1887

Chapter 11 : Class D β-Lactamases

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in
Zoomout

Class D β-Lactamases, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555815615/9781555813031_Chap11-1.gif /docserver/preview/fulltext/10.1128/9781555815615/9781555813031_Chap11-2.gif

Abstract:

β-lactams are the most widely used antimicrobial agents. This success reflects their broad spectrum, low toxicity, limited side effects, bactericidal action, good pharmacokinetic properties, and the diversity of useful analogs that can be synthesized, including penams, cephems, oxapenems, carbapenems, and monobactams. Most of the class D β-lactamases found in important pathogens are encoded by acquired genes, and the dissemination of their host plasmids defines their distribution. In this article, the authors have adopted the DBL numbering system as a general scheme and with the actual position in the sequence of a specific enzyme indicated afterwards in brackets. Both OXA-10 and OXA-13 have a single disulfide bridge between Cys 45 (44 OXA-10) and Cys 54 (51 OXA-10), linking β-sheets 2 and 3, and this is conserved in all other group I enzymes except the carbapenemases OXA-48, -54, and -55. Class D β-lactamases are similar to class A and C types in their three-dimensional structure, with the three same conserved elements, positioned similarly. OXA-10 β-lactamase, the most prevalent member of group I, hydrolyzes a wide range of β-lactams, including aztreonam, cefotaxime, and ceftriaxone but not ceftazidime. Once cloned into , OXA-28 was again associated with resistance to ceftazidime, and reduced susceptibility or resistance to cefotaxime. This enzyme hydrolyzed cloxacillin, benzylpenicillin, cefotaxime, and ceftazidime, but not piperacillin; clavulanic acid had an IC of 10 μM. OXA-28 had a Trp164Gly substitution, reinforcing the view that the Trp164 side chain ordinarily limits the spectrum of OXA-10-related enzymes.

Citation: Danel F, Page M, Livermore D. 2007. Class D β-Lactamases, p 163-194. In Bonomo R, Tolmasky M (ed), Enzyme-Mediated Resistance to Antibiotics. ASM Press, Washington, DC. doi: 10.1128/9781555815615.ch11

Key Concept Ranking

beta-Lactamase Inhibitors
0.70977235
beta-Lactam Antibiotics
0.677379
Clavulanic acid
0.48460165
0.70977235
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of Figure 11.1
Figure 11.1

Phylogenetic tree for class D β-lactamases. Phylogenetic analysis of class D β-lactamases was performed with the ClustalW program. The amino acid sequences are listed in Table 11.2 , with the Lahey website (http://www.lahey.org/studies/webt.asp) used to cross-reference the OXA numbering system and the GenBank number.

Citation: Danel F, Page M, Livermore D. 2007. Class D β-Lactamases, p 163-194. In Bonomo R, Tolmasky M (ed), Enzyme-Mediated Resistance to Antibiotics. ASM Press, Washington, DC. doi: 10.1128/9781555815615.ch11
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 11.2
Figure 11.2

Open (thin line dark) and closed (thick and thin line light gray) structures for OXA-10 β-lactamase. The two closed structures (1FOF, 1EWZ) represent carbamylated and noncarbamylated forms (both structures are superimposable), with Lys73 (70 in OXA-10) bent. In the open structure, Lys73 is straight. In the noncarbamylated structure (1FOF), the structure is identical to the carbamylated structure (1EWZ) but with a water replacing the carbamylate. Residues are indicated using OXA-10 numbering.

Citation: Danel F, Page M, Livermore D. 2007. Class D β-Lactamases, p 163-194. In Bonomo R, Tolmasky M (ed), Enzyme-Mediated Resistance to Antibiotics. ASM Press, Washington, DC. doi: 10.1128/9781555815615.ch11
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 11.3
Figure 11.3

Chemical structures of α- and β-hydroxyisopropylpenicillanates (I and II).

Citation: Danel F, Page M, Livermore D. 2007. Class D β-Lactamases, p 163-194. In Bonomo R, Tolmasky M (ed), Enzyme-Mediated Resistance to Antibiotics. ASM Press, Washington, DC. doi: 10.1128/9781555815615.ch11
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 11.4
Figure 11.4

Hydrolytic mechanism for class D β-lactamase as proposed by Sun et al. ( ) with carbamylated Lys73 (upper diagram). The other possible mechanism is with a noncarbamylated lysine (lower diagram).

Citation: Danel F, Page M, Livermore D. 2007. Class D β-Lactamases, p 163-194. In Bonomo R, Tolmasky M (ed), Enzyme-Mediated Resistance to Antibiotics. ASM Press, Washington, DC. doi: 10.1128/9781555815615.ch11
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 11.5
Figure 11.5

Amino acid replacements in the ESBL derivatives of OXA-10. The active serine is represented, with the omega loop containing Trp164 (154 in OXA-10) shown by a thicker line (OXA-10 numbering).

Citation: Danel F, Page M, Livermore D. 2007. Class D β-Lactamases, p 163-194. In Bonomo R, Tolmasky M (ed), Enzyme-Mediated Resistance to Antibiotics. ASM Press, Washington, DC. doi: 10.1128/9781555815615.ch11
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555815615.ch11
1. Afzal-Shah, M.,, N. Woodford, and, D. M. Livermore. 2001. Characterization of OXA-25, OXA-26, and OXA-27, molecular class D β-lactamases associated with carbapenem resistance in clinical isolates of Acinetobacter baumannii. Antimicrob. Agents Chemother. 45:583588.
2. Aktas, Z.,, L. Poirel,, M. Salcioglu,, P. E. Ozcan,, K. Midilli,, C. Bal,, O. Ang, and, P. Nordmann. 2005. PER-1- and OXA-10-like β-lactamases in ceftazidime-resistant Pseudomonas aeruginosa isolates from intensive care unit patients in Istanbul, Turkey. Clin. Microbiol. Infect. 11:193198.
3. Alfredson, D. A., and, V. Korolik. 2005. Isolation and expression of a novel molecular class D beta-lactamase, OXA-61, from Campylobacter jejuni. Antimicrob. Agents Chemother. 49:25152518.
4. Ambler, R. P.,, A. F. Coulson,, J. M. Frere,, J. M. Ghuysen,, B. Joris,, M. Forsman,, R. C. Levesque,, G. Tiraby, and, S. G. Waley. 1991. A standard numbering scheme for the class A β-lactamases. Biochem. J. 276:269270.
5. Ambler, R. P. 1980. The structure of β-lactamases. Philos. Trans. R. Soc. Lond. B 289:321331.
6. Aubert, D.,, L. Poirel,, A. B. Ali,, F. W. Goldstein, and, P. Nord-mann. 2001. OXA-35 is an OXA-10-related β-lactamase from Pseudomonas aeruginosa. J. Antimicrob. Chemother. 48:717721.
7. Aubert, D.,, L. Poirel,, J. Chevalier,, S. Leotard,, J. M. Pages, and, P. Nordmann. 2001. Oxacillinase-mediated resistance to cefepime and susceptibility to ceftazidime in Pseudomonas aeruginosa. Antimicrob. Agents Chemother. 45:16151620.
8. Avison, M. B.,, P. Niumsup,, T. R. Walsh, and, P. M. Bennett. 2000. Aeromonas hydrophila AmpH and CepH beta-lactamases: derepressed expression in mutants of Escherichia coli lacking creB. J. Antimicrob. Chemother. 46:695702.
9. Avison, M. B., and, A. M. Simm. 2002. Sequence and genome context analysis of a new molecular class D β-lactamase gene from Legionella pneumophila. J. Antimicrob. Chemother. 50:331338.
10. Barlow, M., and, B. G. Hall. 2002. Phylogenetic analysis shows that the OXA β-lactamase genes have been on plasmids for millions of years. J. Mol. Evol. 55:314321.
11. Bou, G.,, A. Oliver, and, J. Martinez-Beltran. 2000. OXA-24, a novel class D β-lactamase with carbapenemase activity in an Acinetobacter baumannii clinical strain. Antimicrob. Agents Chemother. 44:15561561.
12. Brown, S., and, S. G. B. Amyes. 2005. The sequences of seven class D β-lactamases isolated from carbapenem-resistant Acinetobacter baumannii from four continents. Clin. Microb. Infect. 11:326329.
13. Brown, S.,, H. K. Young, and, S. G. Amyes. 2005. Characterisation of OXA-51, a novel class D carbapenemase found in genetically unrelated clinical strains of Acinetobacter baumannii from Argentina. Clin. Microbiol. Infect. 11:1523.
14. Bryan, L. E.,, M. S. Shahrabadi, and, H. M. van den Elzen. 1974. Gentamicin resistance in Pseudomonas aeruginosa: R-factor-mediated resistance. Antimicrob. Agents Chemother. 6:191199.
15. Bush, K.,, G. A. Jacoby, and, A. A. Medeiros. 1995. A functional classification scheme for β-lactamases and its correlation with molecular structure. Antimicrob. Agents Chemother. 39:12111233.
16. Coelho, J. M.,, J. F. Turton,, M. E. Kaufmann,, J. Glover,, N. Woodford,, M. Warner,, M. F. Palepou,, R. Pike,, T. L. Pitt,, B. C. Patel, and, D. M. Livermore. 2006. Occurrence of carbapenem-resistant Acinetobacter baumannii clones at multiple hospitals in London and Southeast England. J. Clin. Microbiol. 44:36233627.
17. Coelho, J.,, N. Woodford,, M. Afzal-Shah, and, D. M. Liver-more. 2006. Occurrence of OXA-58-like carbapenemases in Acinetobacter spp. collected over 10 years in three continents. Antimicrob. Agents Chemother. 50:756758.
18. Coelho, J.,, N. Woodford,, J. Turton, and, D. M. Livermore. 2004 Multiresistant acinetobacter in the UK: how big a threat? J. Hosp. Infect. 58:167169.
19. Couture, F.,, J. Lachapelle, and, R. C. Lévesque. 1992. Phylog-eny of LCR-1 and OXA-5 with class A and class D β-lactamases. Mol. Microbiol. 6:16931705.
20. Dale, J. W., and, J. T. Smith. 1971. The purification and properties of the β-lactamase specified by the resistance factor R-1818 in Escherichia coli and Proteus mirabilis. Biochem. J. 123:493500.
21. Dale, J. W., and, J. T. Smith. 1976. The dimeric nature of an R-factor mediated β-lactamase. Biochem. Biophys. Res. Commun. 68:10001005.
22. Danel, F.,, J. M. Frere, and, D. M. Livermore. 2001. Evidence of dimerisation among class D β-lactamases: kinetics of OXA-14 β-lactamase. Biochim. Biophys. Acta 1546:132142.
23. Danel, F.,, L. M. Hall,, D. Gur, and, D. M. Livermore. 1995. OXA-14, another extended-spectrum variant of OXA-10 (PSE-2) β-lactamase from Pseudomonas aeruginosa. Antimi-crob. Agents Chemother. 39:18811884.
24. Danel, F.,, L. M. Hall, and, D. M. Livermore. 1999. Laboratory mutants of OXA-10 β-lactamase giving ceftazidime resistance in Pseudomonas aeruginosa. J. Antimicrob. Chemother. 43:339344.
25. Danel, F.,, L. M. Hall,, B. Duke,, D. Gur, and, D. M. Livermore. 1999. OXA-17, a further extended-spectrum variant of OXA-10 β-lactamase, isolated from Pseudomonas aeruginosa. Antimicrob. Agents Chemother. 43:13621366.
26. Danel, F.,, L. M. Hall,, D. Gur, and, D. M. Livermore. 1997. OXA-15, an extended-spectrum variant of OXA-2 β-lactamase, isolated from a Pseudomonas aeruginosa strain. Antimicrob. Agents Chemother. 41:785790.
27. Danel, F.,, L. M. Hall,, D. Gur, and, D. M. Livermore. 1998. OXA-16, a further extended-spectrum variant of OXA-10 β-lactamase, from two Pseudomonas aeruginosa isolates. Antimicrob. Agents Chemother. 42:31173122.
28. Danel, F.,, M. Paetzel,, N. C. J. Strynadka, and, M. G. P. Page. 2001. Effect of divalent metal cations on the dimerization of OXA-10 and -14 class D β-lactamases from Pseudomonas aeruginosa. Biochemistry 40:94129420.
29. Da Silva, G. J.,, S. Quinteira,, E. Bertolo,, J. C. Sousa,, L. Gallego,, A. Duarte, and, L. Peixe. 2004. Long-term dissemination of an OXA-40 carbapenemase-producing Acinetobacter baumannii clone in the Iberian Peninsula. J. Antimicrob. Chemother. 54:255258.
30. Datta, N., and, P. Kontomichalou. 1965. Penicillinase synthesis controlled by infectious R factors in Enterobacteriaceae. Nature 208:239241.
31. Donald, H. M.,, W. Scaife,, S. G. B. Amyes, and, H. K. Young. 2000. Sequence analysis of ARI-1, a novel OXA β-lactamase, responsible for imipenem resistance in Acinetobacter bau-mannii 6B92. Antimicrob. Agents Chemother. 44:196199.
32. Dubus, A.,, S. Normark,, M. Kania, and, M. G. Page. 1995. Role of asparagine 152 in catalysis of β-lactam hydrolysis by Escherichia coli AmpC β-lactamase studied by site-directed mutagenesis. Biochemistry 34:77577764.
33. Franceschini, N.,, L. Boschi,, S. Pollini,, R. Herman,, M. Perilli,, M. Galleni,, J. M. Frere,, G. Amicosante, and, G. M. Rossolini. 2001. Characterization of OXA-29 from Legionella (Fluori-bacter) gormanii: molecular class D β-lactamase with unusual properties. Antimicrob. Agents Chemother. 45:35093516.
34. Girlich, D.,, T. Naas, and, P. Nordmann. 2004. Biochemical characterization of the naturally occurring oxacillinase OXA-50 of Pseudomonas aeruginosa. Antimicrob. Agents Chemother. 48:20432048.
35. Girlich, D.,, T. Naas, and, P. Nordmann. 2004. OXA-60, a chromosomal, inducible, and imipenem-hydrolyzing class D β-lactamase from Ralstonia pickettii. Antimicrob. Agents Chemother. 48:42174225.
36. Giuliani, F.,, J. D. Docquier,, M. L. Riccio,, L. Pagani, and, G. M. Rossolini. 2005. OXA-46, a new class D beta-lactamase of narrow substrate specificity encoded by a blaVIM-1-containing integron from a Pseudomonas aeruginosa clinical isolate. Antimicrob. Agents Chemother. 49:19731980.
37. Golemi, D.,, L. Maveyraud,, S. Vakulenko,, J.-P. Samama, and, S. Mobashery. 2001. Critical involvement of a carbamylated Lys in catalytic function of class D β-lactamases. Proc. Natl. Acad. Sci. USA 98:1428014285.
38. Hall, L. M.,, D. M. Livermore,, D. Gur,, M. Akova, and, H. E. Akalin. 1993. OXA-11, an extended-spectrum variant of OXA-10 (PSE-2) β-lactamase from Pseudomonas aeruginosa. Antimicrob. Agents Chemother. 37:16371644.
39. Heinze-Krauss, I.,, P. Angehrn,, R. L. Charnas,, K. Gubernator,, E. M. Gutknecht,, C. Hubschwerlen,, M. Kania,, C. Oefner,, M. G. Page,, S. Sogabe,, J. L. Specklin, and, F. Win-kler. 1998. Structure-based design of β-lactamase inhibitors. 1. Synthesis and evaluation of bridged monobactams. J. Med. Chem. 41:39613971.
40. Heritier, C.,, L. Poirel, and, P. Nordmann. 2004. Genetic and biochemical characterization of a chromosome-encoded carbapenem-hydrolyzing ambler class D β-lactamase from Shewanella algae. Antimicrob. Agents Chemother. 48:16701675.
41. Heritier, C.,, L. Poirel,, D. Aubert, and, P. Nordmann. 2003. Genetic and functional analysis of the chromosome-encoded carbapenem-hydrolyzing oxacillinase OXA-40 of Acineto-bacter baumannii. Antimicrob. Agents Chemother. 47:268273.
42. Heritier, C.,, L. Poirel,, P. E. Fournier,, J. M. Claverie,, D. Raoult, and, P. Nordmann. 2005. Characterization of the naturally occurring oxacillinase of Acinetobacter baumannii. Antimicrob. Agents Chemother. 49:41744179.
43. Heritier, C.,, L. Poirel,, T. Lambert, and, P. Nordmann. 2005. Contribution of acquired carbapenem-hydrolyzing oxacillinases to carbapenem resistance in Acinetobacter baumannii. Antimicrob. Agents Chemother. 49:31983202.
44. Huovinen, S.,, P. Huovinen, and, G. A. Jacoby. 1988. Detection of plasmid-mediated β-lactamases with DNA probes. Antimicrob. Agents Chemother. 32:175179.
45. Joris, B.,, P. Ledent,, O. Dideberg,, E. Fonze,, J. Lamotte-Brasseur,, J. A. Kelly,, J. M. Ghuysen, and, J. M. Frere. 1991. Comparison of the sequences of class A β-lactamases and of the secondary structure elements of penicillin-recognizing proteins. Antimicrob. Agents Chemother. 35:22942301.
46. Keith, K. E.,, P. C. Oyston,, B. Crossett,, N. F. Fairweather,, R. W. Titball,, T. R. Walsh, and, K. A. Brown. 2005. Functional characterization of OXA-57, a class D beta-lactamase from Burkholderia pseudomallei. Antimicrob. Agents Chemother. 49:16391641.
47. Kerff, F.,, E. Fonze, and, P. Charlier. 2002. Structure of the OXA 2 b-Lactamase. Eighth β-Lactamase Workshop, Holy Island, Northumberland, United Kingdom.
48. Knox, J. R., and, P. C. Moews. 2004. β-Lactamase of Bacillus licheniformis 749/C. Refinement at 2 A resolution and analysis of hydration. Antimicrob. Agents Chemother. 48:20432048.
49. Ledent, P.,, X. Raquet,, B. Joris,, J. Van Beeumen, and, J.-M. Frère. 1993. A comparative study of class-D β-lactamases. Biochem. J. 292:555562.
50. Ledent, P., and, J.-M. Frère. 1993. Substrate-induced inactivation of the OXA2 β-lactamase. Biochem. J. 295:871878.
51. Livermore, D. M. 2003. The threat from the pink corner. Ann. Med. 35:226234.
52. Livermore, D. M. 2002. Multiple mechanisms of antimicrobial resistance in Pseudomonas aeruginosa: our worst nightmare? Clin. Infect. Dis. 34:634640.
53. Livermore, D. M. 1995. β-Lactamases in laboratory and clinical resistance. Clin. Microbiol. Rev. 8:557584.
54. Livermore, D. M.,, J. P. Maskell, and, J. D. Williams. 1984. Detection of PSE-2 β-lactamase in enterobacteria. Antimi-crob. Agents Chemother. 25:268272.
55. Livermore, D. M.,, T. G. Winstanley, and, K. P. Shannon. 2001. Interpretative reading: recognizing the unusual and inferring resistance mechanisms from resistance phenotypes. J. Antimicrob. Chemother. 48(Suppl. 1):87102.
56. Lopez-Otsoa, F.,, L. Gallego,, K. J. Towner,, L. Tysall,, N. Woodford, and, D. M. Livermore. 2002. Endemic carbape-nem resistance associated with OXA-40 carbapenemase among Acinetobacter baumannii isolates from a hospital in northern Spain. J. Clin. Microbiol. 40:47414743.
57. Matagne, A.,, J. Lamotte-Brasseur, and, J. M. Frere. 1998. Catalytic properties of class A β-lactamases: efficiency and diversity. Biochem. J. 330:581598.
58. Matthew, M. 1978. Properties of the β-lactamase specified by the Pseudomonas plasmid R151. FEMS Microbiol. Lett. 4:241244.
59. Maveyraud, L.,, D. Golemi,, L. P. Kotra,, S. Tranier,, S. Vakulenko,, S. Mobashery, and, J.-P. Samama. 2000. Insights into class D β-lactamases are revealed by the crystal structure of the OXA10 enzyme from Pseudomonas aeruginosa. Structure 8:12891298.
60. Maveyraud, L.,, D. Golemi-Kotra,, A. Ishiwata,, O. Meroueh,, S. Mobashery, and, J.-P. Samama. 2002. High-resolution x-ray structure of an acyl-enzyme species for the class D OXA-10 β-lactamase. J. Am. Chem. Soc. 124:24612465.
61. Medeiros, A. A.,, M. Cohenford, and, G. A. Jacoby. 1985. Five novel plasmid-determined β-lactamases. Antimicrob. Agents Chemother. 27:715719.
62. Merkier, A. K., and, D. Centron. 2006. bla(OXA-51)-type beta-lactamase genes are ubiquitous and vary within a strain in Acinetobacter baumannii. Int. J. Antimicrob. Agents 28:110113.
63. Monaghan, C.,, S. Holland, and, J. W. Dale. 1982. The interaction of anthraquinone dyes with the plasmid-mediated OXA-2 β-lactamase. Biochem. J. 205:413417.
64. Mugnier, P.,, I. Podglajen,, F. W. Goldstein, and, E. Collatz. 1998. Carbapenems as inhibitors of OXA-13, a novel, integron-encoded β-lactamase in Pseudomonas aeruginosa. Microbiology 144(Pt 4):10211031.
65. Mulvey, M. R.,, D. A. Boyd,, L. Baker,, O. Mykytczuk,, E. M. Reis,, M. D. Asensi,, D. P. Rodrigues, and, L. K. Ng. 2004. Characterization of a Salmonella enterica serovar Agona strain harbouring a class 1 integron containing novel OXA-type β-lactamase (blaOXA-53) and 6′-N-aminoglycoside acetyl-transferase genes [aac(6′)-I30]. J. Antimicrob. Chemother. 54:354359.
66. Naas, T., and, P. Nordmann. 1999. OXA-type β-lactamases. Curr. Pharm. Des. 5:865879.
67. Navia, M. M.,, J. Ruiz, and, J. Vila. 2002. Characterization of an integron carrying a new class D β-lactamase (OXA-37) in Acinetobacter baumannii. Microb. Drug Resist. 8:261265.
68. Niumsup, P., and, V. Wuthiekanun. 2002. Cloning of the class D β-lactamase gene from Burkholderia pseudomallei and studies on its expression in ceftazidime-susceptible and -resistant strains. J. Antimicrob. Chemother. 50:445455.
69. Nordmann, P.,, L. Poirel,, M. Kubina,, A. Casetta, and, T. Naas. 2000. Biochemical-genetic characterization and distribution of OXA-22, a chromosomal and inducible class D β-lactamase from Ralstonia (Pseudomonas) pickettii. Antimicrob. Agents Chemother. 44:22012204.
70. Oefner, C.,, A. D’Arcy,, J. J. Daly,, K. Gubernator,, R. L. Charnas,, I. Heinze,, C. Hubschwerlen, and, F. K. Winkler. 1990. Refined crystal structure of β-lactamase from Citrobacter freundii indicates a mechanism for β-lactam hydrolysis. Nature 343:284288.
71. Osuna, J.,, H. Viadiu,, A. L. Fink, and, X. Soberon. 1995. Substitution of Asp for Asn at position 132 in the active site of TEM β-lactamase. Activity toward different substrates and effects of neighboring residues. J. Biol. Chem. 270:775780.
72. Paetzel, M.,, F. Danel,, L. Castro,, S. C. Mosimann,, M. G. P. Page, and, N. C. J. Strynadka. 2000. Crystal structure of the class D β-lactamase OXA-10. Nat. Struct. Biol. 7:918925.
73. Pernot, L.,, F. Frenois,, T. Rybkine,, G. L’Hermite,, S. Petrella,, J. Delettre,, V. Jarlier,, E. Collatz, and, W. Sougakoff. 2001. Crystal structures of the class D β-lactamase OXA-13 in the native form and in complex with meropenem. J. Mol. Biol. 310:859874.
74. Philippon, L. N.,, T. Naas,, A.-T. Bouthors,, V. Barakett, and, P. Nordmann. 1997. OXA-18, a class D clavulanic acid-inhibited extended-spectrum β-lactamase from Pseudomonas aeruginosa. Antimicrob. Agents Chemother. 41:21882195.
75. Poirel, L.,, C. Heritier, and, P. Nordmann. 2004. Chromosome-encoded ambler class D β-lactamase of Shewanella oneidensis as a progenitor of carbapenem-hydrolyzing oxacillinase. Antimicrob. Agents Chemother. 48:348351.
76. Poirel, L.,, C. Heritier,, V. Tolun, and, P. Nordmann. 2004. Emergence of oxacillinase-mediated resistance to imipenem in Klebsiella pneumoniae. Antimicrob. Agents Chemother. 48:1522.
77. Poirel, L.,, D. Girlich,, T. Naas, and, P. Nordmann. 2001. OXA-28, an extended-spectrum variant of OXA-10 β-lactamase from Pseudomonas aeruginosa and its plasmid-and integron-located gene. Antimicrob. Agents Chemother. 45:447453.
78. Poirel, L.,, P. Gerome,, C. De Champs,, J. Stephanazzi,, T. Naas, and, P. Nordmann. 2002. Integron-located oxa-32 gene cassette encoding an extended-spectrum variant of OXA-2 β-lactamase from Pseudomonas aeruginosa. Antimicrob. Agents Chemother. 46:566569.
79. Poirel, L.,, S. Marque,, C. Heritier,, C. Segonds,, G. Chabanon, and, P. Nordmann. 2005. OXA-58, a novel class D β-lactamase involved in resistance to carbapenems in Acineto-bacter baumannii. Antimicrob. Agents Chemother. 49:202208.
80. Poirel, L.,, M. Magalhaes,, M. Lopes, and, P. Nordmann. 2004. Molecular analysis of metallo-β-lactamase gene bla(SPM-1)-surrounding sequences from disseminated Pseudomonas aeruginosa isolates in Recife, Brazil. Antimicrob. Agents Chemother. 48:14061409.
81. Rasmussen, B. A.,, D. Keeney,, Y. Yang, and, K. Bush. 1994. Cloning and expression of a cloxacillin-hydrolyzing enzyme and a cephalosporinase from Aeromonas sobria AER 14M in Escherichia coli: requirement for an E. coli chromosomal mutation for efficient expression of the class D enzyme. Antimicrob. Agents Chemother. 38:20782085.
82. Sanschagrin, F.,, F. Couture, and, R. C. Levesque. 1995. Primary structure of OXA-3 and phylogeny of oxacillin-hydrolyzing class D β-lactamases. Antimicrob. Agents Chemother. 39:887893.
83. Scaife, W.,, H. K. Young,, R. H. Paton, and, S. G. Amyes. 1995. Transferable imipenem-resistance in Acinetobacter species from a clinical source. J. Antimicrob. Chemother. 36:585586.
84. Schneider, I.,, A. M. Queenan, and, A. Bauernfeind. 2006. Novel carbapenem-hydrolyzing oxacillinase OXA-62 from Pandoraea pnomenusa. Antimicrob. Agents Chemother. 50:13301335.
85. Simpson, I. N.,, S. J. Plested,, M. J. Budin-Jones,, J. Lees,, R. W. Hedges, and, G. A. Jacoby. 1983. Characterisation of a novel plasmid-mediated β-lactamase and its contribution to β-lactam resistance in Pseudomonas aeruginosa. FEMS Microbiol. Lett. 19:2327.
86. Sun, T.,, M. Nukaga,, K. Mayama,, E. H. Braswell, and, J. R. Knox. 2003. Comparison of β-lactamases of classes A and D: 1.5-A crystallographic structure of the class D OXA-1 oxacillinase. Protein Sci. 12:8291.
87. Sun, T.,, M. Nukaga,, K. Mayama,, G. V. Crichlow,, A. P. Kuzin, and, J. R. Knox. 2001. Crystallization and preliminary X-ray study of OXA-1, a class D β-lactamase. Acta Crystallogr. D Biol. Crystallogr. 57:19121914.
88. Sykes, R. B., and, M. Matthew. 1976. The β-lactamases of gram-negative bacteria and their role in resistance to β-lactam antibiotics. J. Antimicrob. Chemother. 2:115157.
89. Toleman, M. A.,, K. Rolston,, R. N. Jones, and, T. R. Walsh. 2003. Molecular and biochemical characterization of OXA-45, an extended-spectrum class 2d’ β-lactamase in Pseudomonas aeruginosa. Antimicrob. Agents Chemother. 47:28592863.
90. Tsakris, A.,, A. Ikonomidis,, N. Spanakis,, S. Pournaras, and, K. Bethimouti. 2007. Identification of a novel blaOXA-51 variant, blaOXA-92, from a clinical isolate of Acinetobacter baumannii. Clin. Microb. Infect. 13:348349.
91. Turton, J. F.,, M. E. Ward,, N. Woodford,, M. E. Kaufmann,, R. Pike,, D. M. Livermore, and, T. L. Pitt. 2006. The role of ISAba1 in expression of OXA carbapenemase genes in Acinetobacter baumannii. FEMS Microbiol. Lett. 258:7277.
92. Vahaboglu, H.,, F. Coskunkan,, O. Tansel,, R. Ozturk,, N. Sahin,, I. Koksal,, B. Kocazeybek,, M. Tatman-Otkun,, H. Leblebicioglu,, M. A. Ozinel,, H. Akalin,, S. Kocagoz, and, V. Korten. 2001. Clinical importance of extended-spectrum β-lactamase (PER-1-type)-producing Acinetobacter spp. and Pseudomonas aeruginosa strains. J. Med. Microbiol. 50:642645.
93. Vahaboglu, H.,, R. Ozturk,, H. Akbal,, S. Saribas,, O. Tansel, and, F. Coskunkan. 1998. Practical approach for detection and identification of OXA-10-derived ceftazidime-hydrolyzing extended-spectrum β-lactamases. J. Clin. Micro-biol. 36:827829.
94. Voha, C.,, J. D. Docquier,, G. M. Rossolini, and, T. Fosse. 2006. Genetic and biochemical characterization of FUS-1 (OXA-85), a narrow-spectrum class D beta-lactamase from Fusobacterium nucleatum subsp. polymorphum. Antimi-crob. Agents Chemother. 50:26732679.
95. Waley, S. G. 1991. The kinetics of substrate-induced inacti-vation. Biochem. J. 279:8794.
96. Walther-Rasmussen, J., and, N. Høiby. 2006. OXA-type carbapenemases. J. Antimicrob. Chemother. 57:373383.
97. Woodford, N.,, M. J. Ellington,, J. M. Coelho,, J. F. Turton,, M. E. Ward,, S. Brown,, S. G. Amyes, and, D. M. Livermore. 2006. Multiplex PCR for genes encoding prevalent OXA carbapenemases in Acinetobacter spp. Int. J. Antimicrob. Agents 27:351353.
98. Yang, Y., and, K. Bush. 1995. Oxacillin hydrolysis by the LCR-1 β-lactamase. Antimicrob. Agents Chemother. 39: 1209.
99. Zhu, Y. F.,, I. H. Curran,, B. Joris,, J. M. Ghuysen, and, J. O. Lampen. 1990. Identification of BlaR, the signal transducer for β-lactamase production in Bacillus licheniformis, as a penicillin-binding protein with strong homology to the OXA-2 β-lactamase (class D) of Salmonella typhimurium. J. Bacteriol. 172:11371141.

Tables

Generic image for table
Table 11.1

Conserved elements of transpeptidases and serine β-lactamases

Citation: Danel F, Page M, Livermore D. 2007. Class D β-Lactamases, p 163-194. In Bonomo R, Tolmasky M (ed), Enzyme-Mediated Resistance to Antibiotics. ASM Press, Washington, DC. doi: 10.1128/9781555815615.ch11
Generic image for table
Table 11.2

Class D β-lactamases: pI, original host, and genetic location

Citation: Danel F, Page M, Livermore D. 2007. Class D β-Lactamases, p 163-194. In Bonomo R, Tolmasky M (ed), Enzyme-Mediated Resistance to Antibiotics. ASM Press, Washington, DC. doi: 10.1128/9781555815615.ch11
Generic image for table
Table 11.3

Amino acid similarity among class D β-lactamases and homology group

Citation: Danel F, Page M, Livermore D. 2007. Class D β-Lactamases, p 163-194. In Bonomo R, Tolmasky M (ed), Enzyme-Mediated Resistance to Antibiotics. ASM Press, Washington, DC. doi: 10.1128/9781555815615.ch11
Generic image for table
Table 11.4

Amino acid differences between OXA-10 β-lactamase and its close relatives (homology group I)

Citation: Danel F, Page M, Livermore D. 2007. Class D β-Lactamases, p 163-194. In Bonomo R, Tolmasky M (ed), Enzyme-Mediated Resistance to Antibiotics. ASM Press, Washington, DC. doi: 10.1128/9781555815615.ch11
Generic image for table
Table 11.5

Amino acid differences among enzymes closely related to OXA-2 β-lactamase (homology group II)

Citation: Danel F, Page M, Livermore D. 2007. Class D β-Lactamases, p 163-194. In Bonomo R, Tolmasky M (ed), Enzyme-Mediated Resistance to Antibiotics. ASM Press, Washington, DC. doi: 10.1128/9781555815615.ch11
Generic image for table
Table 11.6

Molecular masses of class D β-lactamases: evidence for dimerization

Citation: Danel F, Page M, Livermore D. 2007. Class D β-Lactamases, p 163-194. In Bonomo R, Tolmasky M (ed), Enzyme-Mediated Resistance to Antibiotics. ASM Press, Washington, DC. doi: 10.1128/9781555815615.ch11
Generic image for table
Table 11.7

Kinetic parameters for homology group I class D β-lactamases (part 1)

Citation: Danel F, Page M, Livermore D. 2007. Class D β-Lactamases, p 163-194. In Bonomo R, Tolmasky M (ed), Enzyme-Mediated Resistance to Antibiotics. ASM Press, Washington, DC. doi: 10.1128/9781555815615.ch11
Generic image for table
Table 11.7

Kinetic parameters for homology group I class D β-lactamases (part 2)

Citation: Danel F, Page M, Livermore D. 2007. Class D β-Lactamases, p 163-194. In Bonomo R, Tolmasky M (ed), Enzyme-Mediated Resistance to Antibiotics. ASM Press, Washington, DC. doi: 10.1128/9781555815615.ch11
Generic image for table
Table 11.7

Kinetic parameters for homology group I class D β-lactamases (part 3)

Citation: Danel F, Page M, Livermore D. 2007. Class D β-Lactamases, p 163-194. In Bonomo R, Tolmasky M (ed), Enzyme-Mediated Resistance to Antibiotics. ASM Press, Washington, DC. doi: 10.1128/9781555815615.ch11
Generic image for table
Table 11.8

Relative hydrolysis rates for class D β-lactamases

Citation: Danel F, Page M, Livermore D. 2007. Class D β-Lactamases, p 163-194. In Bonomo R, Tolmasky M (ed), Enzyme-Mediated Resistance to Antibiotics. ASM Press, Washington, DC. doi: 10.1128/9781555815615.ch11
Generic image for table
Table 11.9

Kinetic parameters for homology group II, III and V class D β-lactamases

Citation: Danel F, Page M, Livermore D. 2007. Class D β-Lactamases, p 163-194. In Bonomo R, Tolmasky M (ed), Enzyme-Mediated Resistance to Antibiotics. ASM Press, Washington, DC. doi: 10.1128/9781555815615.ch11
Generic image for table
Table 11.10

Kinetic parameters for class D enzymes belonging to homology group IV

Citation: Danel F, Page M, Livermore D. 2007. Class D β-Lactamases, p 163-194. In Bonomo R, Tolmasky M (ed), Enzyme-Mediated Resistance to Antibiotics. ASM Press, Washington, DC. doi: 10.1128/9781555815615.ch11
Generic image for table
Table 11.11

Kinetic parameters for homology group VI class D β-lactamases

Citation: Danel F, Page M, Livermore D. 2007. Class D β-Lactamases, p 163-194. In Bonomo R, Tolmasky M (ed), Enzyme-Mediated Resistance to Antibiotics. ASM Press, Washington, DC. doi: 10.1128/9781555815615.ch11

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error