1887

Chapter 17 : Conjugative Transposons

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in
Zoomout

Conjugative Transposons, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555815615/9781555813031_Chap17-1.gif /docserver/preview/fulltext/10.1128/9781555815615/9781555813031_Chap17-2.gif

Abstract:

Transfer of conjugative transposons requires cell-to-cell contact and occurs at relatively low frequency. However, the host range of the various elements is, in some cases, quite diverse. In this chapter, the author reviews the current state of knowledge of the epidemiology, resistance profiles, and transposition mechanisms of the major types of characterized conjugative transposons found in human pathogenic bacteria. A recently published survey directly implicates conjugative transposons in the steady and significant rise in erythromycin and tetracycline resistance in species over the past three decades. Unlike Tn916 family transposons, conjugative transposons can mobilize coresident nonconjugative transposons. conjugative transposons can be transferred in vitro into distantly related species, such as . The Tn916 family elements are the most thoroughly studied and characterized of the conjugative transposons. The single "family" of conjugative transposons described to date is the CTnDOT family. This family is characterized by the presence of right and left ends that differ from each other but are conserved within the family. The , , and genes are also involved in excision, presumably through a regulatory role. and are required for expression of . Expression of increases transcription of , thereby increasing excision of CTnDOT. Recent advances in understanding the structural details of λ and related integrase interactions with DNA targets and cooperative proteins have the potential to stimulate intelligent, structure-based design of such chemical inhibitors.

Citation: Rice L. 2007. Conjugative Transposons, p 271-284. In Bonomo R, Tolmasky M (ed), Enzyme-Mediated Resistance to Antibiotics. ASM Press, Washington, DC. doi: 10.1128/9781555815615.ch17

Key Concept Ranking

Integrative and Conjugative Elements
0.6226405
Human Pathogenic Bacteria
0.4265054
0.6226405
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of Figure 17.1
Figure 17.1

Graphic depiction of 65-kb composite transposon Tn from . Tn is a conjugative element that transfers between enterococci at low frequency and integrates in most cases into the recipient chromosome in a site-specific manner. Within Tn lies a typical Tn like conjugative transposon (Tn) that can transfer by itself or with the larger element. When transferring by itself, Tn is relatively nonselective in its insertion sites. Regions of different lineages are connected within Tn by different insertion elements (see the text). Reprinted with permission from reference .

Citation: Rice L. 2007. Conjugative Transposons, p 271-284. In Bonomo R, Tolmasky M (ed), Enzyme-Mediated Resistance to Antibiotics. ASM Press, Washington, DC. doi: 10.1128/9781555815615.ch17
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 17.2
Figure 17.2

(Top) Map of Tn. Identity of the specific ORFs and their directions of transcription are identified below the map, as are the functions of the regions, where that is known. The origin of transfer is indicated () at the right-hand end of the transposon. Reprinted with permission from reference . (Bottom) Graphic depiction of expression of ORFs in the left end of Tn with or without exposure to tetracycline. Black arrows represent genes that are expressed under the identified conditions. In the absence of tetracycline, expression of negatively regulates transcription of and . Transcription from the promoter (upstream of ) is also terminated within . In the presence of tetracycline, transcription from the promoter moves through the palindromes within and into (M). Transcription then continues through (M), negatively regulating expression of the gene products of , which ultimately leads to transcription of and , which positively regulate their own transcription. This results in increased expression of and , stimulating excision and circularization. Once circularized, transcription can continue through the newly formed joint and into the transfer genes found in the right-hand end of the transposon. Adapted from data published in reference .

Citation: Rice L. 2007. Conjugative Transposons, p 271-284. In Bonomo R, Tolmasky M (ed), Enzyme-Mediated Resistance to Antibiotics. ASM Press, Washington, DC. doi: 10.1128/9781555815615.ch17
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 17.3
Figure 17.3

(Top) Comparison of structures of conjugative transposons CTnDOT and CTnERL. The transposons are identical except for the insertion of the region in CTnDOT. The individual ORFs that make up the region of CTnDOT are detailed. Reprinted with permission from reference . (Bottom) Structure of CTnGERM1, a non-CTnDOT-family conjugative transposon. Reprinted with permission from reference 61.

Citation: Rice L. 2007. Conjugative Transposons, p 271-284. In Bonomo R, Tolmasky M (ed), Enzyme-Mediated Resistance to Antibiotics. ASM Press, Washington, DC. doi: 10.1128/9781555815615.ch17
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 17.4
Figure 17.4

Similar regions found within CTnR391 conjugation region (identical to corresponding region of SXT) and other transferable elements from gram-negative bacteria. Reprinted with permission from reference .

Citation: Rice L. 2007. Conjugative Transposons, p 271-284. In Bonomo R, Tolmasky M (ed), Enzyme-Mediated Resistance to Antibiotics. ASM Press, Washington, DC. doi: 10.1128/9781555815615.ch17
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 17.5
Figure 17.5

Comparison of clostridial conjugative transposons Tn and Tn. Differences include the ends (where , and ) are missing from Tn. The ends of the transposons also differ. Tn also contains a group II intron within , a serine recombinase () gene in place of and , and two additional ORFs () upstream of the (M) gene. Reprinted with permission from reference .

Citation: Rice L. 2007. Conjugative Transposons, p 271-284. In Bonomo R, Tolmasky M (ed), Enzyme-Mediated Resistance to Antibiotics. ASM Press, Washington, DC. doi: 10.1128/9781555815615.ch17
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555815615.ch17
1. Adams, V.,, D. Lyras,, K. A. Farrow, and, J. I. Rood. 2002. The clostridial mobilisable transposons. Cell. Mol. Life Sci. 59:20332043.
2. Ayoubi, P.,, A. O. Kilic, and, M. N. Vijayakumar. 1991. Tn5253, the pneumococcal omega (cat tet) BM 6001 element, is a composite structure of two conjugative transposons, Tn5251 and Tn5252. J. of Bacteriol. 173:16171622.
3. Beaber, J. W.,, V. Burrus,, B. Hochhut, and, M. K. Waldor. 2002. Comparison of SXT and R391, two conjugative integrating elements: definition of a genetic backbone for the mobilization of resistance determinants. Cell. Mol. Life Sci. 59:20652070.
4. Beaber, J. W.,, B. Hochhut, and, M. K. Waldor. 2002. Genomic and functional analyses of SXT, an integrating antibiotic resistance gene transfer element derived from Vibrio cholerae. J. Bacteriol. 184:42594269.
5. Bedzyk, L. A.,, N. B. Shoemaker,, K. E. Young, and, A. A. Salyers. 1992. Insertion and excision of Bacteroides conjugative chromosomal elements. J. Bacteriol. 174:16672.
6. Boltner, D.,, C. MacMahon,, J. T. Pembroke,, P. Strike, and, A. M. Osborn. 2002. R391: a conjugative integrating mosaic comprised of phage, plasmid, and transposon elements. J. Bacteriol. 184:51585169.
7. Burrus, V.,, G. Pavlovic,, B. Decaris, and, G. Guedon. 2002. Conjugative transposons: the tip of the iceberg. Mol. Microbiol. 46:601610.
8. Caillaud, F., and, P. Courvalin. 1987. Nucleotide sequence of the ends of conjugative shuttle transposon Tn1545. Mol. Gen. Genet. 209:110115.
9. Caparon, M. G., and, J. R. Scott. 1989. Excision and insertion of the conjugative transposon Tn916 involves a novel recombination mechanism. Cell 59:10271034.
10. Carias, L. L.,, S. D. Rudin,, C. J. Donskey, and, L. B. Rice. 1998. Genetic linkage and cotransfer of a novel, vanB-containing transposon (Tn5382) and a low-affinity penicillin-binding protein 5 gene in a clinical vancomycin-resistant Enterococcus faecium isolate. J. Bacteriol. 180:44264434.
11. Celli, J., and, P. Trieu-Cuot. 1998. Circularization of Tn916 is required for expression of the transposon-encoded transfer functions: characterization of long tetracycline-inducible transcripts reading through the attachment site. Mol. Micro-biol. 28:103117.
12. Cheng, Q.,, B. J. Paszkiet,, N. B. Shoemaker,, J. F. Gardner, and, A. A. Salyers. 2000. Integration and excision of a Bacteroides conjugative transposon, CTnDOT. J. Bacteriol. 182:40354043.
13. Cheng, Q.,, Y. Sutanto,, N. B. Shoemaker,, J. F. Gardner, and, A. A. Salyers. 2001. Identification of genes required for excision of CTnDOT, a Bacteroides conjugative transposon. Mol. Microbiol. 41:625632.
14. Clewell, D. B.,, E. Senghas,, J. M. Jones,, S. E. Flannagan,, M. Yamamoto, and, C. Gawron-Burke. 1986. Transposition in Streptococcus: structural and genetic properties of the conjugative transposon Tn916. Soc. Gen. Microbiol. 43:4358.
15. Clewell, D. B.,, S. E. Flannagan,, L. O. Zitzow,, Y. A. Su,, P. He,, E. Senghas, and, K. E. Weaver. 1991. Properties of conjugative transposon Tn916, p. 3944. In G. M. Dunny,, P. Patrick, and, L. L. Cleary (ed.), Genetics and Molecular Biology of Streptococci, Lactococci, and Enterococci. American Society for Microbiology, Washington, D.C.
16. Coetzee, J. N.,, N. Datta, and, R. W. Hedges. 1972. R factors from Proteus rettgeri. J. Gen. Microbiol. 72:543552.
17. Courvalin, P., and, C. Carlier. 1987. Tn1545: a conjugative shuttle transposon. Mol. Gen. Genet. 206:259264.
18. Doucet-Populaire, F.,, P. Trieu-Cuot,, I. Dosbaa,, A. Andremont, and, P. Courvalin. 1991. Inducible transfer of conjuga-tive transposon Tn1545 from Enterococcus faecalis to Listeria monocytogenes in the digestive tracts of gnotobiotic mice. Antimicrob. Agents Chemother. 35:185187.
19. Flannagan, S. E., and, D. B. Clewell. 1991. Conjugative transfer of Tn916 in Enterococcus faecalis: trans activation of homologous transposons. J. Bacteriol. 173:71367141.
20. Flannagan, S. E.,, L. A. Zitzow,, Y. A. Su, and, D. B. Clewell. 1994. Nucleotide sequence of the 18-kb conjugative transposon Tn916 from Enterococcus faecalis. Plasmid 32:350354.
21. Garnier, F.,, S. Taourit,, P. Glaser,, P. Courvalin, and, M. Galimand. 2000. Characterization of transposon Tn1549, conferring VanB-type resistance in Enterococcus spp. Microbiology 146:14811489.
22. Gawron-Burke, C., and, D. B. Clewell. 1982. A transposon in Streptococcus faecalis with fertility properties. Nature 300:281284.
23. Gorfe, A. A., and, I. Jelesarov. 2003. Energetics of sequence-specific protein-DNA association: computational analysis of integrase Tn916 binding to its target DNA. Biochemistry 42:1156811576.
24. Hinerfeld, D., and, G. Churchward. 2001. Specific binding of integrase to the origin of transfer (oriT) of the conjugative transposon Tn916. J. Bacteriol. 183:29472951.
25. Hinerfeld, D., and, G. Churchward. 2001. Xis protein of the conjugative transposon Tn916 plays dual opposing roles in transposon excision. Mol. Microbiol. 41:14591467.
26. Hochhut, B.,, J. W. Beaber,, R. Woodgate, and, M. K. Waldor. 2001. Formation of chromosomal tandem arrays of the SXT element and R391, two conjugative chromosomally integrating elements that share an attachment site. J. Bacteriol. 183:11241132.
27. Hochhut, B.,, Y. Lotfi,, D. Mazel,, S. M. Faruque,, R. Woodgate, and, M. K. Waldor. 2001. Molecular analysis of antibiotic resistance gene clusters in Vibrio cholerae O139 and O1 SXT constins. Antimicrob. Agents. Chemother. 45:29913000.
28. Hochhut, B., and, M. K. Waldor. 1999. Site-specific integration of the conjugal Vibrio cholerae SXT element into prfC. Mol. Microbiol. 32:99110.
29. Jaworski, D. D., and, D. B. Clewell. 1994. Evidence that coupling sequences play a frequency-determining role in conjugative transposition of Tn916 in Enterococcus faecalis. J. Bacteriol. 176:33283335.
30. Jaworski, D. D., and, D. B. Clewell. 1995. A functional origin of transfer (oriT) on the conjugative transposon Tn916. J. Bacteriol. 177:66446651.
31. Lu, F., and, G. Churchward. 1994. Conjugative transposition: Tn916 integrase contains two independent DNA binding domains that recognize different DNA sequences. EMBO J. 13:15411548.
32. Lyras, D., and, J. I. Rood. 2000. Transposition of Tn4451 and Tn4453 involves a circular intermediate that forms a promoter for the large resolvase, TnpX. Mol. Microbiol. 38:588601.
33. Manganelli, R.,, S. Ricci, and, G. Pozzi. 1997. The joint of Tn916 circular intermediates is a homoduplex in Enterococcus faecalis. Plasmid 38:7178.
34. Marra, D.,, B. Pethel,, G. G. Churchward, and, J. R. Scott. 1999. The frequency of conjugative transposition of Tn916 is not determined by the frequency of excision. J. Bacteriol. 181:54145418.
35. Milev, S.,, A. A. Gorfe,, A. Karshikoff,, R. T. Clubb,, H. R. Bosshard, and, I. Jelesarov. 2003. Energetics of sequence-specific protein-DNA association: binding of integrase Tn916 to its target DNA. Biochemistry 42:34813491.
36. Milev, S.,, A. A. Gorfe,, A. Karshikoff,, R. T. Clubb,, H. R. Bosshard, and, I. Jelesarov. 2003. Energetics of sequence-specific protein-DNA association: conformational stability of the DNA binding domain of integrase Tn916 and its cognate DNA duplex. Biochemistry 42:34923502.
37. Mullany, P.,, A. P. Roberts, and, H. Wang. 2002. Mechanism of integration and excision in conjugative transposons. Cell. Mol. Life Sci. 59:20172022.
38. Mullany, P.,, M. Wilks, and, S. Tabaqchali. 1995. Transfer of macrolide-lincosamide-streptogramin B (MLS) resistance in Clostridium difficile is linked to a gene homologous with toxin A and is mediated by a conjugative transposon, Tn5398. J. Antimicrob. Chemother. 35:305315.
39. Oggioni, M. R.,, C. G. Dowson,, J. M. Smith,, R. Provvedi, and, G. Pozzi. 1996. The tetracycline resistance gene tet (M) exhibits mosaic structure. Plasmid 35:156163.
40. Pembroke, J. T.,, C. MacMahon, and, B. McGrath. 2002. The role of conjugative transposons in the Enterobacteriaceae. Cell. Mol. Life Sci. 59:20552064.
41. Pembroke, J. T., and, D. B. Murphy. 2000. Isolation and analysis of a circular form of the IncJ conjugative transpo-son-like elements, R391 and R997: implications for IncJ incompatibility. FEMS Microbiol. Lett. 187:133138.
42. Poyart-Salmeron, C.,, P. Trieu-Cuot,, C. Carlier, and, P. Courvalin. 1989. Molecular characterization of the two proteins involved in the excision of the conjugative transposon Tn1545: homologies with other site specific recombinases. EMBO J. 8:24252433.
43. Rice, L. B. 2000. Bacterial monopolists: the bundling and dissemination of antimicrobial resistance genes in gram-positive bacteria. Clin. Infect. Dis. 31:762769.
44. Rice, L. B. 1998. Tn916-family conjugative transposons and dissemination of antimicrobial resistance determinants. Antimicrob. Agents Chemother. 42:18711877.
45. Rice, L. B., and, L. L. Carias. 1998. Transfer of Tn5385, a composite, multiresistance element from Enterococcus faecalis. J. Bacteriol. 180:714721.
46. Rice, L. B.,, S. H. Marshall, and, L. L. Carias. 1992. Tn5381, a conjugative transposon identifiable as a circular form in Enterococcus faecalis. J. Bacteriol. 174:73087315.
47. Roberts, A. P.,, P. A. Johanesen,, D. Lyras,, P. Mullany, and, J. I. Rood. 2001. Comparison of Tn5397 from Clostridium difficile, Tn916 from Enterococcus faecalis and the CW459tet(M) element from Clostridium perfringens shows that they have similar conjugation regions but different insertion and excision modules. Microbiology 147:12431251.
48. Roberts, A. P.,, J. Pratten,, M. Wilson, and, P. Mullany. 1999. Transfer of a conjugative transposon, Tn5397 in a model oral biofilm. FEMS Microbiol. Lett. 177:6366.
49. Rudy, C. K.,, J. R. Scott, and, G. Churchward. 1997. DNA binding by the Xis protein of the conjugative transposon Tn916. J. Bacteriol. 179:25672572.
50. Scott, J. R., and, G. G. Churchward. 1995. Conjugative transposition. Annu. Rev. Microbiol. 49:367397.
51. Scott, J. R.,, P. A. Kirchman, and, M. G. Caparon. 1988. An intermediate in the transposition of the conjugative transpo-son Tn916. Proc. Natl. Acad. Sci. USA 85:48094813.
52. Scott, K. P. 2002. The role of conjugative transposons in spreading antibiotic resistance between bacteria that inhabit the gastrointestinal tract. Cell. Mol. Life Sci. 59:20712082.
53. Shoemaker, N. B.,, H. Vlamakis,, K. Hayes, and, A. A. Salyers. 2001. Evidence for extensive resistance gene transfer among Bacteroides spp. and among Bacteroides and other genera in the human colon. Appl. Environ. Microbiol. 67:561568.
54. Showsh, S. A., and, R. E. Andrews. 1992. Tetracycline enhances Tn916-mediated conjugal transfer. Plasmid 28:213224.
55. Smith, C. J., and, A. C. Parker. 1993. Identification of a circular intermediate in the transfer and transposition of Tn4555, a mobilizable transposon from Bacteroides spp. J. Bacteriol. 175:26822691.
56. Stevens, A. M.,, N. B. Shoemaker,, L.-H. Li, and, A. A. Salyers. 1993. Tetracycline regulation of genes on Bacteroides conju-gative transposons. J. Bacteriol. 175:61346141.
57. Taylor, K. L., and, G. Churchward. 1997. Specific DNA cleavage mediated by the integrase of conjugative transposon Tn916. J. Bacteriol. 179:11171125.
58. Wang, H., and, P. Mullany. 2000. The large resolvase TndX is required and sufficient for integration and excision of derivatives of the novel conjugative transposon Tn 5397. J. Bacteriol. 182:65776583.
59. Wang, H.,, A. P. Roberts,, D. Lyras,, J. I. Rood,, M. Wilks, and, P. Mullany. 2000. Characterization of the ends and target sites of the novel conjugative transposon Tn5397 from Clostridium difficile: excision and circularization is mediated by the large resolvase, TndX. J. Bacteriol. 182:37753783.
60. Wang, H.,, A. P. Roberts, and, P. Mullany. 2000. DNA sequence of the insertional hot spot of Tn916 in the Clos-tridium difficile genome and discovery of a Tn916-like element in an environmental isolate integrated in the same hot spot. FEMS Microbiol. Lett. 192:1520.
61. Wang, Y.,, G. R. Wang,, A. Shelby,, N. B. Shoemaker, and, A. A. Salyers. 2003. A newly discovered Bacteroides conjuga-tive transposon, CTnGERM1, contains genes also found in gram-positive bacteria. Appl. Environ. Microbiol. 69:45954603.
62. Warren, D.,, M. D. Sam,, K. Manley,, D. Sarkar,, S. Y. Lee,, M. Abbani,, J. M. Wojciak,, R. T. Clubb, and, A. Landy. 2003. Identification of the lambda integrase surface that interacts with Xis reveals a residue that is also critical for Int dimer formation. Proc. Natl. Acad. Sci. USA 100:81768181.
63. Whittle, G.,, B. D. Hund,, N. B. Shoemaker, and, A. A. Salyers. 2001. Characterization of the 13-kilobase ermF region of the Bacteroides conjugative transposon CTnDOT. Appl. Environ. Microbiol. 67:34883495.
64. Whittle, G.,, N. B. Shoemaker, and, A. A. Salyers. 2002. Characterization of genes involved in modulation of conjugal transfer of the Bacteroides conjugative transposon CTnDOT. J. Bacteriol. 184:38393847.
65. Whittle, G.,, N. B. Shoemaker, and, A. A. Salyers. 2002. The role of Bacteroides conjugative transposons in the dissemination of antibiotic resistance genes. Cell. Mol. Life Sci. 59:20442054.
66. Wojciak, J. M.,, D. Sarkar,, A. Landy, and, R. T. Clubb. 2002. Arm-site binding by lambda-integrase: solution structure and functional characterization of its amino-terminal domain. Proc. Natl. Acad. Sci. USA 99:34343439.

Tables

Generic image for table
Table 17.1

Conjugative transposons discussed in this chapter

Citation: Rice L. 2007. Conjugative Transposons, p 271-284. In Bonomo R, Tolmasky M (ed), Enzyme-Mediated Resistance to Antibiotics. ASM Press, Washington, DC. doi: 10.1128/9781555815615.ch17

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error