. L. Roderick, and, J. S. Blanchard. 2004. A bacterial acetyltransferase capable of regioselective N-acetylation of antibiotics and histones. Chem. Biol. 11:565573.
66. Vicens, Q., and, E. Westhof. 2002. Crystal structure of a complex between the aminoglycoside tobramycin and an oligonucleotide containing the ribosomal decoding a site. Chem. Biol. 9:747755.
67. Wolf, E.,, A. Vassilev,, Y. Makino,, A. Sali,, Y. Nakatani, and, S. K. Burley. 1998. Crystal structure of a GCN5-related N-acetyltransferase: Serratia marcescens aminoglycoside 3-N-acetyltransferase. Cell 94:439449.
68. Woodcock, J.,, D. Moazed,, M. Cannon,, J. Davies, and, H. F. Noller. 1991. Interaction of antibiotics with A- and P-site-specific bases in 16S ribosomal RNA. EMBO J. 10:30993103.
69. Wright, G. D.,, A. M. Berghuis, and, S. Mobashery. 1998. Aminoglycoside antibiotics: structures, function and resistance, p. 27-69. In B. P. Rosen and, S. Mobashery (ed.), Resolving the Antibiotic Paradox: Progress in Drug Design and Resistance. Plenum Press, New York, N.Y.
70. Wright, G. D., and, P. Ladak. 1997. Overexpression and characterization of the chromosomal aminoglycoside 6′-N-acetyltransferase from Enterococcus faecium. Antimicrob. Agents Chemother. 41:956960.
71. Wybenga-Groot, L.,, K. A. Draker,, G. D. Wright, and, A. M. Berghuis. 1999. Crystal structure of an aminoglycoside 6′-N-acetyltransferase: defining the GCN5-related N-acetyltransferase superfamily fold. Structure 7:497507.
72. Yoshizawa, S.,, D. Fourmy, and, J. D. Puglisi. 1998. Structural origins of gentamicin antibiotic action. EMBO J. 17:64376448.
73. Young, M. L.,, M. Bains,, A. Bell, and, R. E. Hancock. 1992. Role of Pseudomonas aeruginosa outer membrane protein OprH in polymyxin and gentamicin resistance: isolation of an OprH-deficient mutant by gene replacement techniques. Antimicrob. Agents Chemother. 36:25662568.

Tables

Generic image for table
Table 3.1

Aminoglycoside antibiotics in clinical use

Citation: Wright G, Berghuis A. 2007. Structural Aspects of Aminoglycoside-Modifying Enzymes, p 21-33. In Bonomo R, Tolmasky M (ed), Enzyme-Mediated Resistance to Antibiotics. ASM Press, Washington, DC. doi: 10.1128/9781555815615.ch3

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error