1887

Chapter 1 : Part I Overview

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in
Zoomout

Part I Overview, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555815622/9781555813000_Chap01-1.gif /docserver/preview/fulltext/10.1128/9781555815622/9781555813000_Chap01-2.gif

Abstract:

Over the last few decades, the study of microbial pathogens focused on pragmatic topics such as vaccine development and the identification of virulence factors and their molecular effects on the host. This work leaves a legacy that is a storehouse of knowledge on many important pathogens, as well as a template for studying newly identified pathogens. Israel et al. isolated isolates that arose in one individual six years after the original sequenced isolate J99 was isolated from that person. The study demonstrated considerable genetic diversity among the newer isolates compared with the reference isolate, showing that ''microevolution,'' occurs continuously in the specialized niche in which is found. Genes may be activated or silenced by random changes that occur in runs of repetitive nucleotides, through the process of slipped-strand mispairing during DNA replication. The population dynamics and structures of disease-causing microbes are of more than simply academic interest, as Maiden and Urwin point out, because a full understanding of them is essential for developing effective vaccine strategies. Much of evolution takes place by mutation and selection, which are relatively slow processes, but rapid acquisition of virulence traits has occurred with the introduction of pathogenicity islands in many species. Microarray analysis confirms earlier data that the seventh-pandemic El Tor O1 strains and the emergent O139 strains are virtually the same clone albeit with different lipopolysaccharide gene clusters. Evolutionary studies of microbial pathogens will continue to reveal numerous surprises.

Citation: Mekalanos J. 2006. Part I Overview, p 3-9. In Seifert H, DiRita V (ed), Evolution of Microbial Pathogens. ASM Press, Washington, DC. doi: 10.1128/9781555815622.ch1

Key Concept Ranking

Restriction Fragment Length Polymorphism
0.41282776
Type III Secretion System
0.40764943
0.41282776
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

References

/content/book/10.1128/9781555815622.ch01
1. Akerley, B. J.,, P. A. Cotter, and, J. F. Miller. 1995. Ectopic expression of the flagellar regulon alters development of the Bordetella-host interaction. Cell 80: 611620.
2. Bik, E. M.,, A. E. Bunschoten,, R. D. Gouw, and, F. R. Mooi. 1995. Genesis of the novel epidemic Vibrio cholerae O139 strain: evidence for horizontal transfer of genes involved in polysaccharide synthesis. EMBO J. 14: 209216.
3. Campellone, K. G.,, D. Robbins, and, J. M. Leong. 2004. EspFU is a translocated EHEC effector that interacts with Tir and N-WASP and promotes Nck-independent actin assembly. Dev. Cell. 7: 217228.
4. Davis, B. M.,, E. H. Lawson,, M. Sandkvist,, A. Ali,, S. Sozhamannan, and, M. K. Waldor. 2000. Convergence of the secretory pathways for cholera toxin and the filamentous phage, CTXphi. Science 288: 333335.
5. Deretic, V.,, M. J. Schurr, and, H. Yu. 1995. Pseudomonas aeruginosa, mucoidy and the chronic infection phenotype in cystic fibrosis. Trends Microbiol. 3: 351356.
6. Dziejman, M.,, E. Balon,, D. Boyd,, C. M. Fraser,, J. F. Heidelberg, and, J. J. Mekalanos. 2002. Comparative genomic analysis of Vibrio cholerae: genes that correlate with cholera endemic and pandemic disease. Proc. Natl. Acad. Sci. USA 99: 15561561.
7. Ehrbar, K., and, W. D. Hardt. 2005. Bacteriophage-encoded type III effectors in Salmonella enterica subspecies 1 serovar Typhimurium. Infect. Genet. Evol. 5: 19.
8. Faruque, S. M.,, M. J. Islam,, Q. S. Ahmad,, A. S. Faruque,, D. A. Sack,, G. B. Nair, and, J. J. Mekalanos. 2005. Self-limiting nature of seasonal cholera epidemics: role of host-mediated amplification of phage. Proc. Natl. Acad. Sci. USA 102: 61196124.
9. Faruque, S. M.,, I. B. Naser,, M. J. Islam,, A. S. Faruque,, A. N. Ghosh,, G. B. Nair,, D. A. Sack, and, J. J. Mekalanos. 2005. Seasonal epidemics of cholera inversely correlate with the prevalence of environmental cholera phages. Proc. Natl. Acad. Sci. USA 102: 17021707.
10. Fleischmann, R. D.,, M. D. Adams,, O. White,, R. A. Clayton,, E. F. Kirkness,, A. R. Kerlavage,, C. J. Bult,, J. F. Tomb,, B. A. Dougherty,, J. M. Merrick, et al. 1995. Whole-genome random sequencing and assembly of Haemophilus influenzae Rd. Science 269: 496512.
11. Israel, D. A.,, N. Salama,, U. Krishna,, U. M. Rieger,, J. C. Atherton,, S. Falkow, and, R. M. Peek, Jr. 2001. Helicobacter pylori genetic diversity within the gastric niche of a single human host. Proc. Natl. Acad. Sci. USA 98: 1462514630.
12. Lesic, B.,, S. Bach,, J. M. Ghigo,, U. Dobrindt,, J. Hacker, and, E. Carniel. 2004. Excision of the high-pathogenicity island of Yersinia pseudotuberculosis requires the combined actions of its cognate integrase and Hef, a new recombination directionality factor. Mol. Microbiol. 52: 13371348.
13. Lesic, B., and, E. Carniel. 2005. Horizontal transfer of the high-pathogenicity island of Yersinia pseudotuberculosis. J. Bacteriol. 187: 33523358.
14. Lindqvist, B. H.,, G. Deho, and, R. Calendar. 1993. Mechanisms of genome propagation and helper exploitation by satellite phage P4. Microbiol. Rev. 57: 683702.
15. Lindsay, J. A.,, A. Ruzin,, H. F. Ross,, N. Kurepina, and, R. P. Novick. 1998. The gene for toxic shock toxin is carried by a family of mobile pathogenicity islands in Staphylococcus aureus. Mol. Microbiol. 29: 527543.
16. Merrell, D. S.,, S. M. Butler,, F. Qadri,, N. A. Dolganov,, A. Alam,, M. B. Cohen,, S. B. Calderwood,, G. K. Schoolnik, and, A. Camilli. 2002. Host-induced epidemic spread of the cholera bacterium. Nature 417: 642645.
17. Mooi, F. R., and, E. M. Bik. 1997. The evolution of epidemic Vibrio cholerae strains. Trends Microbiol. 5: 161165.
18. Moxon, E. R.,, P. B. Rainey,, M. A. Nowak, and, R. E. Lenski. 1994. Adaptive evolution of highly mutable loci in pathogenic bacteria. Curr. Biol. 4: 2433.
19. Parkhill, J.,, B. W. Wren,, K. Mungall,, J. M. Ketley,, C. Churcher,, D. Basham,, T. Chillingworth,, R. M. Davies,, T. Feltwell,, S. Holroyd,, K. Jagels,, A. V. Karlyshev,, S. Moule,, M. J. Pallen,, C. W. Penn,, M. A. Quail,, M. A. Rajandream,, K. M. Rutherford,, A. H. van Vliet,, S. Whitehead, and, B. G. Barrell. 2000. The genome sequence of the food-borne pathogen Campylobacter jejuni reveals hypervariable sequences. Nature 403: 665668.
20. Rajanna, C.,, J. Wang,, D. Zhang,, Z. Xu,, A. Ali,, Y. M. Hou, and, D. K. Karaolis. 2003. The vibrio pathogenicity island of epidemic Vibrio cholerae forms precise extrachromosomal circular excision products. J. Bacteriol. 185: 68936901.
21. Ruzin, A.,, J. Lindsay, and, R. P. Novick. 2001. Molecular genetics of SaPI1—a mobile pathogenicity island in Staphylococcus aureus. Mol. Microbiol. 41: 365377.
22. Sokurenko, E. V.,, D. L. Hasty, and, D. E. Dykhuizen. 1999. Pathoadaptive mutations: gene loss and variation in bacterial pathogens. Trends Microbiol. 7: 191195.
23. Vergara-Irigaray, N.,, A. Chavarri-Martinez,, J. Rodriguez-Cuesta,, J. F. Miller,, P. A. Cotter, and, G. Martinez de Tejada. 2005. Evaluation of the role of the Bvg intermediate phase in Bordetella pertussis during experimental respiratory infection. Infect. Immun. 73: 748760.
24. Wolfgang, M. C.,, B. R. Kulasekara,, X. Liang,, D. Boyd,, K. Wu,, Q. Yang,, C. G. Miyada, and, S. Lory. 2003. Conservation of genome content and virulence determinants among clinical and environmental isolates of Pseudomonas aeruginosa. Proc. Natl. Acad. Sci. USA 100: 84848489.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error