1887

Chapter 18 : The Dissemination of Antibiotic Resistance by Bacterial Conjugation

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in
Zoomout

The Dissemination of Antibiotic Resistance by Bacterial Conjugation, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555815615/9781555813031_Chap18-1.gif /docserver/preview/fulltext/10.1128/9781555815615/9781555813031_Chap18-2.gif

Abstract:

In areas where trachoma is highly endemic, that is, where about 70% of the population is infected, many individuals typically carry . Of these, 2% were originally macrolide resistant. After 2 weeks of trachoma treatment, the carrier rate for macrolide-resistant pneumococci rose to 50%, with an increase in the carrier rate of the more highly resistant strains. This study dramatically illustrates the potential for rapid in vivo selection of resistance. In this study it was also found that one chronically ill child was carrying a strain with very high level resistance. This chapter defines gene dissemination mechanisms and shows how and why conjugative mechanisms are the most proficient in multiple drug resistance (MDR) transfer. The plasmid is an interesting variation on the theme of MDR dissemination. The chapter reviews aspects of bacterial conjugation in terms of basic science and clinical relevance. A unifying model can be developed because the general mechanism for classical bacterial conjugation appears to be conserved in conjugative transposons. It is reasonable to suggest that bacterial conjugation is the greatest mover of genes in the microbial world and, in the clinical world, that these genes are often antibiotic resistance genes. The cycle of antibiotic resistance and pathogen genome sequencing are showcasing the prominent role of bacterial conjugation in gene dissemination.

Citation: Waters V. 2007. The Dissemination of Antibiotic Resistance by Bacterial Conjugation, p 285-312. In Bonomo R, Tolmasky M (ed), Enzyme-Mediated Resistance to Antibiotics. ASM Press, Washington, DC. doi: 10.1128/9781555815615.ch18

Key Concept Ranking

Mobile Genetic Elements
0.63244766
Bacterial Cell Wall
0.52114385
Bacterial Genetics
0.50768316
DNA Synthesis
0.429962
Type IV Secretion Systems
0.40443593
0.63244766
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of Figure 18.1
Figure 18.1

The cycle of antibiotic development and resistance. The cycle illustrates the inevitability of bacterial resistance. Rate 1 indicates the time required for the development of a new antibiotic, and Rate 2 is the rate at which clinical bacteria develop resistance to the new antibiotic.

Citation: Waters V. 2007. The Dissemination of Antibiotic Resistance by Bacterial Conjugation, p 285-312. In Bonomo R, Tolmasky M (ed), Enzyme-Mediated Resistance to Antibiotics. ASM Press, Washington, DC. doi: 10.1128/9781555815615.ch18
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 18.2
Figure 18.2

Genetic map of the RK2 plasmid. Conjugative transfer genes are clustered in two regions, Tra1 and Tra2. The transfer origin, , is a 250-bp noncoding region within Tra1. The genes for DNA processing and coupling are in Tra1, and the genes for the type IV secretion system are in Tra2. Also shown are the genes encoding resistance to tetracycline (Tc), kanamycin (Km), and ampicillin (Ap), the origin of vegetative replication (), and selected restriction sites.

Citation: Waters V. 2007. The Dissemination of Antibiotic Resistance by Bacterial Conjugation, p 285-312. In Bonomo R, Tolmasky M (ed), Enzyme-Mediated Resistance to Antibiotics. ASM Press, Washington, DC. doi: 10.1128/9781555815615.ch18
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 18.3
Figure 18.3

Conjugative transfer in cartoon form to illustrate cell-to-cell DNA transfer in concert with rolling-circle replication. Single-stranded DNA cleavage at precedes rolling-circle replication. Relaxation complex proteins TraI and TraJ are shown interacting with the inverted repeat and nick region, and the arrow indicates the nick site. Single-stranded binding (SSB) proteins are shown bound to the incoming single-stranded DNA.

Citation: Waters V. 2007. The Dissemination of Antibiotic Resistance by Bacterial Conjugation, p 285-312. In Bonomo R, Tolmasky M (ed), Enzyme-Mediated Resistance to Antibiotics. ASM Press, Washington, DC. doi: 10.1128/9781555815615.ch18
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 18.4
Figure 18.4

DNA transfer and DNA relaxation of RK2 mutations in the nick region and surrounding DNA. G-C–to–A-T transitions were generated by hydroxylamine mutagenesis. The wild-type strain is shown with high transfer proficiency and 100% relaxosome formation, and mutant donor base pair change and values are shown below for comparison. —to— conjugative transfer in a 1-h experiment was measured as the relative number of recipient cells that received DNA ( ).

Citation: Waters V. 2007. The Dissemination of Antibiotic Resistance by Bacterial Conjugation, p 285-312. In Bonomo R, Tolmasky M (ed), Enzyme-Mediated Resistance to Antibiotics. ASM Press, Washington, DC. doi: 10.1128/9781555815615.ch18
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 18.5
Figure 18.5

DNA nick regions, flanking sequences, and nick sites (…G ▾,…) of IncP and related sequences. Shown are sequences of gram-negative bacterial plasmids, including plant tumor-inducing plasmids, gram-positive plasmids, and phage ϕX174 DNA. All of the molecules represented by these sequences have rolling-circle replication originating at the nick site. Consensus nucleotides are in upper case, and four invariant nucleotides are in boldface.

Citation: Waters V. 2007. The Dissemination of Antibiotic Resistance by Bacterial Conjugation, p 285-312. In Bonomo R, Tolmasky M (ed), Enzyme-Mediated Resistance to Antibiotics. ASM Press, Washington, DC. doi: 10.1128/9781555815615.ch18
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 18.6
Figure 18.6

Electron micrograph of conjugating cells as mediated by RK2 on a solid surface. –to– filter mating is visualized by cryofixation. Arrows indicate junctions between donor and recipient cells, showing the points of contact and fusion of outer membranes. Fusion events require the presence of the RK2 plasmid in the donor cells ( ).

Citation: Waters V. 2007. The Dissemination of Antibiotic Resistance by Bacterial Conjugation, p 285-312. In Bonomo R, Tolmasky M (ed), Enzyme-Mediated Resistance to Antibiotics. ASM Press, Washington, DC. doi: 10.1128/9781555815615.ch18
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 18.7
Figure 18.7

Theta (left) and rolling-circle (right) DNA replication in cartoon form. In theta bidirectional replication, growing forks enlarge the loop, resulting in a structure that resembles a Greek letter θ. Theta replication is a common form for plasmid vegetative replication. In rolling-circle replication, the 3′ (–) end is indicated by the arrow. The 3′ end uses the (+) strand DNA as the template as it leads continuous DNA synthesis around the template.

Citation: Waters V. 2007. The Dissemination of Antibiotic Resistance by Bacterial Conjugation, p 285-312. In Bonomo R, Tolmasky M (ed), Enzyme-Mediated Resistance to Antibiotics. ASM Press, Washington, DC. doi: 10.1128/9781555815615.ch18
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 18.8
Figure 18.8

DNA transfer by plasmid conjugation and conjugative transposons. The basic steps are shown for plasmid conjugation (A), starting with a double-stranded plasmid undergoing vegetative replication in the donor cell, followed by relaxosome formation, cell-cell transfer of single-stranded DNA molecule, single-to-double-stranded DNA synthesis, and vegetative replication in the recipient. Conjugative transposition (B) has these steps plus excision and insertion. The conjugative transposon excises in the host cell as a double-stranded molecule incapable of vegetative replication. This is shown by a lack of sequence. DNA transferred to a recipient cell integrates into host cell DNA. Not shown is an alternative event in which the CTn transposes into another donor cell DNA site without first transferring to another cell.

Citation: Waters V. 2007. The Dissemination of Antibiotic Resistance by Bacterial Conjugation, p 285-312. In Bonomo R, Tolmasky M (ed), Enzyme-Mediated Resistance to Antibiotics. ASM Press, Washington, DC. doi: 10.1128/9781555815615.ch18
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 18.9
Figure 18.9

Model for the membrane bridge in RK2-mediated –to– conjugation. The donor cell is shown with the basal part of the membrane bridge and a portion of the attached relaxosome at the inner membrane (IM). TraJ interacts with DNA to align the TraI relaxase enzyme with the nick region. TraG and TraF interact with the relaxosome and inner membrane. TraF is further out, shown at the merged outer membranes (OM) of the donor and recipient cells. Residual pilin subunits are shown at the top of the bridge, at the inner membranes of the recipient cell. Nicking by TraI at the nick site, within the underwound portion of DNA, is thought to initiate the DNA transfer event.

Citation: Waters V. 2007. The Dissemination of Antibiotic Resistance by Bacterial Conjugation, p 285-312. In Bonomo R, Tolmasky M (ed), Enzyme-Mediated Resistance to Antibiotics. ASM Press, Washington, DC. doi: 10.1128/9781555815615.ch18
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 18.10
Figure 18.10

Mr. and Mrs. bacterial cells in cartoon form. Both cells have chromosomes as indicated by the large hearts. The male cell, Mr. DH5, carries the RK2 plasmid, ready for transfer to Mrs. HB101, the female cell.

Citation: Waters V. 2007. The Dissemination of Antibiotic Resistance by Bacterial Conjugation, p 285-312. In Bonomo R, Tolmasky M (ed), Enzyme-Mediated Resistance to Antibiotics. ASM Press, Washington, DC. doi: 10.1128/9781555815615.ch18
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555815615.ch18
1. Adams, V.,, D. Lyras,, K. A. Farrow, and, J. I. Rood. 2002. The clostridial mobilizable transposons. Cell. Mol. Life Sci. 59:20332043.
2. Anderson, E. S. 1975. Viability of, and transfer of a plasmid from, E. coli K12 in the human intestine. Nature 255:502504.
3. Anthony, K. G.,, W. A. Klimke,, J. Manchak, and, L. S. Frost. 1999. Comparison of proteins involved in pilus synthesis and mating pair stabilization from the related plasmids F and R100-1: insights into the mechanism of conjugation. J. Bacteriol. 181:51495159.
4. Banks, D.,, S. B. Beres, and, J. M. Musser. 2002. The fundamental contribution of phage to GAS evolution, genome diversification, and strain emergence. Trends Microbiol. 10:515521.
5. Bates, S.,, A. Cashmore, and, B. M. Wilkins. IncP plasmids are unusually effective in mediating conjugation of Escherichia coli and Saccharomyces cerevisiae: involvement of the Tra2 mating system. J. Bacteriol. 180:65386543.
6. Beaber, J. W.,, B. Hochhut, and, M. K. Waldor. 2002. Genomic and functional analyses of SXT, an integrating antibiotic gene transfer element from Vibrio cholerae. J. Bacteriol. 184:42594269.
7. Beck, M.A.,, Q. Shi,, V.C. Morris, and, O.A. Levander. 1995. Rapid genomic evolution of a non-virulent Coxsackie B3 in selenium-deficient mice results in selection of identical virulent isolates. Nat. Med. 1:433436.
8. Bjorkholm, B.,, M. Sjolund,, P. G. Falk,, O. Berg,, L. Engstrand, and, D. I. Andersson. 2001. Mutation frequency and biological cost of antibiotic resistance in Helicobacter pylori. Proc. Natl. Acad. Sci. USA 98:1460714612.
9. Boltner, D.,, C. MacMahon,, J. T. Pembroke,, P. Strike and, A. M. Osborn. 2002. R391: conjugative integrating mosaic comprised of phage, plasmid, and transposon elements. J. Bacteriol. 184:51585169.
10. Bushman, F. D. 2003. Targeting survival: integration site selection by retroviruses and LTR retro transposons. Cell 115:135138.
11. Cabezon, E.,, J. I. Sastre, and, F. de la Cruz. 1997. Genetic evidence of a coupling role for the TraG protein family in bacterial conjugation. Mol. Gen. Genet. 254:400406.
12. Caparon, M. G., and, J. R. Scott. 1989. Excision and insertion of the conjugative transposon Tn916 involves a novel recombination mechanism. Cell 59:10271034.
13. Christie, P. J.,, J. E. Ward,, S. C. Winans, and, E. W. Nester. 1988. The Agrobacterium tumefaciens virE2 gene product is a single-stranded-DNA-binding protein that associates with T-DNA. J. Bacteriol. 170:26592667.
14. Christie, P. J. 2001. Type IV secretion: intercellular transfer of macromolecules by systems ancestrally related to conjugation machines. Mol. Microbiol. 40:294305.
15. Claverys, J.-P., and, B. Martin. 2003. Bacterial ’competence’ genes: signature of active transformation, or only remnants? Trends Microbiol. 11:161165.
16. Craig, A. S.,, P. C. Erwin,, W. Schaffner,, J. A. Elliott,, W. L. Moore,, X. T. Ussery,, L. Patterson,, A. D. Dake,, S. G. Hannah, and, J. C. Butler. 1999. Carriage of multi-drug resistant Streptococcus pneumoniae and the impact of chemophrophylaxis during an outbreak of meningitis at a day care center. Clin. Infect. Dis. 29:12571264.
17. Daugelavicius, R.,, J. Bamford,, A. M. Grahn,, E. Lanka, and, D. H. Bamford. 1997. The IncP plasmid-encoded cell envelope-associated DNA transfer complex increases cell permeability. J. Bacteriol. 179:51955202.
18. Davis, C. E., and, J. Anandan. 1970. The evolution of an R factor: a study of a “preantibiotic” community in Borneo. N. Engl. J. Med. 282:117122.
19. DelVecchio, V.G.,, V. Kapatral,, R. Redkar,, G. Patra,, C. Mujer,, T. Los,, N. Ivanova,, I. Anderson,, A. Bhattacharya,, A. Lykidis,, R. Reznik,, K. Jablonski,, N. Larsen,, M. D’Souza,, A. Bernal,, M., Mazur,, E. Goltsman,, E. Selkov,, P. Elzer,, S. Hagius,, D. O’Callaghan,, J.-J. Letesson,, R. Haselkorn,, N. Kyropides, and, R. Overbeek. 2002. The genome sequence of the facultative intracellular pathogen Brucella melitensis. Proc. Natl. Acad. Sci. USA. 99:443 448.
20. Dimopoulou, I. D.,, J. E. Russell,, Z. Mohd-Zain,, R. Herbert, and, D. W. Crook. 2002. Site-specific recombination with the chromosomal tRNA (Leu) gene by the large conjugative Haemophilus resistance plasmid. Antimicrob. Agents Chemother. 46:16021603.
21. Ding, Z.,, K. Atmakuri, and, P.J. Christie. The ins and outs of bacterial type IV secretions substrates. Trends Microbiol. 11:527535.
22. Egger, C. H.,, B. J. Kimmel,, J. L. Bono,, A. F. Elias,, P. Rosa, and, D. S. Samuels. 2001. Transduction by ΦBB-1, a bacteriophage of Borrelia burgdorferi. J. Bacteriol. 183:47714778.
23. Eggler, A. L.,, S. L. Lusetti, and, M. M. Cox. 2003. The C terminus of the E. coli RecA protein modulates the DNA binding competition with single-stranded DNA-binding protein. J. Biol. Chem. 278:1638916396.
24. Ferguson, G. C.,, J. A. Heinemann, and, M. A. Kennedy. 2002. Gene transfer between Salmonella enterica serovar Typhimurium inside epithelial cells. J. Bacteriol. 184:22352242.
25. Fiser, A.,, S. R. Filipe, and, A. Tomasz. 2003. Cell wall branches, penicillin resistance and the secrets of the MurM protein. Trends Microbiol. 11:547553.
26. Franke, A., and, D. B. Clewel. 1981. Evidence for a chromosome-borne resistance transposon (Tn916) in Streptococcus faecalis that is capable of “conjugal” transfer in the absence of a conjugative plasmid. J. Bacteriol. 145:494502.
27. Frost, L.,, K. Ippen-Ihler, and, R. Skurray. 1994. Analysis of the sequence and gene products of the transfer and gene products of the transfer region of the F sex factor. Microbiol. Rev. 58:162210.
28. Fullner, K. J.,, J. C. Lara, and, E. W. Nester. 1996. Pilus assembly by Agrobacterium T-DNA transfer genes. Science 273:11071109.
29. Giovanetti, E.,, G. Magi,, A. Brenciani,, C. Spinaci,, R. Lupidi,, B. Facinelli, and, P. E. Varaoldo. 2002. Conjugative transfer of the erm(A) gene from erythromycin-resistant Streptococcus pyogenes to macrolide-susceptible S. pyogenes, Enterococcus faecalis and Listeria innocua. J. Antimicrob. Chemother. 50:249252.
30. Gomis-Ruth, F.X.,, G. Moncalian,, R. Perez-Luque,, A. Gonzalez,, E. Cabezon,, F. de la Cruz, and, M. Coll. 2001. The bacterial conjugation protein TrwB resembles ring helicases and F1 ATPase. Nature 409:637641.
31. Grahn, A. M.,, J. Haase,, E. Lanka, and, D. H. Bamford. 1997. Assembly of a functional phage PRD1 receptor depends on 11 genes of the IncP plasmid mating pair formation complex. J. Bacteriol. 179:47334740.
32. Grillot-Courvalin, C.,, S. Goussard,, F. Huet,, D. M. Ojcius, and, Courvalin, P. 1998. Functional gene transfer from intracellular bacteria to mammalian cells. Nat. Biotech. 16:862866.
33. Guasch, A.,, M. Lucas,, G. Moncalian,, M. Cabezas,, R. Perez-Luque,, F. X. Gomis-Ruth,, F. de la Cruz, and, M. Coll. 2003. Recognition and processing of the origin of transfer DNA by conjugative relaxase TrwC. Nat. Struct. Biol. 12:10021010.
34. Haase, J.,, R. Lurz,, A. M. Grahn,, D. Bamford, and, E. Lanka. 1995. Bacterial conjugation mediated by plasmid RP4: RSF1010 mobilization, donor-specific phage propagation, and pilus production require the same Tra2 core components of the proposed DNA transport complex. J. Bacteriol. 177:47794791.
35. Haase, J.,, M. Kalkum, and, E. Lanka. 1996. TrbK, a small cytoplasmic membrane lipoprotein, function in entry exclusion of the IncPα plasmid RP4. J. Bacteriol. 178:67206729.
36. Heinemann, J. A., and, R. G. Ankenbauer. 1993. Retrotrans-fer of IncP plasmid R751 from Escherichia coli maxicells: evidence for the genetic sufficiency of self-transferable plasmids for bacterial conjugation. Mol. Microbiol. 10:5762.
37. Himawan, J. S., and, C. C. Richardson. 1996. Amino acid residues critical for the interaction between bacteriophage T7 DNA polymerase and Escherichia coli thioredoxin. J. Biol. Sci. 271:1999920008.
38. Hinnebusch, B. J.,, M.-L. Rosso,, T. G. Schwan, and, E. Carniel. 2002. High-frequency conjugative transfer of antibiotic resistance genes to Yersinia pestis in the flea midgut. Mol. Microbiol. 2:349354.
39. Hoffmann, A.,, T. Thimm,, M. Droge,, E. R. B. Moore,, J. C. Munch, and, C. C Tebbe. 1998. Intergeneric transfer of conjugative and mobilizable plasmids harbored by Escherichia coli in the gut of the soil microarthropod Folsomia candida (Collembola). Appl. Environ. Microbiol. 64:26522659.
40. Hofreuter, K.,, A. Karnholz, and, R. Haas. 2003. Topology and membrane interaction of Helicobacter pylori ComB proteins involved in natural transformation competence. Int. J. Med. Microbiol. 293:153165.
41. International Human Genome Sequencing Consortium. 2001. Initial sequencing and analysis of the human genome. Nature 409:860921.
42. Kahng, L.S., and, L. Shapiro. 2003. Polar localization of replicon origins in the multipartite genomes of Agrobacterium tumefaciens and Sinorhizobium meliloti. J. Bacteriol. 185:33843391.
43. Kobayashi, S. D.,, K. R. Braughton,, A. R. Whitney,, J. M. Voyish,, T. G. Schwan,, J. M. Musser, and, F. R. DeLeo. 2003. Bacterial pathogens modulate an apoptosis differentiation program in human neutrophils. Proc. Natl. Acad. Sci. USA 100:1094810953.
44. Kohiyama, M.,, S. Hiraga,, I. Matic, and, M. Radman. 2003. Bacterial sex: playing voyeurs 50 years later. Science 301:802803.
45. Kornstein, L. B.,, V. L. Waters, and, R. C. Cooper. 1992. A natural mutant of plasmid RP4 that confers phage resistance and reduced conjugative transfer. FEMS Microbiol. Lett. 91:97100.
46. Kotilainen, M. M.,, A. M. Grahn,, J. K. H. Bamford, and, D. H. Bamford. 1993. Binding of an Escherichia coli double-stranded DNA virus PRD1 to a receptor coded by an IncP-type plasmid. J. Bacteriol. 175:30893095.
47. Krall, L.,, U. Wiedemann,, G. Unsin,, S. Weiss,, N. Komke, and, C. Baron. 2002. Detergent extraction identifies different VirB protein subassemblies of the type IV secretion machinery in the membranes of Agrobacterium tumefaciens. Proc. Natl. Acad. Sci. USA 99:1140511410.
48. Lanka, E., and, P. Barth. 1981. Plasmid RP4 specifies a deoxyribonucleic acid primase involved in its conjugal transfer and maintenance. J. Bacteriol. 148:769775.
49. Lawley, T. D.,, M. W. Gilmour,, J. E. Gunton,, D. M. Tracz, and, D. Taylor. 2003. Functional and mutational analysis of conjugative transfer region 2 (Tra2) from the IncHI1 plasmid R27. J. Bacteriol. 185:581591.
50. Lawley, T. D.,, W. A. Klimke,, M. J. Gubbins, and, L. S. Frost. 2003. F factor conjugation is a true type IV secretion system. FEMS Microbiol. Lett. 224:115.
51. Leach, A. J.,, T. M. Shelby-James,, M. Mayo,, M. Gratten,, A. C. Laming,, B. J. Currie, and, J. D. Mathews. 1997. A prospective study of the impact of community-based azithro-mycin treatment of trachoma on carriage and resistance of Streptococcus pneumoniae. Clin. Infect. Dis. 24:356362.
52. Leach, A. J.,, P. S. Morris,, H. Smith-Vaughan, and, J. D. Mathews. 2001. In vivo penicillin MIC drift to extremely high resistance in serotype 14 Streptococcus pneumoniae persistently colonizing in nasopharynx of an infection with chronic suppurative lung disease: a case study. Antimicrob. Agents Chemother. 46:36483649.
53. Levy, S. 1992. Antibiotic Paradox: How Miracle Drugs Are Destroying the Miracle. Harper Collins, New York, N.Y.
54. Li, L.-Y.,, N. B. Shoemaker,, G. R. Wang,, S. Cole,, M. K. Hashimoto,, J. Wang, and, A. A. Salyers. 1995. The mobilization regions of two integrated Bacteroides elements, NBU1 and NBU2, have only single mobilization protein and may be on a cassette. J. Bacteriol. 177:39403945.
55. Llosa, M.,, S. Zunzunegui, and, F. de la Cruz. 2003. Conjuga-tive coupling proteins interact with cognate and hetero-logous VirB10-like proteins while exhibiting specificity for cognate relaxosomes. Proc. Natl. Acad. Sci. USA 100:1046510470.
56. Loeffler, J. M.,, S. Djurkovic, and, V. A. Fishetti. 2003. Phage lystic enzyme Cpl-1 as a novel antimicrobial for pneumo-coccal bacteremia. Infect. Immun. 71:61996204.
57. Massey, R. C., and, A. Buckling. 2002. Environmental regulation of mutation rates at specific sites. Trends Microbiol. 10:580584.
58. Michaels, K.,, J. Mei, and, W. Firshein. 1994. TrfA-dependent inner-membrane-associated plasmid. RK2 DNA synthesis in E. coli maxicells. Plasmid 32:1931.
59. Murphy, C.G., and, M.H. Malamy. 1995. Requirements for strand- and site-specific cleavage within the oriT region of Tn4399, a mobilizing transposon from Bacteroides fragilis. J. Bacteriol. 177:31583165.
60. Naidoo, J. 1984. Interspecific co-transfer of antibiotic resistance plasmids in staphylococci in vivo. J. Hyg. 93:5966.
61. Novick, R. P. 1995. Contrasting lifestyles of rolling circle phages and plasmids. Trends Biol. Sci. 23:434438.
62. Novick, R. P. 2003. Mobile genetic elements and bacterial toxinoses: the superantigen-encoding pathogenicity islands of Staphylococcus aureus. Plasmid 49:93105.
63. Pansegrau, W.,, W. Schroder, and, E. Lanka. 1993. Relaxase (TraI) of IncP plasmid RP4 catalyzes a site-specific cleaving-joining reaction of single-stranded DNA. Proc. Natl. Acad. Sci. USA 90:29252929.
64. Pansegrau, W.,, W. Lanka,, P. T. Barth,, D. H. Figurski,, D. G. Guiney,, D. Haas,, D. Helinski,, H. Schwab,, V. Stanisch, and, C. M. Thomas. 1994. Complete nucleotide sequence of Birmingham IncPα plasmids. J. Mol. Biol. 239:623663.
65. Pansegrau, W. and, E. Lanka. 1996. Enzymology of DNA transfer by conjugative mechanisms. Prog. Nucleic Acids Res. 54:197251.
66. Parker, C., and, R. J. Meyer. 2002. Selection of plasmid molecules for conjugative transfer and replacement strand synthesis in the donor. Mol. Microbiol. 46:761768.
67. Parker, C.,, X. Zhang,, D. Henderson,, E. Becker, and, R. Meyer. 2002. Conjugative DNA synthesis: R1162 and the question of rolling circle replication. Plasmid 48:186192.
68. Paulsen, I. T.,, L. Banerjei,, G. S. A. Myers,, K. E. Nelson,, R. Seshadri,, T. D. Read,, D. E. Fouts,, J. A. Eisen,, S. R. Gill,, J. F. Heidelberg,, H. Tettelin,, R. J. Dodson,, L. Umayam,, L. Brinkac,, M. Beanan,, S. Daugherty,, R. T. DeBoy,, S. Durkin,, J. Kolanay,, R. Madupu,, W. Nelson,, J. Vamathevan,, B. Tran,, J. Upton,, T. Hansen,, J. Shetty,, H. Khouri,, T. Utter-back,, D. Radune,, K. A. Detchum,, B. A. Daugherty, and, C. M. Fraser. 2003. Role of mobile DNA in the evolution of vancomycin-resistant Enterococcus faecalis. Science 299:20712074.
69. Pembroke, J.T., and, D. B. Murphy. 2000. Isolation and analysis of a circular form of the IncJ conjugative tran-sposon-like elements R391 and R997: implications for IncJ incompatibility. FEMS Microbiol. Lett. 187:133138.
70. Pembroke, J. T.,, C. MacMahon, and, B. McGrath. 2002. The role of conjugative transposons in the Enterobacteriaceae. Cell. Mol. Life Sci. 59:20552064.
71. Planet, P. J.,, S. C. Kachlany,, R. DeSalle, R., and, D. H. Figurski. 2001. Phylogeny of genes for secretion of NTPases: identification of the widespread tadA subfamily and development of diagnostic key for gene classification. Proc. Natl. Acad. Sci. USA 98:25032508.
72. Pohlman, R. F.,, H. D. Genetti, and, S. C. Winans. 1994. Common ancestry between IncN conjugal transfer genes and macromolecular export systems of plant and animal pathogens. Mol. Microbiol. 14:655668.
73. Rabel, C.,, A. M. Grahn,, R. Lurz, and, E. Lanka. 2003. The VirB4 family of proposed traffic nucleoside triphosphatases: common motifs in plasmid RP4 TrbE are essential for conjugation and phage adsorption. J. Bacteriol. 185:10451058.
74. Rees, C. E. D. and, B. Wilkins. 1990. Protein transfer into the recipient cell during bacterial conjugation: studies with F and RP4. Mol. Microbiol. 4:11991206.
75. Rekart, M.L,, D. M. Patrick,, B. Chakraborty,, J. L. Magin-ley,, H. G. Jones,, C. D. Bajdik,, B. Pourbohiol, and, R. C. Brunham. 2003. Targeted mass treatment for syphilis with oral azithromycin. Lancet 361:313314.
76. Ridenour, D. A.,, S. L. G. Cirillo,, S. Feng,, M. Samrakandi, and, J. D. Cirillo. 2001. Identification of a gene that affects the efficiency of host cell infection by Legionella pneumophila in a temperature dependent fashion. Infect. Immun. 71:62566263.
77. Samuels, A. L.,, E. Lanka, and, J. E. Davis. 2000. Conjugative junctions in RP4-mediated mating of Escherichia coli. J. Bacteriol. 182:27092715.
78. Santagati, M.,, F. Iannelli,, C. Cascone,, F. Campanile,, M. Oggioni,, S. Stefani, and, G. Pozzi. 2003. The novel conjuga-tive transposon Tn1207.3 carries the macrolide efflux gene mef(A) in Streptococcus pyogenes. Microb. Drug Resist. 9:243247.
79. Schlimme, W.,, M. Marchiani,, K. Hanselmann, and, B. Jenni. 1997. Gene transfer between bacteria within digestive vacuoles of protozoa. FEMS Microb. Ecol. 23:239247.
80. Schmieger, H., and, P. Schicklmaier. 1999. Transduction of multiple drug resistance of Salmonella enterica serovar Typhimurium DT104. FEMS Microbiol. Lett. 170:251256.
81. Schroder, G.,, S. Krause,, E. Zechner,, B. Traxler,, H.-J. Yeo,, R. Lurz,, G. Waksman, and, E. Lanka. 2002. TraG-like proteins of DNA transfer systems and the Helicobacter pylori type IV secretion system: inner membrane gate for exported substrates? J. Bacteriol. 184:27672779.
82. Scott, J. R.,, F. Bringel,, D. Marra,, G. Van Alstine, and, C. Rudy. 1994. Conjugative transposons of Tn916: preferred targets and evidience for conjugative transfer of a single strand and for a double-stranded circular intermediate. Mol. Microbiol. 11:10991108.
83. Shoemaker, N.,, G.-R. Wang, and, A. A. Salyers. 2000. Multiple gene products and sequences required for excision of the mobilizable integrated Bacteroides element NBU1. J. Bacteriol. 182:928936.
84. Sia, E. A.,, D. M. Kuehner, and, D. H. Figurski. 1996. Mechanism of retrotransfer in conjugation: prior transfer of the conjugative plasmid is required. J. Bacteriol. 178:14571464.
85. Sizemore, D.,, A. Branstrom, and, J. Sadoff. 1995. Attenuated Shigella as a DNA delivery vehicle for DNA-mediated immunization. Science 270:299302.
86. Smith, C. J.,, A. C. Parker, and, M. Bacic. 2001. Analysis of a Bacteroides conjugative transposon using a novel “targeted capture” model system. Plasmid 46:4756.
87. Steinmoen, H.,, A. Teigen, and, L. S. Havarstein. 2003. Competence-induced cells of Streptococcus pneumoniae lyse competence-deficient cells of the same strain during cocultivation. J. Bacteriol. 185:71767183.
88. Tanaka, J.,, T. Suzuki,, H. Mimuro, and, C. Sasakawa. 2003. Structural definition on the surface of Helicobacter pylori type IV secretion apparatus. Cell. Microbiol. 5:395404.
89. Tauch, A.,, A. Schluter,, N. Bischoff,, A. Goesmann,, F. Meyer, and, A. Puhler. 2003. The 79,370-bp conjugative plasmid pB4 consists of an IncP1ββ backbone loaded with a chromate resistance transposon, the strA-strB streptomycin resistance gene pair, the oxacillinase gene blaNPS1, and a tripartaite antibiotic efflux system of the resistance-nodulation-division family. Mol. Genet. Genomics 268:570584.
90. Timmons, L.,, D. L. Court, and, A. Fire. 2001. Ingestion of bacterially expressed dsRNAs can produce specific and potent genetic interference in C. elegans. Gene 263:103112.
91. Tolmasky, M. E.,, M. Roberts,, M. Woloj, and, J. H. Crosa. 1986. Molecular cloning of amikacin resistance determinants from a Klebsiella pneumoniae plasmid. Antimicrob. Agents Chemother. 30:315320.
92. Tomita, H.,, C. Pierson,, S. K. Lim,, D. B. Clewel, and, Y. Ike. 2002. Possible connection between a widely disseminated conjugative gentamicin resistance (pMG1-like) plasmid and the emergence of vancomycin resistance in Enterococcus faecium. J. Clin. Microbiol. 40:33263333.
93. Tribble, G. D.,, A. C. Parker, and, C. J. Smith. 1999. Transposition of the Bacteroides mobilization transposon Tn4555: role of a novel targeting gene. Mol. Microbiol. 34:385394.
94. Tsen, S. D.,, S. S. Fang,, M. J. Chen,, J. Y. Chien,, C. C. Lee, and, D. H. Tsen. 2002. Natural transformation in E. coli. J. Biomed. Sci. 9:246252.
95. Wang, H.,, A. P. Roberts,, D. Luras,, J. I. Rood,, M. Wilks, and, P. Mullany. 2000. Characterization of the ends and target sites of the novel conjugative transposon Tn5397 from Clostridium difficile: excision and circularization is mediated by a large resolvase, TndX. J. Bacteriol. 182:37753783.
96. Wang, J.,, L. M. Parsons, and, K. M. Derbyshire. 2003. Unconventional conjugal DNA transfer in mycobacteria. Nat. Genet. 34:8083.
97. Ward, D.V., and, P. C. Zambryski. 2001. The six functions of Agrobacterium VirE2. Proc. Natl. Acad. Sci. USA 98:385386.
98. Ward, D. V.,, O. Draper,, J. R. Zupan, and, P. Zambryski. 2002. Peptide linkage mapping of the Agrobacterium tumefaciens vir-encoded type IV secretion system reveals protein subassemblies. Proc. Natl. Acad. Sci. USA 99:1149311500.
99. Waters, V., and, J. Crosa. 1988. Divergence of the aerobac-tin systems encoded by plasmids pColV-K30 in E. coli and pSMN1 in Aerobacter aerogenes. J. Bacteriol. 170:51535160.
100. Waters, V.,, K. Hirata,, W. Pansegrau,, E. Lanka, and, D. Guiney. 1991. Sequence identity in the nick region of IncP plasmid transfer origins and T-DNA border of Agrobacterium Ti plasmids. Proc. Natl. Acad. Sci. USA 88:14561460.
101. Waters, V.,, B. Strack,, W. Pansegrau,, E. Lanka, and, D. Guiney. 1992. Mutational analysis of essential IncP plasmid transfer genes traF and traG, and involvement of traF in phage sensitivity. J. Bacteriol. 174:66666673.
102. Waters, V., and, D. Guiney. 1993. Processes at the nick region link conjugation, T-DNA transfer, and rolling circle replication. Mol. Microbiol. 9:11231130.
103. Waters, V. L. 1999. Conjugative transfer in the dissemination of β-lactam and aminoglycoside resistance. Front. Biosci. 4:D433D456.
104. Waters, V. L. 2001. Conjugation between bacterial and mammalian cells. Nat. Genet. 29:375376.
105. Wilkins, B. M., and, A. T. Thomas. 2000. DNA-independent transport of plasmid primase protein between bacteria by the I1 conjugation system. Mol. Microbiol. 38:650657.
106. Wojciak, J. M.,, K. M. Connolly, and, R. T. Clubb. 1999. NMR structure of the Tn916 integrase DNA complex. Nat. Struct. Biol. 6:366373.
107. Yeo, H.-J.,, Q. Yuan,, M. R. Beck,, C. Baron, and, G. Waks-man. 2003. Structural and functional characterization of the VirB5 protein from the type IV secretion system encoded by the conjugative plasmid pKM101. Proc. Natl. Acad. Sci. USA 100:1594715952.
108. Zupan, J. R.,, D. Ward, and, P. Zambryski. 1998. Assembly of the VirB transport complex for DNA transfer from Agrobacterium tumefaciens to plant cells. Curr. Opin. Microbiol. 1:649655.

Tables

Generic image for table
Table 18.1

Genetic mechanisms in bacteria

Citation: Waters V. 2007. The Dissemination of Antibiotic Resistance by Bacterial Conjugation, p 285-312. In Bonomo R, Tolmasky M (ed), Enzyme-Mediated Resistance to Antibiotics. ASM Press, Washington, DC. doi: 10.1128/9781555815615.ch18
Generic image for table
Untitled

Citation: Waters V. 2007. The Dissemination of Antibiotic Resistance by Bacterial Conjugation, p 285-312. In Bonomo R, Tolmasky M (ed), Enzyme-Mediated Resistance to Antibiotics. ASM Press, Washington, DC. doi: 10.1128/9781555815615.ch18

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error