1887

Chapter 9 : Class B β-Lactamases

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in
Zoomout

Class B β-Lactamases, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555815615/9781555813031_Chap09-1.gif /docserver/preview/fulltext/10.1128/9781555815615/9781555813031_Chap09-2.gif

Abstract:

This chapter provides an overview of class B β-lactamases (CBBLs), considering both fundamental and clinical aspects. Class B is one of the four classes in the structural classification of β-lactamases, which was created to accommodate the metallo-β-lactamases (MBLs). Expression of the CBBL genes carried on gene cassettes is normally under the control of the integron promoters (P and, possibly, P2) located in the 5'-conserved segment of the integron. The constant features of CBBLs include (i) good to excellent carbapenemase activity; (ii) lack of activity on monobactams, which apparently do not interact with these enzymes; and (iii) inhibition by EDTA and other metal ion chelators, and lack of inhibition by the conventional serine-β-lactamase inhibitors. Concerning the structure of the zinc center, which is located at the bottom of a shallow groove between the two β-sheets, in subclass B1 and B3 CBBLs it can accommodate two zinc ions (dinuclear zinc center): a tetrahedrally coordinated zinc ion (Zn1) and a trigonal bipyramidally coordinated zinc ion (Zn2), bridged by a water molecule/hydroxide ion (Wat1). Zn1 is coordinated by three His residues (His 116, His118, and His196) and the bridging Wat1 in all subclass B1 and B3 enzymes, while the strategy of Zn2 coordination is partially different in members of the two subclasses. The clinical relevance of resident CBBLs essentially reflects that of the host species, where these enzymes can variably contribute to intrinsic β-lactam resistance depending on their expression pattern and substrate specificity.

Citation: Rossolini G, Docquier J. 2007. Class B β-Lactamases, p 115-144. In Bonomo R, Tolmasky M (ed), Enzyme-Mediated Resistance to Antibiotics. ASM Press, Washington, DC. doi: 10.1128/9781555815615.ch9

Key Concept Ranking

Lower Respiratory Tract Infections
0.43779334
Restriction Fragment Length Polymorphism
0.43010047
0.43779334
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of Figure 9.1
Figure 9.1

Unrooted tree showing the structural relatedness among the major lineages of CBBLs. The names of the enzymes are the same as in Table 9.1 . The tree was constructed using the TREEVIEW program ( ) on the basis of a sequence alignment constructed with the CLUSTAL X program ( ) using the sequences whose accession numbers are reported in the fourth column of Table 9.1 .

Citation: Rossolini G, Docquier J. 2007. Class B β-Lactamases, p 115-144. In Bonomo R, Tolmasky M (ed), Enzyme-Mediated Resistance to Antibiotics. ASM Press, Washington, DC. doi: 10.1128/9781555815615.ch9
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 9.2
Figure 9.2

Amino acid sequence alignment of CBBLs of subclass B1 (section A), subclass B2 (section B), and subclass B3 (section C). The alignments were constructed considering a single representative for each major lineage, using the sequences whose accession numbers are reported in the fourth column of Table 9.1 . Structural elements are shown above the alignment for enzymes of each subclass, based on the three-dimensional structures of the Bc-II ( ), CphA ( ), and L1 ( ) enzymes, respectively. The conserved residues shared by enzymes of subclass B1 and those shared by enzymes of subclass B3 are boxshaded in gray (note that the Trp244 is not conserved in IMP-18). The four residues conserved among all CBBLs are boxshaded in black. Numbering is according to the BBL scheme ( ).

Citation: Rossolini G, Docquier J. 2007. Class B β-Lactamases, p 115-144. In Bonomo R, Tolmasky M (ed), Enzyme-Mediated Resistance to Antibiotics. ASM Press, Washington, DC. doi: 10.1128/9781555815615.ch9
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 9.3
Figure 9.3

Unrooted tree showing the structural relatedness among known IMP variants. The tree was constructed using the TREEVIEW program ( ) on the basis of a sequence alignment constructed with the CLUSTAL X program ( ) using the sequences whose accession numbers are reported in the third column of Table 9.2 .

Citation: Rossolini G, Docquier J. 2007. Class B β-Lactamases, p 115-144. In Bonomo R, Tolmasky M (ed), Enzyme-Mediated Resistance to Antibiotics. ASM Press, Washington, DC. doi: 10.1128/9781555815615.ch9
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 9.4
Figure 9.4

Unrooted tree showing the structural relatedness among known VIM variants. The tree was constructed using the TREEVIEW program ( ) on the basis of a sequence alignment constructed with the CLUSTAL X program ( ) using the sequences whose accession numbers are reported in the third column of Table 9.3 .

Citation: Rossolini G, Docquier J. 2007. Class B β-Lactamases, p 115-144. In Bonomo R, Tolmasky M (ed), Enzyme-Mediated Resistance to Antibiotics. ASM Press, Washington, DC. doi: 10.1128/9781555815615.ch9
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 9.5a
Figure 9.5a

Schematic representation of the structure of the variable region of class 1 integrons containing (section A) or (section B) gene cassettes. The gene cassettes are indicated by arrows (those carrying CBBL genes are filled). The presence of the integron 5′-conserved segment (5′-CS) and 3′-conserved segment (3′-CS), flanking the cassette array, is also indicated. Only integrons whose variable region has been completely sequenced are shown.

Citation: Rossolini G, Docquier J. 2007. Class B β-Lactamases, p 115-144. In Bonomo R, Tolmasky M (ed), Enzyme-Mediated Resistance to Antibiotics. ASM Press, Washington, DC. doi: 10.1128/9781555815615.ch9
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 9.5b
Figure 9.5b

Schematic representation of the structure of the variable region of class 1 integrons containing (section A) or (section B) gene cassettes. The gene cassettes are indicated by arrows (those carrying CBBL genes are filled). The presence of the integron 5′-conserved segment (5′-CS) and 3′-conserved segment (3′-CS), flanking the cassette array, is also indicated. Only integrons whose variable region has been completely sequenced are shown.

Citation: Rossolini G, Docquier J. 2007. Class B β-Lactamases, p 115-144. In Bonomo R, Tolmasky M (ed), Enzyme-Mediated Resistance to Antibiotics. ASM Press, Washington, DC. doi: 10.1128/9781555815615.ch9
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 9.5c
Figure 9.5c

Schematic representation of the structure of the variable region of class 1 integrons containing (section A) or (section B) gene cassettes. The gene cassettes are indicated by arrows (those carrying CBBL genes are filled). The presence of the integron 5′-conserved segment (5′-CS) and 3′-conserved segment (3′-CS), flanking the cassette array, is also indicated. Only integrons whose variable region has been completely sequenced are shown.

Citation: Rossolini G, Docquier J. 2007. Class B β-Lactamases, p 115-144. In Bonomo R, Tolmasky M (ed), Enzyme-Mediated Resistance to Antibiotics. ASM Press, Washington, DC. doi: 10.1128/9781555815615.ch9
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 9.6
Figure 9.6

(Upper panels) Ribbon diagram of the three-dimensional structure of the CfiA/CcrA enzyme from strain QMCN3 (PDB accession no., 1ZNB), of the CphA enzyme from AE036 (PDB accession no., 1X8G), and of the L1 enzyme from strain IID 1275 (PDB accession, 1SML). The diagrams were constructed using the MOLMOL program ( ). (Lower panels) Structure of the zinc centers of the corresponding enzymes (the water molecule is replaced by a carbonate in the CphA structure, and a single oxygen atom, involved in zinc coordination, is shown for clarity).

Citation: Rossolini G, Docquier J. 2007. Class B β-Lactamases, p 115-144. In Bonomo R, Tolmasky M (ed), Enzyme-Mediated Resistance to Antibiotics. ASM Press, Washington, DC. doi: 10.1128/9781555815615.ch9
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555815615.ch09
1. Abbott, S. L. 2003. Aeromonas, p. 701705. In P. R. Murray,, E. J. Baron,, J. H. Jorgensen,, M. A. Pfaller, and, R. H. Yolken (ed.), Manual of Clinical Microbiology, 8th ed. ASM Press, Washington, D.C.
2. Ambler, R. P. 1980. The structure of β-lactamases. Philos. Trans. R. Soc. Lond. B Biol. Sci. 289:321331.
3. Arakawa, Y.,, M. Murakami,, K. Suzuki,, H. Ito,, R. Wacharotayankun,, S. Ohsuka,, N. Kato, and, M. Ohta. 1995. A novel integron-like element carrying the metallo-β-lactamase gene blaIMP. Antimicrob. Agents Chemother. 39:16121615.
4. Arakawa, Y.,, N. Shibata,, K. Shibayama,, H. Kurokawa,, T. Yagi,, H. Fujiwara, and, M. Goto. 2000. Convenient test for screening metallo-β-lactamase-producing gram-negative bacteria by using thiol compounds. J. Clin. Microbiol. 38:4043.
5. Avison, M. B.,, C. S. Higgins,, C. J. von Heldreich,, P. M. Bennett, and, T. R. Walsh. 2001. Plasmid location and molecular heterogeneity of the L1 and L2 β-lactamase genes of Stenotrophomonas maltophilia. Antimicrob. Agents Chemother. 45:413419.
6. Avison, M. B.,, P. Niumsup,, K. Nurmahomed,, T. R. Walsh, and, P. M. Bennett. 2004. Role of the ’cre/blr-tag’ DNA sequence in regulation of gene expression by the Aeromonas hydrophila β-lactamase regulator, BlrA. J. Antimicrob. Chemother. 53:197202.
7. Bahar, G.,, A. Mazzariol,, R. Koncan,, A. Mert,, R. Fontana,, G. M. Rossolini, and, G. Cornaglia. 2004. Detection of VIM-5 metallo-β-lactamase in a Pseudomonas aeruginosa clinical isolate from Turkey. J. Antimicrob. Chemother. 54:282283.
8. Bellais, S.,, D. Aubert,, T. Naas, and, P. Nordmann. 2000. Molecular and biochemical heterogeneity of class B carbapenem-hydrolyzing β-lactamases in Chryseobacterium meningosepticum. Antimicrob. Agents Chemother. 44:18781886.
9. Bellais, S.,, D. Girlich,, A. Karim, and, P. Nordmann. 2002. EBR-1, a novel Ambler subclass B1 β-lactamase from Empedobacter brevis. Antimicrob. Agents Chemother. 46:32233227.
10. Bellais, S.,, S. Leotard,, L. Poirel,, T. Naas, and, P. Nordmann. 1999. Molecular characterization of a carbapenem-hydrolyzing β-lactamase from Chryseobacterium (Flavo-bacterium) indologenes. FEMS Microbiol. Lett. 171:127132.
11. Bellais, S.,, T. Naas, and, P. Nordmann. 2002. Genetic and biochemical characterization of CGB-1, an Ambler class B carbapenem-hydrolyzing β-lactamase from Chryseo-bacterium gleum. Antimicrob. Agents Chemother. 46:27912796.
12. Bellais, S.,, L. Poirel,, S. Leotard,, T. Naas, and, P. Nordmann. 2000. Genetic diversity of carbapenem-hydrolyzing metallo-β-lactamases from Chryseobacterium (Flavobacte-rium) indologenes. Antimicrob. Agents Chemother. 44:30283034.
13. Bicknell, R.,, E. L. Emanuel,, J. Gagnon, and, S. G. Waley. 1985. The production and molecular properties of the zinc β-lactamase of Pseudomonas maltophilia IID 1275. Biochem. J. 229:791797.
14. Bicknell, R., and, S. G. Waley. 1985. Cryoenzymology of Bacillus cereus β-lactamase II. Biochemistry 24:68766887.
15. Bonfiglio, G.,, S. Stefani, and, G. Nicoletti. 1995. Clinical isolate of a Xanthomonas maltophilia strain producing L-1-deficient and L-2-inducible β-lactamases. Chemotherapy 41:121124.
16. Boschi, L.,, P. S. Mercuri,, M. L. Riccio,, G. Amicosante,, M. Galleni,, J. M. Frere, and, G. M. Rossolini. 2000. The Legionella (Fluoribacter) gormanii metallo-β-lactamase: a new member of the highly divergent lineage of molecular-subclass B3 β-lactamases. Antimicrob. Agents Chemother. 44:15381543.
17. Bounaga, S.,, A. P. Laws,, M. Galleni, and, M. I. Page. 1998. The mechanism of catalysis and the inhibition of the Bacillus cereus zinc-dependent β-lactamase. Biochem. J. 331(Pt. 3):703711.
18. Bush, K. 1998. Metallo-β-lactamases: a class apart. Clin. Infect. Dis. 27(Suppl. 1):S48S53.
19. Bush, K. 2001. New β-lactamases in gram-negative bacteria: diversity and impact on the selection of antimicrobial therapy. Clin. Infect. Dis. 32:10851089.
20. Bush, K.,, G. A. Jacoby, and, A. A. Medeiros. 1995. A functional classification scheme for β-lactamases and its correlation with molecular structure. Antimicrob. Agents Chemother. 39:12111233.
21. Callebaut, I.,, D. Moshous,, J. P. Mornon, and, J. P. De Villartay. 2002. Metallo-β-lactamase fold within nucleic acids processing enzymes: the β-CASP family. Nucleic Acids Res. 30:35923601.
22. Cardoso, O.,, R. Leitao,, A. Figueiredo,, J. C. Sousa,, A. Duarte, and, L. V. Peixe. 2002. Metallo-β-lactamase VIM-2 in clinical isolates of Pseudomonas aeruginosa from Portugal. Microb. Drug Resist. 8:9397.
23. Carfi, A.,, S. Pares,, E. Duee,, M. Galleni,, C. Duez,, J. M. Frere, and, O. Dideberg. 1995. The 3-D structure of a zinc metallo-β-lactamase from Bacillus cereus reveals a new type of protein fold. EMBO J. 14:49144921.
24. Castanheira, M.,, M. A. Toleman,, R. N. Jones,, F. J. Schmidt, and, T. R. Walsh. 2004. Molecular characterization of a beta-lactamase gene, blaGIM-1, encoding a new subclass of metallo-β-lactamase. Antimicrob. Agents Chemother. 48:46544661.
25. Chen, Y.,, J. Succi,, F. C. Tenover, and, T. M. Koehler. 2003. β-lactamase genes of the penicillin-susceptible Bacillus anthracis Sterne strain. J. Bacteriol. 185:823830.
26. Chen, Y.,, F. C. Tenover, and, T. M. Koehler. 2004. β-Lactamase gene expression in a penicillin-resistant Bacillus anthracis strain. Antimicrob. Agents Chemother. 48:48734877.
27. Chu, Y. W.,, M. Afzal-Shah,, E. T. Houang,, M. I. Palepou,, D. J. Lyon,, N. Woodford, and, D. M. Livermore. 2001. IMP-4, a novel metallo-β-lactamase from nosocomial Aci-netobacter spp. collected in Hong Kong between 1994 and 1998. Antimicrob. Agents Chemother. 45:710714.
28. Collis, C. M., and, R. M. Hall. 1995. Expression of antibiotic resistance genes in the integrated cassettes of integrons. Antimicrob. Agents Chemother. 39:155162.
29. Conceicao, T.,, A. Brizio,, A. Duarte, and, R. Barros. 2005. First isolation of blaVIM-2 in Klebsiella oxytoca clinical isolates from Portugal. Antimicrob. Agents Chemother. 49:476.
30. Concha, N. O.,, C. A. Janson,, P. Rowling,, S. Pearson,, C. A. Cheever,, B. P. Clarke,, C. Lewis,, M. Galleni,, J. M. Frere,, D. J. Payne,, J. H. Bateson, and, S. S. Abdel-Meguid. 2000. Crystal structure of the IMP-1 metallo β-lactamase from Pseudomonas aeruginosa and its complex with a mercapto-carboxylate inhibitor: binding determinants of a potent, broad-spectrum inhibitor. Biochemistry 39:42884298.
31. Concha, N. O.,, B. A. Rasmussen,, K. Bush, and, O. Herzberg. 1996. Crystal structure of the wide-spectrum binuclear zinc β-lactamase from Bacteroides fragilis. Structure 4:823836.
32. Cornaglia, G.,, A. Mazzariol,, L. Lauretti,, G. M. Rossolini, and, R. Fontana. 2000. Hospital outbreak of carbapenem-resistant Pseudomonas aeruginosa producing VIM-1, a novel transferable metallo-β-lactamase. Clin. Infect. Dis. 31:11191125.
33. Cornaglia, G.,, M. L. Riccio,, A. Mazzariol,, L. Lauretti,, R. Fontana, and, G. M. Rossolini. 1999. Appearance of IMP-1 metallo-β-lactamase in Europe. Lancet 353:899900.
34. Crespo, M. P.,, N. Woodford,, A. Sinclair,, M. E. Kaufmann,, J. Turton,, J. Glover,, J. D. Velez,, C. R. Castaneda,, M. Recalde, and, D. M. Livermore. 2004. Outbreak of carba-penem-resistant Pseudomonas aeruginosa producing VIM-8, a novel metallo-β-lactamase, in a tertiary care center in Cali, Colombia. J. Clin. Microbiol. 42:50945101.
35. Crowder, M. W.,, Z. Wang,, S. L. Franklin,, E. P. Zovinka, and, S. J. Benkovic. 1996. Characterization of the metal-binding sites of the β-lactamase from Bacteroides fragilis. Biochemistry 35:1212612132.
36. Cuchural, G. J., Jr.,, M. H. Malamy, and, F. P. Tally. 1986. β-Lactamase-mediated imipenem resistance in Bacteroides fragilis. Antimicrob. Agents Chemother. 30:645648.
37. Daiyasu, H.,, K. Osaka,, Y. Ishino, and, H. Toh. 2001. Expansion of the zinc metallo-hydrolase family of the β-lactamase fold. FEBS Lett. 503:16.
38. Dal Peraro, M.,, A. J. Vila, and, P. Carloni. 2004. Substrate binding to mononuclear metallo-β-lactamase from Bacillus cereus. Proteins 54:412423.
39. Da Silva, G. J.,, M. Correia,, C. Vital,, G. Ribeiro,, J. C. Sousa,, R. Leitao,, L. Peixe, and, A. Duarte. 2002. Molecular characterization of blaIMP-5, a new integron-borne metallo-β-lactamase gene from an Acinetobacter baumannii nosocomial isolate in Portugal. FEMS Microbiol. Lett. 215:3339.
40. Denton, M., and, K. G. Kerr. 1998. Microbiological and clinical aspects of infection associated with Stenotropho-monas maltophilia. Clin. Microbiol. Rev. 11:5780.
41. de Seny, D.,, C. Prosperi-Meys,, C. Bebrone,, G. M. Rossolini,, M. I. Page,, P. Noel,, J. M. Frere, and, M. Galleni. 2002. Mutational analysis of the two zinc-binding sites of the Bacillus cereus 569/H/9 metallo-β-lactamase. Biochem. J. 363:687696.
42. Docquier, J. D.,, J. Lamotte-Brasseur,, M. Galleni,, G. Amicosante,, J. M. Frere, and, G. M. Rossolini. 2003. On functional and structural heterogeneity of VIM-type metallo-β-lactamases. J. Antimicrob. Chemother. 51:257266.
43. Docquier, J. D.,, T. Lopizzo,, S. Liberatori,, M. Prenna,, M. C. Thaller,, J. M. Frere, and, G. M. Rossolini. 2004. Biochemical characterization of the THIN-B metallo-β-lactamase of Janthinobacterium lividum. Antimicrob. Agents Chem-other. 48:47784783.
44. Docquier, J. D.,, F. Luzzaro,, G. Amicosante,, A. Toniolo, and, G. M. Rossolini. 2001. Multidrug-resistant Pseudomonas aeruginosa producing PER-1 extended-spectrum serine-β-lactamase and VIM-2 metallo-β-lactamase. Emerg. Infect. Dis. 7:910911.
45. Docquier, J. D.,, F. Pantanella,, F. Giuliani,, M. C. Thaller,, G. Amicosante,, M. Galleni,, J. M. Frere,, K. Bush, and, G. M. Rossolini. 2002. CAU-1, a subclass B3 metallo-β-lactamase of low substrate affinity encoded by an ortholog present in the Caulobacter crescentus chromosome. Antimicrob. Agents Chemother. 46:18231830.
46. Docquier, J. D.,, M. L. Riccio,, C. Mugnaioli,, F. Luzzaro,, A. Endimiani,, A. Toniolo,, G. Amicosante, and, G. M. Ros-solini. 2003. IMP-12, a new plasmid-encoded metallo-β-lactamase from a Pseudomonas putida clinical isolate. Antimicrob. Agents Chemother. 47:15221528.
47. Felici, A., and, G. Amicosante. 1995. Kinetic analysis of extension of substrate specificity with Xanthomonas maltophilia, Aeromonas hydrophila, and Bacillus cereus metallo-β-lactamases. Antimicrob. Agents Chemother. 39:192199.
48. Felici, A.,, G. Amicosante,, A. Oratore,, R. Strom,, P. Ledent,, B. Joris,, L. Fanuel, and, J. M. Frere. 1993. An overview of the kinetic parameters of class B β-lactamases. Biochem. J. 291(Pt.1):151155.
49. Fosse, T.,, C. Giraud-Morin,, I. Madinier, and, R. Labia. 2003. Sequence analysis and biochemical characterisation of chromosomal CAV-1 (Aeromonas caviae), the parental cephalosporinase of plasmid-mediated AmpC ’FOX’ cluster. FEMS Microbiol. Lett. 222:9398.
50. Franceschini, N.,, B. Caravelli,, J. D. Docquier,, M. Galleni,, J. M. Frere,, G. Amicosante, and, G. M. Rossolini. 2000. Purification and biochemical characterization of the VIM-1 metallo-β-lactamase. Antimicrob. Agents Chemother. 44:30033007.
51. Gales, A. C.,, L. C. Menezes,, S. Silbert, and, H. S. Sader. 2003. Dissemination in distinct Brazilian regions of an epidemic carbapenem-resistant Pseudomonas aeruginosa producing SPM metallo-β-lactamase. J. Antimicrob. Chem-other. 52:699702.
52. Galleni, M.,, J. Lamotte-Brasseur,, G. M. Rossolini,, J. Spencer,, O. Dideberg, and, J. M. Frere. 2001. Standard numbering scheme for class B β-lactamases. Antimicrob. Agents Chemother. 45:660663.
53. Garau, G.,, C. Bebrone,, C. Anne,, M. Galleni,, J. M. Frere, and, O. Dideberg. 2005. A metallo-β-lactamase enzyme in action: crystal structures of the monozinc carbapenemase CphA and its complex with biapenem. J. Mol. Biol. 345:785795.
54. Garau, G.,, I. Garcia-Saez,, C. Bebrone,, C. Anne,, P. Mercuri,, M. Galleni,, J. M. Frere, and, O. Dideberg. 2004. Update of the standard numbering scheme for class B β-lactamases. Antimicrob. Agents Chemother. 48:23472349.
55. Garcia-Saez, I.,, P. S. Mercuri,, C. Papamicael,, R. Kahn,, J. M. Frere,, M. Galleni,, G. M. Rossolini, and, O. Dideberg. 2003. Three-dimensional structure of FEZ-1, a monomeric subclass B3 metallo-β-lactamase from Fluoribacter gorma-nii, in native form and in complex with D-captopril. J. Mol. Biol. 325:651660.
56. Ghuysen, J. M. 1991. Serine β-lactamases and penicillin-binding proteins. Annu. Rev. Microbiol. 45:3767.
57. Giakkoupi, P.,, G. Petrikkos,, L. S. Tzouvelekis,, S. Tsonas,, N. J. Legakis, and, A. C. Vatopoulos. 2003. Spread of integron-associated VIM-type metallo-β-lactamase genes among imipenem-nonsusceptible Pseudomonas aeruginosa strains in Greek hospitals. J. Clin. Microbiol. 41:822825.
58. Giakkoupi, P.,, L. S. Tzouvelekis,, G. L. Daikos,, V. Miriagou,, G. Petrikkos,, N. J. Legakis, and, A. C. Vatopoulos. 2005. Discrepancies and interpretation problems in susceptibility testing of VIM-1-producing Klebsiella pneumoniae isolates. J. Clin. Microbiol. 43:494496.
59. Giakkoupi, P.,, A. Xanthaki,, M. Kanelopoulou,, A. Vlahaki,, V. Miriagou,, S. Kontou,, E. Papafraggas,, H. Malamou-Lada,, L. S. Tzouvelekis,, N. J. Legakis, and, A. C. Vatopoulos. 2003. VIM-1 metallo-β-lactamase-producing Klebsiella pneumoniae strains in Greek hospitals. J. Clin. Microbiol. 41:38933896.
60. Gibb, A. P.,, C. Tribuddharat,, R. A. Moore,, T. J. Louie,, W. Krulicki,, D. M. Livermore,, M. F. Palepou, and, N. Wood-ford. 2002. Nosocomial outbreak of carbapenem-resistant Pseudomonas aeruginosa with a new blaIMP allele, blaIMP-7. Antimicrob. Agents Chemother. 46:255258.
61. Gilligan, P. H.,, G. Lum,, P. A. R. Vandamme, and, S. Whittier. 2003. Burkholderia, Stenotrophomonas, Ralstonia, Brevundimonas, Comamonas, Delftia, Pandorae, and Acidovorax, p. 729-748. In P. R. Murray,, E. J. Baron,, J. H. Jorgensen,, M. A. Pfaller, and, R. H. Yolken (ed.), Manual of Clinical Microbiology, 8th ed. ASM Press, Washington, D.C.
62. Giske, C. G.,, M. Rylander, and, G. Kronvall. 2003. VIM-4 in a carbapenem-resistant strain of Pseudomonas aeruginosa isolated in Sweden. Antimicrob. Agents Chemother. 47: 3034-3035.
63. Gupta, R. S., and, E. Griffiths. 2002. Critical issues in bacterial phylogeny. Theor. Popul. Biol. 61:423434.
64. Hanson, N. D.,, A. Hossain,, L. Buck,, E. S. Moland, and, K. S. Thomson. 2006. First occurrence of a Pseudomonas aerugi-nosa isolate in the United States producing an IMP metallo-β-lactamase, IMP-18. Antimicrob. Agents Chemother. 50:22722273.
65. Hawkey, P. M.,, J. Xiong,, H. Ye,, H. Li, and, F. H. M’Zali. 2001. Occurrence of a new metallo-β-lactamase IMP-4 carried on a conjugative plasmid in Citrobacter youngae from the People’s Republic of China. FEMS Microbiol. Lett. 194:5357.
66. Heinz, U., and, H. W. Adolph. 2004. Metallo-β-lactamases: two binding sites for one catalytic metal ion? Cell Mol. Life Sci. 61:28272839.
67. Hernandez, V. M.,, A. Felici,, G. Weber,, H. W. Adolph,, M. Zeppezauer,, G. M. Rossolini,, G. Amicosante,, J. M. Frere, and, M. Galleni. 1997. Zn(II) dependence of the Aeromonas hydrophila AE036 metallo-β-lactamase activity and stability. Biochemistry 36:1153411541.
68. Hernandez, V. M.,, M. Kiefer,, U. Heinz,, R. P. Soto,, W. Meyer-Klaucke,, H. F. Nolting,, M. Zeppezauer,, M. Galleni,, J. M. Frere,, G. M. Rossolini,, G. Amicosante, and, H. W. Adolph. 2000. Kinetic and spectroscopic characterization of native and metal-substituted β-lactamase from Aeromonas hydrophila AE036. FEBS Lett. 467:221225.
69. Hirakata, Y.,, K. Izumikawa,, T. Yamaguchi,, H. Takemura,, H. Tanaka,, R. Yoshida,, J. Matsuda,, M. Nakano,, K. Tomono,, S. Maesaki,, M. Kaku,, Y. Yamada,, S. Kamihira, and, S. Kohno. 1998. Rapid detection and evaluation of clinical characteristics of emerging multiple-drug-resistant gram-negative rods carrying the metallo-β-lactamase gene blaIMP. Antimicrob. Agents Chemother. 42:20062011.
70. Ho, S. E.,, G. Subramaniam,, S. Palasubramaniam, and, P. Navaratnam. 2002. Carbapenem-resistant Pseudomonas aeruginosa in malaysia producing IMP-7 β-lactamase. Antimicrob. Agents Chemother. 46:32863287.
71. Houang, E. T.,, Y. W. Chu,, W. S. Lo,, K. Y. Chu, and, A. F. Cheng. 2003. Epidemiology of rifampin ADP-ribosyltransferase (arr-2) and metallo-β-lactamase (blaIMP-4) gene cassettes in class 1 integrons in Acinetobacter strains isolated from blood cultures in 1997 to 2000. Antimicrob. Agents Chemother. 47:13821390.
72. Hussain, M.,, A. Carlino,, M. J. Madonna, and, J. O. Lampen. 1985. Cloning and sequencing of the metallothioprotein β-lactamase II gene of Bacillus cereus 569/H in Escherichia coli. J. Bacteriol. 164:223229.
73. Iaconis, J. P., and, C. C. Sanders. 1990. Purification and characterization of inducible β-lactamases in Aeromonas spp. Antimicrob. Agents Chemother. 34:4451.
74. Ito, H.,, Y. Arakawa,, S. Ohsuka,, R. Wacharotayankun,, N. Kato, and, M. Ohta. 1995. Plasmid-mediated dissemination of the metallo-β-lactamase gene blaIMP among clinically isolated strains of Serratia marcescens. Antimicrob. Agents Chemother. 39:824829.
75. Iyobe, S.,, H. Kusadokoro,, J. Ozaki,, N. Matsumura,, S. Minami,, S. Haruta,, T. Sawai, and, K. O’Hara. 2000. Amino acid substitutions in a variant of IMP-1 metallo-β-lactamase. Antimicrob. Agents Chemother. 44:20232027.
76. Iyobe, S.,, H. Kusadokoro,, A. Takahashi,, S. Yomoda,, T. Okubo,, A. Nakamura, and, K. O’Hara. 2002. Detection of a variant metallo-β-lactamase, IMP-10, from two unrelated strains of Pseudomonas aeruginosa and an Alcaligenes xylosoxidans strain. Antimicrob. Agents Chemother. 46:20142016.
77. Iyobe, S.,, M. Tsunoda, and, S. Mitsuhashi. 1994. Cloning and expression in Enterobacteriaceae of the extended-spectrum β-lactamase gene from a Pseudomonas aeruginosa plasmid. FEMS Microbiol. Lett. 121:175180.
78. Jacoby, G. A., and, L. S. Munoz-Price. 2005. The new β-lactamases. N. Engl. J. Med. 352:380391.
79. Jeong, S. H.,, K. Lee,, Y. Chong,, J. H. Yum,, S. H. Lee,, H. J. Choi,, J. M. Kim,, K. H. Park,, B. H. Han,, S. W. Lee, and, T. S. Jeong. 2003. Characterization of a new integron containing VIM-2, a metallo-β-lactamase gene cassette, in a clinical isolate of Enterobacter cloacae. J. Antimicrob. Chemother. 51:397400.
80. Jones, R. N.,, L. M. Deshpande,, J. M. Bell,, J. D. Turnidge,, S. Kohno,, Y. Hirakata,, Y. Ono,, Y. Miyazawa,, S. Kawakama,, M. Inoue,, Y. Hirata, and, M. A. Toleman. 2004. Evaluation of the contemporary occurrence rates of metallo-β-lactamases in multidrug-resistant Gram-negative bacilli in Japan: report from the SENTRY Antimicrobial Surveillance Program (1998–2002). Diagn. Microbiol. Infect. Dis. 49:289294.
81. Jousimies-Somer, H.,, P. H. Summanen,, H. Wexler,, S. M. Finegold,, S. E. Gharbia, and, H. N. Shah. 2003. Bacteroides, Porphyromonas, Prevotella, Fusobacterium, and other anaerobic gram negative bacteria, p. 880901. In P. R. Murray,, E. J. Baron,, J. H. Jorgensen,, M. A. Pfaller, and, R. H. Yolken (ed.), Manual of Clinical Microbiology, 8th ed. ASM Press, Washington, D.C.
82. Kato, C.,, T. Kudo,, K. Watanabe, and, K. Horikoshi. 1985. Nucleotide sequence of the β-lactamase gene of alkalophilic Bacillus sp. strain 170. J. Gen. Microbiol. 131(Pt. 12):33173324.
83. Kato, N.,, K. Yamazoe,, C. G. Han, and, E. Ohtsubo. 2003. New insertion sequence elements in the upstream region of cfiA in imipenem-resistant Bacteroides fragilis strains. Antimicrob. Agents Chemother. 47:979985.
84. Kimura, S.,, J. Alba,, K. Shiroto,, R. Sano,, Y. Niki,, S. Mae-saki,, K. Akizawa,, M. Kaku,, Y. Watanuki,, Y. Ishii, and, K. Yamaguchi. 2005. Clonal diversity of metallo-β-lactamase-possessing Pseudomonas aeruginosa in geographically diverse regions of Japan. J. Clin. Microbiol. 43:458461.
85. Koh, T. H.,, L. H. Sng,, G. S. Babini,, N. Woodford,, D. M. Livermore, and, L. M. Hall. 2001. Carbapenem-resistant Klebsiella pneumoniae in Singapore producing IMP-1 β-lactamase and lacking an outer membrane protein. Antimi-crob. Agents Chemother. 45:19391940.
86. Koh, T. H.,, G. C. Wang, and, L. H. Sng. 2004. IMP-1 and a novel metallo-β-lactamase, VIM-6, in fluorescent pseu-domonads isolated in Singapore. Antimicrob. Agents Chem-other. 48:23342336.
87. Koradi, R.,, M. Billeter, and, K. Wuthrich. 1996. MOLMOL: a program for display and analysis of macromolecular structures. J. Mol. Graph. 14:5132.
88. Kurokawa, H.,, T. Yagi,, N. Shibata,, K. Shibayama, and, Y. Arakawa. 1999. Worldwide proliferation of carbapenem-resistant gram-negative bacteria. Lancet 354:955.
89. Lagatolla, C.,, E. A. Tonin,, C. Monti-Bragadin,, L. Dolzani,, F. Gombac,, C. Bearzi,, E. Edalucci,, F. Gionechetti, and, G. M. Rossolini. 2004. Endemic carbapenem-resistant Pseudomonas aeruginosa with acquired metallo-β-lactamase determinants in European hospitals. Emerg. Infect. Dis. 10:535538.
90. Laraki, N.,, N. Franceschini,, G. M. Rossolini,, P. Santucci,, C. Meunier,, E. de Pauw,, G. Amicosante,, J. M. Frere, and, M. Galleni. 1999. Biochemical characterization of the Pseudomonas aeruginosa 101/1477 metallo-β-lactamase IMP-1 produced by Escherichia coli. Antimicrob. Agents Chemother. 43:902906.
91. Lartigue, M. F.,, L. Poirel, and, P. Nordmann. 2004. First detection of a carbapenem-hydrolyzing metalloenzyme in an Enterobacteriaceae isolate in France. Antimicrob. Agents Chemother. 48:49294930.
92. Lauretti, L.,, M. L. Riccio,, A. Mazzariol,, G. Cornaglia,, G. Amicosante,, R. Fontana, and, G. M. Rossolini. 1999. Cloning and characterization of blaVIM, a new integron-borne metallo-β-lactamase gene from a Pseudomonas aeruginosa clinical isolate. Antimicrob. Agents Chemother. 43:15841590.
93. Lee, K.,, Y. Chong,, H. B. Shin,, Y. A. Kim,, D. Yong, and, J. H. Yum. 2001. Modified Hodge and EDTA-disk synergy tests to screen metallo-β-lactamase-producing strains of Pseudomonas and Acinetobacter species. Clin. Microbiol. Infect. 7:8891.
94. Lee, K.,, G. Y. Ha,, B. M. Shin,, J. J. Kim,, J. O. Kang,, S. J. Jang,, D. Yong, and, Y. Chong. 2004. Metallo-β-lactamase-producing Gram-negative bacilli in Korean Nationwide Surveillance of Antimicrobial Resistance group hospitals in 2003: continued prevalence of VIM-producing Pseudomonas spp. and increase of IMP-producing Acinetobacter spp. Diagn. Microbiol. Infect. Dis. 50:5158.
95. Lee, K.,, W. G. Lee,, Y. Uh,, G. Y. Ha,, J. Cho, and, Y. Chong. 2003. VIM- and IMP-type metallo-β-lactamase-producing Pseudomonas spp. and Acinetobacter spp. in Korean hospitals. Emerg. Infect. Dis. 9:868871.
96. Lee, K.,, J. B. Lim,, J. H. Yum,, D. Yong,, Y. Chong,, J. M. Kim, and, D. M. Livermore. 2002. blaVIM-2 cassette-containing novel integrons in metallo-β-lactamase-produc-ing Pseudomonas aeruginosa and Pseudomonas putida isolates disseminated in a Korean hospital. Antimicrob. Agents Chemother. 46:10531058.
97. Lee, K.,, Y. S. Lim,, D. Yong,, J. H. Yum, and, Y. Chong. 2003. Evaluation of the Hodge test and the imipenem-EDTA double-disk synergy test for differentiating metallo-β-lactamase-producing isolates of Pseudomonas spp. and Acinetobacter spp. J. Clin. Microbiol. 41:46234629.
98. Lee, K.,, J. H. Yum,, D. Yong,, H. M. Lee,, H. D. Kim,, J. D. Docquier,, G. M. Rossolini, and, Y. Chong. 2005. Novel acquired metallo-β-lactamase gene, blaSIM-1, in a class 1 integron from Acinetobacter baumannii clinical isolates from Korea. Antimicrob. Agents Chemother. 49:44854491.
99. Levesque, C.,, S. Brassard,, J. Lapointe, and, P. H. Roy. 1994. Diversity and relative strength of tandem promoters for the antibiotic-resistance genes of several integrons. Gene 142:4954.
100. Libisch, B.,, M. Gacs,, K. Csiszar,, M. Muzslay,, L. Rokusz, and, M. Fuzi. 2004. Isolation of an integron-borne blaVIM-4 type metallo-β-lactamase gene from a carbapenem-resistant Pseudomonas aeruginosa clinical isolate in Hungary. Antimicrob. Agents Chemother. 48:35763578.
101. Livermore, D. M., and, N. Woodford. 2000. Carbapene-mases: a problem in waiting? Curr. Opin. Microbiol. 3:489495.
102. Lolans, K.,, A. M. Queenan,, K. Bush,, A. Sahud, and, J. P. Quinn. 2005. First nosocomial outbreak of Pseudomonas aeruginosa producing an integron-borne metallo-β-lactamase (VIM-2) in the United States. Antimicrob. Agents Chemother. 49:35383540.
103. Lombardi, G.,, F. Luzzaro,, J. D. Docquier,, M. L. Riccio,, M. Perilli,, A. Coli,, G. Amicosante,, G. M. Rossolini, and, A. Toniolo. 2002. Nosocomial infections caused by multidrug-resistant isolates of Pseudomonas putida producing VIM-1 metallo-β-lactamase. J. Clin. Microbiol. 40:40514055.
104. Luzzaro, F.,, J. D. Docquier,, C. Colinon,, A. Endimiani,, G. Lombardi,, G. Amicosante,, G. M. Rossolini, and, A. Toniolo. 2004. Emergence in Klebsiella pneumoniae and Enterobacter cloacae clinical isolates of the VIM-4 metallo-β-lactamase encoded by a conjugative plasmid. Antimicrob. Agents Chemother. 48:648650.
105. Luzzaro, F.,, A. Endimiani,, J. D. Docquier,, C. Mugnaioli,, M. Bonsignori,, G. Amicosante,, G. M. Rossolini, and, A. Toniolo. 2004. Prevalence and characterization of metallo-β-lactamases in clinical isolates of Pseudomonas aeruginosa. Diagn. Microbiol. Infect. Dis. 48:131135.
106. Mammeri, H.,, S. Bellais, and, P. Nordmann. 2002. Chromosome-encoded β-lactamases TUS-1 and MUS-1 from Myroides odoratus and Myroides odoratimimus (formerly Flavobacterium odoratum), new members of the lineage of molecular subclass B1 metalloenzymes. Antimicrob. Agents Chemother. 46:35613567.
107. Massidda, O.,, G. M. Rossolini, and, G. Satta. 1991. The Aeromonas hydrophila cphA gene: molecular heterogeneity among class B metallo-β-lactamases. J. Bacteriol. 173:46114617.
108. Massova, I., and, S. Mobashery. 1998. Kinship and diversification of bacterial penicillin-binding proteins and β-lactamases. Antimicrob. Agents Chemother. 42:117.
109. Mavroidi, A.,, A. Tsakris,, E. Tzelepi,, S. Pournaras,, V. Loukova, and, L. S. Tzouvelekis. 2000. Carbapenem-hydrolysing VIM-2 metallo-β-lactamase in Pseudomonas aeruginosa from Greece. J. Antimicrob. Chemother. 46:10411042.
110. Mendes, R. E.,, M. Castanheira,, P. Garcia,, M. Guzman,, M. A. Toleman,, T. R. Walsh, and, R. N. Jones. 2004. First isolation of blaVIM-2 in Latin America: report from the SENTRY Antimicrobial Surveillance Program. Antimicrob. Agents Chemother. 48:14331434.
111. Mendes, R. E.,, M. A. Toleman,, J. Ribeiro,, H. S. Sader,, R. N. Jones, and, T. R. Walsh. 2004. Integron carrying a novel metallo-β-lactamase gene, blaIMP-16, and a fused form of aminoglycoside-resistant gene aac (6’)-30/aac (6’)-Ib’: report from the SENTRY Antimicrobial Surveillance Program. Antimicrob. Agents Chemother. 48:46934702.
112. Mercuri, P. S.,, F. Bouillenne,, L. Boschi,, J. Lamotte-Brasseur,, G. Amicosante,, B. Devreese,, J. Van Beeumen,, J. M. Frere,, G. M. Rossolini, and, M. Galleni. 2001. Biochemical characterization of the FEZ-1 metallo-β-lactamase of Legionella gormanii ATCC 33297T produced in Escherichia coli. Antimicrob. Agents Chemother. 45:12541262.
113. Migliavacca, R.,, J. D. Docquier,, C. Mugnaioli,, G. Amico-sante,, R. Daturi,, K. Lee,, G. M. Rossolini, and, L. Pagani. 2002. Simple microdilution test for detection of metallo-β-lactamase production in Pseudomonas aeruginosa. J. Clin. Microbiol. 40:43884390.
114. Miriagou, V.,, E. Tzelepi,, D. Gianneli, and, L. S. Tzouvele-kis. 2003. Escherichia coli with a self-transferable, multiresistant plasmid coding for metallo-β-lactamase VIM-1. Antimicrob. Agents Chemother. 47:395397.
115. Moali, C.,, C. Anne,, J. Lamotte-Brasseur,, S. Groslambert,, B. Devreese,, J. Van Beeumen,, M. Galleni, and, J. M. Frere. 2003. Analysis of the importance of the metallo-β-lactamase active site loop in substrate binding and catalysis. Chem. Biol. 10:319329.
116. Mohammed, M. J.,, C. K. Marston,, T. Popovic,, R. S. Weyant, and, F. C. Tenover. 2002. Antimicrobial susceptibility testing of Bacillus anthracis: comparison of results obtained by using the National Committee for Clinical Laboratory Standards broth microdilution reference and Etest agar gradient diffusion methods. J. Clin. Microbiol. 40:19021907.
117. Murphy, T. A.,, A. M. Simm,, M. A. Toleman,, R. N. Jones, and, T. R. Walsh. 2003. Biochemical characterization of the acquired metallo-β-lactamase SPM-1 from Pseudomonas aeruginosa. Antimicrob. Agents Chemother. 47:582587.
118. Manrrray, P. R.,, E. J. Boron,, J. H. Jorgansen,, M. A. Pfaller, and, R. H. Yolken (ed.). 2003. Manual of Clinical Microbiology, 8th ed. ASM Press, Washington, D.C.
119. Naas, T.,, S. Bellais, and, P. Nordmann. 2003. Molecular and biochemical characterization of a carbapenem-hydrolysing β-lactamase from Flavobacterium johnsoniae. J. Antimi-crob. Chemother. 51:267273.
120. Niumsup, P.,, A. M. Simm,, K. Nurmahomed,, T. R. Walsh,, P. M. Bennett, and, M. B. Avison. 2003. Genetic linkage of the penicillinase gene, amp, and blrAB, encoding the regulator of β-lactamase expression in Aeromonas spp. J. Antimicrob. Chemother. 51:13511358.
121. Nordmann, P., and, L. Poirel. 2002. Emerging carbapenemases in Gram-negative aerobes. Clin. Microbiol. Infect. 8:321331.
122. Oh, E. J.,, S. Lee,, Y. J. Park,, J. J. Park,, K. Park,, S. I. Kim,, M. W. Kang, and, B. K. Kim. 2003. Prevalence of metallo-β-lactamase among Pseudomonas aeruginosa and Acine-tobacter baumannii in a Korean university hospital and comparison of screening methods for detecting metallo-β-lactamase. J. Microbiol. Methods 54:411418.
123. O’Hara, K.,, S. Haruta,, T. Sawai,, M. Tsunoda, and, S. Iyobe. 1998. Novel metallo β-lactamase mediated by a Shigella flexneri plasmid. FEMS Microbiol. Lett. 162:201206.
124. Osano, E.,, Y. Arakawa,, R. Wacharotayankun,, M. Ohta,, T. Horii,, H. Ito,, F. Yoshimura, and, N. Kato. 1994. Molecular characterization of an enterobacterial metallo-β-lactamase found in a clinical isolate of Serratia marcescens that shows imipenem resistance. Antimicrob. Agents Chemother. 38:7178.
125. Page, R. D. 1996. TreeView: an application to display phylogenetic trees on personal computers. Comput. Appl. Biosci. 12:357358.
126. Pallecchi, L.,, M. L. Riccio,, J. D. Docquier,, R. Fontana, and, G. M. Rossolini. 2001. Molecular heterogeneity of blaVIM-2containing integrons from Pseudomonas aeruginosa plasmids encoding the VIM-2 metallo-β-lactamase. FEMS Microbiol. Lett. 195:145150.
127. Pasteran, F.,, D. Faccone,, A. Petroni,, M. Rapoport,, M. Galas,, M. Vazquez, and, A. Procopio. 2005. Novel variant (blaVIM-11) of the metallo-β-lactamase blaVIM family in a GES-1 extended-spectrum-β-lactamase-producing Pseudomonas aeruginosa clinical isolate in Argentina. Antimicrob. Agents Chemother. 49:474475.
128. Patzer, J.,, M. A. Toleman,, L. M. Deshpande,, W. Kaminska,, D. Dzierzanowska,, P. M. Bennett,, R. N. Jones, and, T. R. Walsh. 2004. Pseudomonas aeruginosa strains harbouring an unusual blaVIM-4 gene cassette isolated from hospitalized children in Poland (1998–2001). J. Antimicrob. Chemother.
129. Peleg, A. Y.,, C. Franklin,, J. Bell, and, D. W. Spelman. 2004. Emergence of IMP-4 metallo-β-lactamase in a clinical isolate from Australia. J. Antimicrob. Chemother. 54:699700.
130. Podglajen, I.,, J. Breuil,, I. Casin, and, E. Collatz. 1995. Genotypic identification of two groups within the species Bacteroides fragilis by ribotyping and by analysis of PCR-generated fragment patterns and insertion sequence content. J. Bacteriol. 177:52705275.
131. Podglajen, I.,, J. Breuil, and, E. Collatz. 1994. Insertion of a novel DNA sequence, 1S1186, upstream of the silent carbapenemase gene cfiA, promotes expression of carbapenem resistance in clinical isolates of Bacteroides fragilis. Mol. Microbiol. 12:105114.
132. Poirel, L.,, M. Magalhaes,, M. Lopes, and, P. Nordmann. 2004. Molecular analysis of metallo-β-lactamase gene blaSPM-1 surrounding sequences from disseminated Pseudomonas aeruginosa isolates in Recife, Brazil. Antimicrob. Agents Chemother. 48:14061409.
133. Poirel, L.,, T. Naas,, D. Nicolas,, L. Collet,, S. Bellais,, J. D. Cavallo, and, P. Nordmann. 2000. Characterization of VIM-2, a carbapenem-hydrolyzing metallo-β-lactamase and its plasmid- and integron-borne gene from a Pseudomonas aeruginosa clinical isolate in France. Antimicrob. Agents Chemother. 44:891897.
134. Pournaras, S.,, M. Maniati,, E. Petinaki,, L. S. Tzouvelekis,, A. Tsakris,, N. J. Legakis, and, A. N. Maniatis. 2003. Hospital outbreak of multiple clones of Pseudomonas aeruginosa carrying the unrelated metallo-β-lactamase gene variants blaVIM-2 and blaVIM-4. J. Antimicrob. Chemother. 51:14091414.
135. Pournaras, S.,, A. Tsakris,, M. Maniati,, L. S. Tzouvelekis, and, A. N. Maniatis. 2002. Novel variant (blaVIM-4) of the metallo-β-lactamase gene blaVIM-1 in a clinical strain of Pseudomonas aeruginosa. Antimicrob. Agents Chemother. 46:40264028.
136. Prats, G.,, E. Miro,, B. Mirelis,, L. Poirel,, S. Bellais, and, P. Nordmann. 2002. First isolation of a carbapenem-hydrolyzing β-lactamase in Pseudomonas aeruginosa in Spain. Antimicrob. Agents Chemother. 46:932933.
137. Prosperi-Meys, C.,, D. de Seny,, G. Llabres,, M. Galleni, and, J. Lamotte-Brasseur. 2002. Active-site mutants of class B β-lactamases: substrate binding and mechanistic study. Cell Mol. Life Sci. 59:21362143.
138. Prosperi-Meys, C.,, J. Wouters,, M. Galleni, and, J. Lamotte-Brasseur. 2001. Substrate binding and catalytic mechanism of class B β-lactamases: a molecular modelling study. Cell Mol. Life Sci. 58:21362143.
139. Rasmussen, B. A., and, K. Bush. 1997. Carbapenem-hydrolyzing β-lactamases. Antimicrob. Agents Chemother. 41:223232.
140. Riccio, M. L.,, N. Franceschini,, L. Boschi,, B. Caravelli,, G. Cornaglia,, R. Fontana,, G. Amicosante, and, G. M. Rossolini. 2000. Characterization of the metallo-β-lactamase determinant of Acinetobacter baumannii AC-54/97 reveals the existence of blaIMP allelic variants carried by gene cassettes of different phylogeny. Antimicrob. Agents Chemother. 44:12291235.
141. Riccio, M. L.,, L. Pallecchi,, R. Fontana, and, G. M. Rosso-lini. 2001. In70 of plasmid pAX22, a blaVIM-1 containing integron carrying a new aminoglycoside phosphotransferase gene cassette. Antimicrob. Agents Chemother. 45:12491253.
142. Roche, D. M.,, J. T. Byers,, D. S. Smith,, F. G. Glansdorp,, D. R. Spring, and, M. Welch. 2004. Communications blackout? Do N-acylhomoserine-lactone-degrading enzymes have any role in quorum sensing? Microbiology 150:20232028.
143. Rossolini, G. M.,, M. A. Condemi,, F. Pantanella,, J. D. Docquier,, G. Amicosante, and, M. C. Thaller. 2001. Metallo-β-lactamase producers in environmental microbiota: new molecular class B enzyme in Janthinobacterium lividum. Antimicrob. Agents Chemother. 45:837844.
144. Rossolini, G. M.,, N. Franceschini,, L. Lauretti,, B. Caravelli,, M. L. Riccio,, M. Galleni,, J. M. Frere, and, G. Amicosante. 1999. Cloning of a Chryseobacterium (Flavobacterium) meningosepticum chromosomal gene blaACME encoding an extended-spectrum class A β-lactamase related to the Bacteroides cephalosporinases and the VEB-1 and PER β-lactamases. Antimicrob. Agents Chemother. 43:21932199.
145. Rossolini, G. M.,, N. Franceschini,, M. L. Riccio,, P. S. Mercuri,, M. Perilli,, M. Galleni,, J. M. Frere, and, G. Amicosante. 1998. Characterization and sequence of the Chryseobacterium (Flavobacterium) meningosepticum carbapenemase: a new molecular class B β-lactamase showing a broad substrate profile. Biochem. J. 332(Pt. 1):145152.
146. Rossolini, G. M.,, M. L. Riccio,, G. Cornaglia,, L. Pagani,, C. Lagatolla,, L. Selan, and, R. Fontana. 2000. Carbapenem-resistant Pseudomonas aeruginosa with acquired blaVIM metallo-β-lactamase determinants, Italy. Emerg. Infect. Dis. 6:312313.
147. Rossolini, G. M.,, T. Walsh, and, G. Amicosante. 1996. The Aeromonas metallo-β-lactamases: genetics, enzymology, and contribution to drug resistance. Microb. Drug Resist. 2:245252.
148. Rossolini, G. M.,, A. Zanchi,, A. Chiesurin,, G. Amicosante,, G. Satta, and, P. Guglielmetti. 1995. Distribution of cphA or related carbapenemase-encoding genes and production of carbapenemase activity in members of the genus Aero-monas. Antimicrob. Agents Chemother. 39:346349.
149. Rosta, S., and, H. Mett. 1989. Physiological studies of the regulation of β-lactamase expression in Pseudomonas maltophilia. J. Bacteriol. 171:483487.
150. Ruimy, R.,, I. Podglajen,, J. Breuil,, R. Christen, and, E. Collatz. 1996. A recent fixation of cfiA genes in a monophyletic cluster of Bacteroides fragilis is correlated with the presence of multiple insertion elements. J. Bacteriol. 178:19141918.
151. Saavedra, M. J.,, L. Peixe,, J. C. Sousa,, I. Henriques,, A. Alves, and, A. Correia. 2003. Sfh-I, a subclass B2 metallo-β-lactamase from a Serratia fonticola environmental isolate. Antimicrob. Agents Chemother. 47:23302333.
152. Sabath, L. D., and, E. P. Abraham. 1966. Zinc as a cofactor for cephalosporinase from Bacillus cereus 569. Biochem. J. 98:11C13C.
153. Sader, H. S.,, M. Castanheira,, R. E. Mendes,, M. Toleman,, T. R. Walsh, and, R. N. Jones. 2005. Dissemination and diversity of metallo-beta-lactamases in Latin America: report from the SENTRY Antimicrobial Surveillance Program. Int. J. Antimicrob. Agents 25:5761.
154. Saino, Y.,, F. Kobayashi,, M. Inoue, and, S. Mitsuhashi. 1982. Purification and properties of inducible penicillin β-lactamase isolated from Pseudomonas maltophilia. Antimicrob. Agents Chemother. 22:564570.
155. Sardelic, S.,, L. Pallecchi,, V. Punda-Polic, and, G. M. Rosso-lini. 2003. Carbapenem-resistant Pseudomonas aeruginosa-carrying VIM-2 metallo-β-lactamase determinants, Croatia. Emerg. Infect. Dis. 9:10221023.
156. Schreckenberger, P. C.,, M. I. Daneshvar,, R. S. Weyant, and, D. G. Hollis. 2003. Acinetobacter, Achromobacter, Chryseobacterium, Moraxella, and other nonfermentative gram-negative rods., p. 749779. In P. R. Murray,, E. J. Baron,, J. H. Jorgensen,, M. A. Pfaller, and, R. H. Yolken (ed.), Manual of Clinical Microbiology, 8th ed. ASM Press, Washington, D.C.
157. Senda, K.,, Y. Arakawa,, S. Ichiyama,, K. Nakashima,, H. Ito,, S. Ohsuka,, K. Shimokata,, N. Kato, and, M. Ohta. 1996. PCR detection of metallo-β-lactamase gene blaIMP in gram-negative rods resistant to broad-spectrum β-lactams. J. Clin. Microbiol. 34:29092913.
158. Senda, K.,, Y. Arakawa,, K. Nakashima,, H. Ito,, S. Ichiyama,, K. Shimokata,, N. Kato, and, M. Ohta. 1996. Multifocal outbreaks of metallo-β-lactamase-producing Pseudomonas aeruginosa resistant to broad-spectrum β-lactams, including carbapenems. Antimicrob. Agents Chemother. 40:349353.
159. Shibata, N.,, Y. Doi,, K. Yamane,, T. Yagi,, H. Kurokawa,, K. Shibayama,, H. Kato,, K. Kai, and, Y. Arakawa. 2003. PCR typing of genetic determinants for metallo-β-lactamases and integrases carried by gram-negative bacteria isolated in Japan, with focus on the class 3 integron. J. Clin. Microbiol. 41:54075413.
160. Simm, A. M.,, C. S. Higgins,, A. L. Carenbauer,, M. W. Crowder,, J. H. Bateson,, P. M. Bennett,, A. R. Clarke,, S. E. Halford, and, T. R. Walsh. 2002. Characterization of mono-meric L1 metallo-β-lactamase and the role of the N-terminal extension in negative cooperativity and antibiotic hydrolysis. J. Biol. Chem. 277:2474424752.
161. Simm, A. M.,, C. S. Higgins,, S. T. Pullan,, M. B. Avison,, P. Niumsup,, O. Erdozain,, P. M. Bennett, and, T. R. Walsh. 2001. A novel metallo-β-lactamase, Mbl1b, produced by the environmental bacterium Caulobacter crescentus. FEBS Lett. 509:350354.
162. Stoczko, M.,, J. M. Frère,, G. M. Rossolini, and, J. D. Doc-quier. 2006. Postgenomic scan of metallo-β-lactamase homologues in Rhizobacteria: identification and characterization of BJP-1, a subclass B3 ortholog from Bradyrhizobium japonicum. Antimicrob. Agents Chetmother. 50:19731981.
163. Thompson, J. D.,, T. J. Gibson,, F. Plewniak,, F. Jeanmougin, and, D. G. Higgins. 1997. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 25:48764882.
164. Thompson, J. S., and, M. H. Malamy. 1990. Sequencing the gene for an imipenem-cefoxitin-hydrolyzing enzyme (CfiA) from Bacteroides fragilis TAL2480 reveals strong similarity between CfiA and Bacillus cereus β-lactamase II. J. Bacte-riol. 172:25842593.
165. Toleman, M. A.,, D. Biedenbach,, D. Bennett,, R. N. Jones, and, T. R. Walsh. 2003. Genetic characterization of a novel metallo-β-lactamase gene, blaIMP-13, harboured by a novel Tn5051-type transposon disseminating carbapenemase genes in Europe: report from the SENTRY worldwide antimicrobial surveillance programme. J. Antimicrob. Chemother. 52:583590.
166. Toleman, M. A.,, D. Biedenbach,, D. M. Bennett,, R. N. Jones, and, T. R. Walsh. 2005. Italian metallo-β-lactamases: a national problem? Report from the SENTRY Antimicrobial Surveillance Programme. J. Antimicrob. Chemother. 55:6170.
167. Toleman, M. A.,, K. Rolston,, R. N. Jones, and, T. R. Walsh. 2004. blaVIM-7, an evolutionarily distinct metallo-β-lactamase gene in a Pseudomonas aeruginosa isolate from the United States. Antimicrob. Agents Chemother. 48:329332.
168. Toleman, M. A.,, A. M. Simm,, T. A. Murphy,, A. C. Gales,, D. J. Biedenbach,, R. N. Jones, and, T. R. Walsh. 2002. Molecular characterization of SPM-1, a novel metallo-β-lactamase isolated in Latin America: report from the SENTRY antimicrobial surveillance programme. J. Antimi-crob. Chemother. 50:673679.
169. Tsakris, A.,, S. Pournaras,, N. Woodford,, M. F. Palepou,, G. S. Babini,, J. Douboyas, and, D. M. Livermore. 2000. Outbreak of infections caused by Pseudomonas aeruginosa producing VIM-1 carbapenemase in Greece. J. Clin. Micro-biol. 38:12901292.
170. Tsakris, A.,, P. T. Tassios,, F. Polydorou,, A. Papa,, E. Malaka,, A. Antoniadis, and, N. J. Legakis. 2003. Infrequent detection of acquired metallo-β-lactamases among carbapenem-resistant Pseudomonas isolates in a Greek hospital. Clin. Microbiol. Infect. 9:846851.
171. Tysall, L.,, M. W. Stockdale,, P. R. Chadwick,, M. F. Pale-pou,, K. J. Towner,, D. M. Livermore, and, N. Woodford. 2002. IMP-1 carbapenemase detected in an Acinetobacter clinical isolate from the UK. J. Antimicrob. Chemother. 49:217218.
172. Ullah, J. H.,, T. R. Walsh,, I. A. Taylor,, D. C. Emery,, C. S. Verma,, S. J. Gamblin, and, J. Spencer. 1998. The crystal structure of the L1 metallo-β-lactamase from Stenotropho-monas maltophilia at 1.7 A resolution. J. Mol. Biol. 284:125136.
173. Vessillier, S.,, J. D. Docquier,, S. Rival,, J. M. Frere,, M. Gal-leni,, G. Amicosante,, G. M. Rossolini, and, N. Franceschini. 2002. Overproduction and biochemical characterization of the Chryseobacterium meningosepticum BlaB metallo-β-lactamase. Antimicrob. Agents Chemother. 46:19211927.
174. Voget, S.,, C. Leggewie,, A. Uesbeck,, C. Raasch,, K. E. Jaeger, and, W. R. Streit. 2003. Prospecting for novel biocatalysts in a soil metagenome. Appl. Environ. Microbiol. 69:62356242.
175. Walsh, T. R.,, A. Bolmstrom,, A. Qwarnstrom, and, A. Gales. 2002. Evaluation of a new Etest for detecting metallo-β-lactamases in routine clinical testing. J. Clin. Microbiol. 40:27552759.
176. Walsh, T. R.,, L. Hall,, S. J. Assinder,, W. W. Nichols,, S. J. Cartwright,, A. P. MacGowan, and, P. M. Bennett. 1994. Sequence analysis of the L1 metallo-β-lactamase from Xanthomonas maltophilia. Biochim. Biophys. Acta 1218:199201.
177. Walsh, T. R.,, A. P. MacGowan, and, P. M. Bennett. 1997. Sequence analysis and enzyme kinetics of the L2 serine β-lactamase from Stenotrophomonas maltophilia. Antimi-crob. Agents Chemother. 41:14601464.
178. Walsh, T. R.,, R. A. Stunt,, J. A. Nabi,, A. P. MacGowan, and, P. M. Bennett. 1997. Distribution and expression of β-lactamase genes among Aeromonas spp. J. Antimicrob. Chemother. 40:171178.
179. Walsh, T. R.,, M. A. Toleman,, W. Hryniewicz,, P. M. Bennett, and, R. N. Jones. 2003. Evolution of an integron carrying blaVIM-2 in Eastern Europe: report from the SENTRY Antimicrobial Surveillance Program. J. Antimicrob. Chem-other. 52:116119.
180. Wang, Z.,, W. Fast,, A. M. Valentine, and, S. J. Benkovic. 1999. Metallo-β-lactamase: structure and mechanism. Curr. Opin. Chem. Biol. 3:614622.
181. Xiong, J.,, M. F. Hynes,, H. Ye,, H. Chen,, Y. Yang,, F. M’zali, and, P. M. Hawkey. 2006. blaIMP-9 and its association with large plasmids carried by Pseudomonas aeruginosa isolates from the People’s Republic of China. Antimicrob. Agents Chemother. 50:355358.
182. Yamasaki, K.,, M. Komatsu,, T. Yamashita,, K. Shimakawa,, T. Ura,, H. Nishio,, K. Satoh,, R. Washidu,, S. Kinoshita, and, M. Aihara. 2003. Production of CTX-M-3 extended-spectrum β-lactamase and IMP-1 metallo β-lactamase by five Gram-negative bacilli: survey of clinical isolates from seven laboratories collected in 1998 and 2000, in the Kinki region of Japan. J. Antimicrob. Chemother. 51:631638.
183. Yamazoe, K.,, N. Kato,, H. Kato,, K. Tanaka,, Y. Katagiri, and, K. Watanabe. 1999. Distribution of the cfiA gene among Bacteroides fragilis strains in Japan and relatedness of cfiA to imipenem resistance. Antimicrob. Agents Chemother. 43:28082810.
184. Yan, J. J.,, P. R. Hsueh,, W. C. Ko,, K. T. Luh,, S. H. Tsai,, H. M. Wu, and, J. J. Wu. 2001. Metallo-β-lactamases in clinical Pseudomonas isolates in Taiwan and identification of VIM-3, a novel variant of the VIM-2 enzyme. Antimicrob. Agents Chemother. 45:22242228.
185. Yan, J. J.,, W. C. Ko,, C. L. Chuang, and, J. J. Wu. 2002. Metallo-β-lactamase-producing Enterobacteriaceae isolates in a university hospital in Taiwan: prevalence of IMP-8 in Enterobacter cloacae and first identification of VIM-2 in Citrobacter freundii. J. Antimicrob. Chemother. 50:503511.
186. Yan, J. J.,, W. C. Ko,, S. H. Tsai,, H. M. Wu, and, J. J. Wu. 2001. Outbreak of infection with multidrug-resistant Kle β-siella pneumoniae carrying blaIMP-8 in a university medical center in Taiwan. J. Clin. Microbiol. 39:44334439.
187. Yan, J. J.,, W. C. Ko, and, J. J. Wu. 2001. Identification of a plasmid encoding SHV-12, TEM-1, and a variant of IMP-2 metallo-β-lactamase, IMP-8, from a clinical isolate of Klebsiella pneumoniae. Antimicrob. Agents Chemother. 45:23682371.
188. Yan, J. J.,, J. J. Wu,, S. H. Tsai, and, C. L. Chuang. 2004. Comparison of the double-disk, combined disk, and Etest methods for detecting metallo-β-lactamases in gram-negative bacilli. Diagn. Microbiol. Infect. Dis. 49:511.
189. Yano, H.,, A. Kuga,, R. Okamoto,, H. Kitasato,, T. Koba-yashi, and, M. Inoue. 2001. Plasmid-encoded metallo-β-lactamase (IMP-6) conferring resistance to carbapenems, especially meropenem. Antimicrob. Agents Chemother. 45:13431348.
190. Yatsuyanagi, J.,, S. Saito,, S. Harata,, N. Suzuki,, Y. Ito,, K. Amano, and, K. Enomoto. 2004. Class 1 integron containing metallo-β-lactamase gene blaVIM-2 in Pseudomonas aerugi-nosa clinical strains isolated in Japan. Antimicrob. Agents Chemother. 48:626628.
191. Yong, D.,, K. Lee,, J. H. Yum,, H. B. Shin,, G. M. Rossolini, and, Y. Chong. 2002. Imipenem-EDTA disk method for differentiation of metallo-β-lactamase-producing clinical isolates of Pseudomonas spp. and Acinetobacter spp. J. Clin. Microbiol. 40:37983801.
192. Yum, J. H.,, K. Yi,, H. Lee,, D. Yong,, K. Lee,, J. M. Kim,, G. M. Rossolini, and, Y. Chong. 2002. Molecular characterization of metallo-β-lactamase-producing Acinetobacter bau-mannii and Acinetobacter genomospecies 3 from Korea: identification of two new integrons carrying the blaVIM-2 gene cassettes. J. Antimicrob. Chemother. 49:837840.
193. Yum, J. H.,, D. Yong,, K. Lee,, H. S. Kim, and, Y. Chong. 2002. A new integron carrying VIM-2 metallo-β-lactamase gene cassette in a Serratia marcescens isolate. Diagn. Micro-biol. Infect. Dis. 42:217219.

Tables

Generic image for table
Table 9.1

Class B β-lactamases

Citation: Rossolini G, Docquier J. 2007. Class B β-Lactamases, p 115-144. In Bonomo R, Tolmasky M (ed), Enzyme-Mediated Resistance to Antibiotics. ASM Press, Washington, DC. doi: 10.1128/9781555815615.ch9
Generic image for table
Table 9.2

IMP-type enzymes: sublineages, allelic variants, and distribution

Citation: Rossolini G, Docquier J. 2007. Class B β-Lactamases, p 115-144. In Bonomo R, Tolmasky M (ed), Enzyme-Mediated Resistance to Antibiotics. ASM Press, Washington, DC. doi: 10.1128/9781555815615.ch9
Generic image for table
Table 9.3

VIM-type enzymes: sublineages, allelic variants, and distribution

Citation: Rossolini G, Docquier J. 2007. Class B β-Lactamases, p 115-144. In Bonomo R, Tolmasky M (ed), Enzyme-Mediated Resistance to Antibiotics. ASM Press, Washington, DC. doi: 10.1128/9781555815615.ch9
Generic image for table
Table 9.4

Kinetic parameters of CBBLs against relevant β-lactam substrates

Citation: Rossolini G, Docquier J. 2007. Class B β-Lactamases, p 115-144. In Bonomo R, Tolmasky M (ed), Enzyme-Mediated Resistance to Antibiotics. ASM Press, Washington, DC. doi: 10.1128/9781555815615.ch9
Generic image for table
Table 9.5

Kinetic parameters of different IMP variants for selected β-lactam substrates

Citation: Rossolini G, Docquier J. 2007. Class B β-Lactamases, p 115-144. In Bonomo R, Tolmasky M (ed), Enzyme-Mediated Resistance to Antibiotics. ASM Press, Washington, DC. doi: 10.1128/9781555815615.ch9
Generic image for table
Table 9.6

Inactivation parameters of different CBBLs for selected chelating agents

Citation: Rossolini G, Docquier J. 2007. Class B β-Lactamases, p 115-144. In Bonomo R, Tolmasky M (ed), Enzyme-Mediated Resistance to Antibiotics. ASM Press, Washington, DC. doi: 10.1128/9781555815615.ch9
Generic image for table
Table 9.7

Tests for phenotypic detection of acquired MBL production in gram-negative pathogens

Citation: Rossolini G, Docquier J. 2007. Class B β-Lactamases, p 115-144. In Bonomo R, Tolmasky M (ed), Enzyme-Mediated Resistance to Antibiotics. ASM Press, Washington, DC. doi: 10.1128/9781555815615.ch9
Generic image for table
Table 9.8

Primers for detection of and genes by multiplex PCR assay, and strategy for presumptive identification of the sublineage by means of RFLP analysis of PCR products

Citation: Rossolini G, Docquier J. 2007. Class B β-Lactamases, p 115-144. In Bonomo R, Tolmasky M (ed), Enzyme-Mediated Resistance to Antibiotics. ASM Press, Washington, DC. doi: 10.1128/9781555815615.ch9

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error