1887

Chapter 5 : The Contribution of Pathogenicity Islands to the Evolution of Bacterial Pathogens

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in
Zoomout

The Contribution of Pathogenicity Islands to the Evolution of Bacterial Pathogens, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555815622/9781555813000_Chap05-1.gif /docserver/preview/fulltext/10.1128/9781555815622/9781555813000_Chap05-2.gif

Abstract:

Pathogenicity islands (PAIs) have been defined as (i) large genomic regions that (ii) carry one or more virulence associated gene, (iii) have a G+C content different from that of the rest of the chromosome, (iv) are frequently associated with tRNA genes, (v) are often flanked by repeat structures, (vi) contain mobility genes such as integrase genes and transposases, and (vii) are often unstable. This chapter discusses the role of PAIs in the evolution of bacterial virulence. It focuses on features of PAIs, and other mobile genetic elements. Insertion sequence (IS) elements contribute to genome variability by several means. First, they mediate DNA rearrangements by transpositional events as well as by homologous recombination between multiple copies of the same insertion sequence (IS) element within one genome. Second, IS elements can modulate fast changes in gene activity by reversible excision and integration events into target sequences within coding regions. Finally, they are involved in the mobilization of genetic information due to association and dissociation of chromosomal DNA segments to and from natural vectors such as plasmids. Genomic island (GEIs) have been described for more than 30 microbial species, and the ongoing discussion of their properties and definition as well as their significance for microbial evolution is reflected in the chapter. GEIs represent formerly transferred or still mobile genetic entities that have evolved from horizontal gene transfer and DNA recombination events. They are important factors for bacterial evolution and will contribute to an ongoing evolution of bacterial variants, including bacterial pathogens.

Citation: Hochhut B, Dobrindt U, Hacker J. 2006. The Contribution of Pathogenicity Islands to the Evolution of Bacterial Pathogens, p 83-107. In Seifert H, DiRita V (ed), Evolution of Microbial Pathogens. ASM Press, Washington, DC. doi: 10.1128/9781555815622.ch5

Key Concept Ranking

Toxic Shock Syndrome Toxin 1
0.4849536
0.4849536
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of FIGURE 1
FIGURE 1

General mechanisms in evolution of bacterial pathogens. Genome evolution is based on loss (indicated by shaded areas) and acquisition of genetic information. Mobile genetic elements such as plasmids, bacteriophages, and PAIs encoding virulence traits (fimbriae, secreted toxins, etc.) that are horizontally transferred by transformation, transduction, and conjugation play an important role in gene acquistion. For more details, see text.

Citation: Hochhut B, Dobrindt U, Hacker J. 2006. The Contribution of Pathogenicity Islands to the Evolution of Bacterial Pathogens, p 83-107. In Seifert H, DiRita V (ed), Evolution of Microbial Pathogens. ASM Press, Washington, DC. doi: 10.1128/9781555815622.ch5
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2
FIGURE 2

Features of pathogenicity islands (PAIs). The model illustrates the main features of PAIs that are listed in the box. Island-associated genes are shown as shaded boxes and the bacterial chromosome as a line (top). G+C content of the PAI and the core genome often differ from each other (bottom). Abbreviations: , integrase gene; , virulence-associated gene; Δ, truncated mobility gene; IS, insertion sequence. Modified from reference .

Citation: Hochhut B, Dobrindt U, Hacker J. 2006. The Contribution of Pathogenicity Islands to the Evolution of Bacterial Pathogens, p 83-107. In Seifert H, DiRita V (ed), Evolution of Microbial Pathogens. ASM Press, Washington, DC. doi: 10.1128/9781555815622.ch5
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555815622.ch05
1. Achtman, M.,, A. Mercer,, B. Kusecek,, A. Pohl,, M. Heuzenroeder,, W. Aaronson,, A. Sutton, and, R. P. Silver. 1983. Six widespread bacterial clones among Escherichia coli K1 isolates. Infect. Immun. 39:315335.
2. Adhikari, P.,, G. Allison,, B. Whittle, and, N. K. Verma. 1999. Serotype 1a O-antigen modification: molecular characterization of the genes involved and their novel organization in the Shigella flexneri chromosome. J. Bacteriol. 181:47114718.
3. Alfano, J. R.,, A. O. Charkowski,, W. L. Deng,, J. L. Badel,, T. Petnicki-Ocwieja,, K. van Dijk, and, A. Collmer. 2000. The Pseudomonas syringae Hrp pathogenicity island has a tripartite mosaic structure composed of a cluster of type III secretion genes bounded by exchangeable effector and conserved effector loci that contribute to parasitic fitness and pathogenicity in plants. Proc. Natl. Acad. Sci. USA 97:48564861.
4. Amavisit, P.,, D. Lightfoot,, G. F. Browning, and, P. F. Markham. 2003. Variation between pathogenic serovars within Salmonella pathogenicity islands. J. Bacteriol. 185:36243635.
5. Antoine, R.,, D. Raze, and, C. Locht. 1998. The pertussis toxin locus has some features of a pathogenicity island. Zentbl. Bakteriol. 29 (Suppl.):393394.
6. Bach, S.,, C. Buchrieser,, M. Prentice,, A. Guiyoule,, T. Msadek, and, E. Carniel. 1999. The high-pathogenicity island of Yersinia enterolytica Ye8081 undergoes low-frequency deletion but not precise excision, suggesting recent stabilization in the genome. Mol. Microbiol. 67:50915099.
7. Bach, S.,, A. de Almeida, and, E. Carniel. 2000. The Yersinia high-pathogenicity island is present in different members of the family Enterobacteriaceae. FEMS Microbiol. Lett. 183:289294.
8. Beaber, J. W.,, V. Burrus,, B. Hochhut, and, M. K. Waldor. 2002. Comparison of SXT and R391, two conjugative integrating elements: definition of a genetic backbone for the mobilization of resistance determinants. Cell. Mol. Life Sci. 59:20652070.
9. Bell, K. S.,, A. O. Avrova,, M. C. Holeva,, L. Cardle,, W. Morris,, W. De Jong,, I. K. Toth,, R. Waugh,, G. J. Bryan, and, P. R. Birch. 2002. Sample sequencing of a selected region of the genome of Erwinia carotovora subsp. atroseptica reveals candidate phytopathogenicity genes and allows comparison with Escherichia coli. Microbiology 148:13671378.
10. Billington, S. J.,, A. S. Huggins,, P. A. Johanesen,, P. K. Crellin,, J. K. Cheung,, M. E. Katz,, C. L. Wright,, V. Haring, and, J. I. Rood. 1999. Complete nucleotide sequence of the 27-kilobase virulence related locus (vrl) of Dichelobacter nodosus: evidence for extrachromosomal origin. Infect. Immun. 67:12771286.
11. Billington, S. J.,, M. Sinistaj,, B. F. Cheetham,, A. Ayres,, E. K. Moses,, M. E. Katz, and, J. I. Rood. 1996. Identification of a native Dichelobacter nodosus plasmid and implications for the evolution of the vap region. Gene 172:111116.
12. Blanc-Potard, A. B., and, E. A. Groisman. 1997. The Salmonella selC locus contains a pathogenicity island mediating intramacrophage survival. EMBO J. 16:53765385.
13. Bloomfield, G. A.,, G. Whittle,, M. B. McDonagh,, M. E. Katz, and, B. F. Cheetham. 1997. Analysis of sequences flanking the vap region of Dichelobacter nodosus: evidence for multiple integration events, a killer system, and a new genetic element. Microbiology 143:553562.
14. Blum, G.,, M. Ott,, A. Lischewski,, A. Ritter,, H. Imrich,, H. Tschäpe, and, J. Hacker. 1994. Excision of large DNA regions termed pathogenicity islands from tRNA-specific loci in the chromosome of an Escherichia coli wild-type pathogen. Infect. Immun. 62:606614.
15. Böltner, D.,, C. MacMahon,, J. T. Pembroke,, P. Strike, and, A. M. Osborne. 2002. R391: a conjugative integrating mosaic comprised of phage, plasmid, and transposon elements. J. Bacteriol. 184:51585169.
16. Boyd, D.,, G. A. Peters,, A. Cloeckaert,, K. S. Boumedine,, E. Chaslus-Danca,, H. Imberechts, and, M. R. Mulvey. 2001. Complete nucleotide sequence of a 43-kilobase genomic island associated with the multidrug resistance region of Salmonella enterica serovar Typhimurium DT104 and its identification in phage type DT120 and serovar Agona. J. Bacteriol. 183:57255732.
17. Boyd, E. F.,, K. E. Moyer,, L. Shi, and, M. K. Waldor. 2000. Infectious CTXφ and the vibrio pathogenicity island prophage in Vibrio mimicus: evidence for recent horizontal transfer between V. mimicus and V. cholerae. Infect. Immun. 68:15071513.
18. Braun, V.,, T. Hundsberger,, P. Leukel,, M. Sauerborn, and, C. von Eichel-Streiber. 1996. Definition of the single integration site of the pathogenicity locus in Clostridium difficile. Gene 181:2938.
19. Brown, J. S.,, S. M. Gilliland, and, D. W. Holden. 2001. A Streptococcus pneumoniae pathogenicity island encoding an ABC transporter involved in iron uptake and virulence. Mol. Microbiol. 40:572585.
20. Buchrieser, C.,, R. Brosch,, S. Bach,, A. Guiyoule, and, E. Carniel. 1998. The high-pathogenicity island of Yersinia pseudotuberculosis can be inserted into any of the three chromosomal asn tRNA genes. Mol. Microbiol. 30:965978.
21. Buchrieser, C.,, M. Prentice, and, E. Carniel. 1998. The 102-kilobase unstable region of Yersinia pestis comprises a high-pathogenicity island linked to a pigmentation segment which undergoes internal rearrangement. J. Bacteriol. 180:23212329.
22. Buchrieser, C.,, C. Rusniok,, L. Frangeul,, E. Couve,, A. Billault,, F. Kunst,, E. Carniel, and, P. Glaser. 1999. The 102-kilobase pgm locus of Yersinia pestis: sequence analysis and comparison of selected regions among different Yersinia pestis and Yersinia pseudotuberculosis strains. Infect. Immun. 67:48514861.
23. Burns, D. L. 1999. Biochemistry of type IV secretion. Curr. Opin. Microbiol. 2:2529.
24. Burrus, V.,, G. Pavlovic,, B. Decaris, and, G. Guédon. 2002. Conjugative transposons: the tip of the iceberg. Mol. Microbiol. 46:601610.
25. Buttner, D., and, U. Bonas. 2002. Getting across—bacterial type III effector proteins on their way to the plant cell. EMBO J. 21:53135322.
26. Carniel, E. 2001. The Yersinia high-pathogenicity island: an iron-uptake island. Microbes Infect. 3:561569.
27. Carniel, E.,, I. Guilvout, and, M. Prentice. 1996. Characterization of a large chromosomal “high-pathogenicity island” in biotype 1B Yersinia enterocolitica. J. Bacteriol. 178:67436751.
28. Censini, S.,, C. Lange,, Z. Xiang,, J. E. Crabtree,, P. Ghiara,, M. Borodovsky,, R. Rappuoli, and, A. Covacci. 1996. cag, a pathogenicity island of Helicobacter pylori, encodes type-I specific and disease-associated virulence factors. Proc. Natl. Acad. Sci. USA 93:1464814653.
29. Cheetham, B. F., and, M. E. Katz. 1995. A role for bacteriophages in the evolution and transfer of bacterial virulence determinants. Mol. Microbiol. 18:201208.
30. Christie, P. J. 2001. Type IV secretion: intercellular transfer of macromolecules by systems ancestrally related to conjugation machines. Mol. Microbiol. 40:294305.
31. Cieslewicz, M., and, E. Vimr. 1997. Reduced polysialic acid capsule expression in Escherichia coli K1 mutants with chromosomal defects in kpsF. Mol. Microbiol. 26:237249.
32. Collmer, A.,, J. L. Badel,, A. O. Charkowski,, W. L. Deng,, D. E. Fouts,, A. R. Ramos,, A. H. Rehm,, D. M. Anderson,, O. Schneewind,, K. van Dijk, and, J. R. Alfano. 2000. Pseudomonas syringae Hrp type III secretion system and effector proteins. Proc. Natl. Acad. Sci. USA 97:87708777.
33. Craig, N. L. 1996. Transposition, p.2339–2362. In F. C. Neidhardt,, R. Curtiss III,, J. L. Ingraham,, E. C. C. Lin,, K. B. Low,, B. Magasanik,, W. S. Reznikoff,, M. Riley,, M. Schaechter, and, H. E. Umbarger (ed.), Escherichia coli and Salmonella: Cellular and Molecular Biology, vol. 2. ASM Press, Washington D. C.
34. da Silva, A. C.,, J. A. Ferro,, F. C. Reinach,, C. S. Farah,, L. R. Furlan,, R. B. Quaggio,, C. B. Monteiro-Vitorello,, M. A. Van Sluys,, N. F. Almeida,, L. M. Alves,, A. M. do Amaral,, M. C. Bertolini,, L. E. Camargo,, G. Camarotte,, F. Cannavan,, J. Cardozo,, F. Chambergo,, L. P. Ciapina,, R. M. Cicarelli,, L. L. Coutinho,, J. R. Cursino-Santos,, H. El-Dorry,, J. B. Faria,, A. J. Ferreira,, R. C. Ferreira,, M. I. Ferro,, E. F. Formighieri,, M. C. Franco,, C. C. Greggio,, A. Gruber,, A. M. Katsuyama,, L. T. Kishi,, R. P. Leite,, E. G. Lemos,, M. V. Lemos,, E. C. Locali,, M. A. Machado,, A. M. Madeira,, N. M. Martinez-Rossi,, E. C. Martins,, J. Meidanis,, C. F. Menck,, C. Y. Miyaki,, D. H. Moon,, L. M. Moreira,, M. T. Novo,, V. K. Okura,, M. C. Oliveira,, V. R. Oliveira,, H. A. Pereira,, A. Rossi,, J. A. Sena,, C. Silva,, R. F. de Souza,, L. A. Spinola,, M. A. Takita,, R. E. Tamura,, E. C. Teixeira,, R. I. Tezza,, M. Trindade dos Santos,, D. Truffi,, S. M. Tsai,, F. F. White,, J. C. Setubal, and, J. P. Kitajima. 2002. Comparison of the genomes of two Xanthomonas pathogens with differing host specificities. Nature 417:459463.
35. Deng, W.,, V. Burland,, G. Plunkett III,, A. Boutin,, G. F. Mayhew,, P. Liss,, N. T. Perna,, D. J. Rose,, B. Mau,, S. Zhou,, D. C. Schwartz,, J. D. Fetherston,, L. E. Lindler,, R. R. Brubaker,, G. V. Plano,, S. C. Straley,, K. A. McDonough,, M. L. Nilles,, J. S. Matson,, F. R. Blattner, and, R. D. Perry. 2002. Genome sequence of Yersinia pestis KIM. J. Bacteriol. 184:46014611.
36. Dillard, J. P., and, H. S. Seifert. 2001. A variable genetic island specific for Neisseria gonorrhoeae is involved in providing DNA for natural transformation and is found more often in disseminated infection isolates. Mol. Microbiol. 41:263277.
37. Dobrindt, U.,, G. Blum-Oehler,, T. Hartsch,, G. Gottschalk,, E. Z. Ron,, R. Fünfstück, and, J. Hacker. 2001. S-fimbria-encoding determinant sfaI is located on pathogenicity island III536 of uropathogenic Escherichia coli strain 536. Infect. Immun. 69:42484256.
38. Dobrindt, U.,, G. Blum-Oehler,, G. Nagy,, G. Schneider,, A. Johann,, G. Gottschalk, and, J. Hacker. 2002. Genetic structure and distribution of four pathogenicity islands (PAI I536-PAI IV536) of uropathogenic Escherichia coli strain 536. Infect. Immun. 70:63656372.
39. Dobrindt, U.,, L. Emödy,, I. Gentschev,, W. Goebel, and, J. Hacker. 2002. Efficient expression of the α-haemolysin determinant in the uropathogenic Escherichia coli strain 536 requires the leuX-encoded tRNA5Leu. Mol. Genet. Genomics 267:370379.
40. Dobrindt, U., and, J. Hacker. 1999. Plasmids, phages and pathogenicity islands: lessons on the evolution of bacterial toxins, p. 3–23. In J. Alouf and, J. Freer (ed.), The Comprehensive Sourcebook of Bacterial Protein Toxins. Academic Press, New York, N. Y.
41. Dobrindt, U.,, B. Hochhut,, U. Hentschel, and, J. Hacker. 2004. Genomic islands in pathogenic and environmental microorganisms. Nat. Rev. Microbiol. 2:414424.
42. Elliott, S. J.,, L. A. Wainwright,, T. K. McDaniel,, K. G. Jarvis,, Y. K. Deng,, L. C. Lai,, B. P. McNamara,, M. S. Donnenberg, and, J. B. Kaper. 1998. The complete sequence of the locus of enterocyte effacement (LEE) from enteropathogenic Escherichia coli E2348/69. Mol. Microbiol. 28:14.
43. Falkow, S. 1996. The evolution of pathogenicity in Escherichia, Shigella, and Salmonella, p. 2723–2729. In F. C. Neidhardt,, R. Curtiss III,, J. L. Ingraham,, E. C. C. Lin,, K. B. Low,, B. Magasanik,, W. S. Reznikoff,, M. Riley,, M. Schaechter, and, H. E. Umbarger (ed.), Escherichia coli and Salmonella: Cellular and Molecular Biology, vol. 2. ASM Press, Washington D. C.
44. Fitzgerald, J. R.,, S. R. Monday,, T. J. Foster,, G. A. Bohach,, P. J. Hartigan,, W. J. Meaney, and, C. J. Smyth. 2001. Characterization of a putative pathogenicity island from bovine Staphylococcus aureus encoding multiple superantigens. J. Bacteriol. 183:6370.
45. Fleckenstein, J. M.,, D. J. Kopecko,, R. L. Warren, and, E. A. Elsinghorst. 1996. Molecular characterization of the tia invasion locus from enterotoxigenic Escherichia coli. Infect. Immun. 64:22562265.
46. Girardeau, J. P.,, L. Lalioui,, A. M. Said,, C. De Champs, and, C. Le Bouguenec. 2003. Extended virulence genotype of pathogenic Escherichia coli isolates carrying the afa-8 operon: evidence of similarities between isolates from humans and animals with extraintestinal infections. J. Clin. Microbiol. 41:218226.
47. Groisman, E. A., and, H. Ochman. 1997. How Salmonella became a pathogen. Trends Microbiol. 5:343349.
48. Guyer, D. M.,, J. S. Kao, and, H. L. Mobley. 1998. Genomic analysis of a pathogenicity island in uropathogenic Escherichia coli CFT073: distribution of homologous sequences among isolates from patients with pyelonephritis, cystitis, and catheter-associated bacteriuria and from fecal samples. Infect. Immun. 66:44114417.
49. Hacker, J.,, L. Bender,, M. Ott,, J. Wingender,, B. Lund,, R. Marre, and, W. Goebel. 1990. Deletions of chromosomal regions coding for fimbriae and hemolysins occur in vitro and in vivo in various extraintestinal Escherichia coli isolates. Microb. Pathog. 8:213225.
50. Hacker, J.,, G. Blum-Oehler,, I. Mühldorfer, and, H. Tschäpe. 1997. Pathogenicity islands of virulent bacteria: structure, function and impact on microbial evolution. Mol. Microbiol. 23:10891097.
51. Hacker, J., and, E. Carniel. 2001. Ecological fitness, genomic islands and bacterial pathogenicity. EMBO Rep. 2:376381.
52. Hacker, J.,, U. Hentschel, and, U. Dobrindt. 2003. Prokaryotic chromosomes and disease. Science 301:790793.
53. Hacker, J., and, J. B. Kaper. 2000. Pathogenicity islands and the evolution of microbes. Annu. Rev. Microbiol. 54:641679.
54. Hacker, J., and, J. B. Kaper (ed.). 2002. Pathogenicity Islands and the Evolution of Pathogenic Microbes. Springer, Berlin, Germany.
55. Hall, R. M., and, C. M. Collis. 1995. Mobile gene cassettes and integrons: capture and spread of genes by site-specific recombination. Mol. Micro-biol. 15:593600.
56. Hare, J. M., and, K. A. McDonough. 1999. High-frequency RecA-dependent and -independent mechanisms of Congo red binding mutations in Yersinia pestis. J. Bacteriol. 181:48964904.
57. Haring, V.,, S. J. Billington,, C. L. Wright,, A. S. Huggins,, M. E. Katz, and, J. I. Rood. 1995. Delineation of the virulence-related locus (vrl) of Dichelobacter nodosus. Microbiology 141:20812089.
58. Hensel, M.,, T. Nikolaus, and, C. Egelseer. 1999. Molecular and functional analysis indicates a mosaic structure of Salmonella pathogenicity island 2. Mol. Microbiol. 31:489498.
59. Hiramatsu, K.,, Y. Katayama,, H. Yuzawa, and, T. Ito. 2002. Molecular genetics of methicillin-resistant Staphylococcus aureus. Int. J. Med. Microbiol. 292:6774.
60. Hochhut, B.,, K. Jahreis,, J. W. Lengeler, and, K. Schmid. 1997. CTn scr94, a conjugative transposon found in enterobacteria. J. Bacteriol. 179:20972102.
61. Hong, K. H., and, V. L. Miller. 1998. Identification of a novel Salmonella invasion locus homologous to Shigella ipgDE. J. Bacteriol. 180:17931802.
62. Houdouin, V.,, S. Bonacorsi,, N. Brahimi,, O. Clermont,, X. Nassif, and, E. Bingen. 2002. A uropathogenicity island contributes to the pathogenicity of Escherichia coli strains that cause neonatal meningitis. Infect. Immun. 70:58655869.
63. Ito, T.,, Y. Katayama,, K. Asada,, N. Mori,, K. Tsutsumimoto,, C. Tiensasitorn, and, K. Hiramatsu. 2001. Structural comparison of three types of staphylococcal cassette chromosome mec integrated in the chromosome in methicillin-resistant Staphylococcus aureus. Antimicrob. Agents Chemother. 45:13231336.
64. Ito, T.,, Y. Katayama, and, K. Hiramatsu. 1999. Cloning and nucleotide sequence determination of the entire mec DNA of pre-methicillin-resistant Staphylococcus aureus N315. Antimicrob. Agents Chemother. 43:14491458.
65. Jackson, R. W.,, E. Athanassopoulos,, G. Tsiamis,, J. W. Mansfield,, A. Sesma,, D. L. Arnold,, M. J. Gibbon,, J. Murillo,, J. D. Taylor, and, A. Vivian. 1999. Identification of a pathogenicity island, which contains genes for virulence and avirulence, on a large native plasmid in the bean pathogen Pseudomonas syringae pathovar phaseolicola. Proc. Natl. Acad. Sci. USA 96:1087510880.
66. Jermyn, W. S., and, E. F. Boyd. 2002. Characterization of a novel Vibrio cholerae pathogenicity island (VPI-2) encoding neuraminidase (nanH) among toxigenic Vibrio cholerae isolates. Microbiology 148:36813693.
67. Jin, Q.,, Z. Yuan,, J. Xu,, Y. Wang,, Y. Shen,, W. Lu,, J. Wang,, H. Liu,, J. Yang,, F. Yang,, X. Zhang,, J. Zhang,, G. Yang,, H. Wu,, D. Qu,, J. Dong,, L. Sun,, Y. Xue,, A. Zhao,, Y. Gao,, J. Zhu,, B. Kan,, K. Ding,, S. Chen,, H. Cheng,, Z. Yao,, B. He,, R. Chen,, D. Ma,, B. Qiang,, Y. Wen,, Y. Hou, and, J. Yu. 2002. Genome sequence of Shigella flexneri 2a: insights into pathogenicity through comparison with genomes of Escherichia coli K12 and O157. Nucleic Acids Res. 30:44324441.
68. Johnson, J. R.,, N. Kaster,, M. A. Kuskowski, and, G. V. Ling. 2003. Identification of urovirulence traits in Escherichia coli by comparison of urinary and rectal E. coli isolates from dogs with urinary tract infection. J. Clin. Microbiol. 41:337345.
69. Johnson, J. R.,, T. T. O’Bryan,, M. Kuskowski, and, J. N. Maslow. 2001. Ongoing horizontal and vertical transmission of virulence genes and papA alleles among Escherichia coli blood isolates from patients with diverse-source bacteremia. Infect. Immun. 69:53635374.
70. Jores, J.,, L. Rumer,, S. Kie bling,, J. B. Kaper, and, L. H. Wieler. 2001. A novel locus of enterocyte effacement (LEE) pathogenicity island inserted at pheV in bovine shiga toxin-producing Escherichia coli strain O103:H2. FEMS Microbiol. Lett. 204:7579.
71. Kao, J. S.,, D. M. Stucker,, J. W. Warren, and, H. L. Mobley. 1997. Pathogenicity island sequences of pyelonephritogenic Escherichia coli CFT073 are associated with virulent uropathogenic strains. Infect. Immun. 65:28122820.
72. Kaper, J. B.,, L. J. Gansheroff,, W. R. Wachtel, and, A. D. O’Brien. 1998. Intimin-mediated adherence of shiga toxin producing Escherichia coli and attaching-and-effacing pathogens, p. 148–156. In J. B. Kaper and, A. D. O’Brien (ed.), Escherichia coli O157:H7 and Other Shiga Toxin-Producing E. coli Strains. ASM Press, Washington, D. C.
73. Kaper, J. B.,, J. P. Nataro, and, H. L. Mobley. 2004. Pathogenic Escherichia coli. Nat. Rev. Microbiol. 2:123140.
74. Karaolis, D. K. R.,, J. A. Johnson,, C. C. Bailey,, E. C. Boedeker,, J. B. Kaper, and, P. R. Reeves. 1998. A Vibrio cholerae pathogenicity island associated with epidemic and pandemic strains. Proc. Natl. Acad. Sci. USA 95:31343139.
75. Karch, H.,, S. Schubert,, D. Zhang,, W. Zhang,, H. Schmidt,, T. Olschlager, and, J. Hacker. 1999. A genomic island, termed high-pathogenicity island, is present in certain non-O157 Shiga toxin-producing Escherichia coli clonal lineages. Infect. Immun. 67:59946001.
76. Keller, R.,, J. G. Ordonez,, R. R. de Oliveira,, L. R. Trabulsi,, T. J. Baldwin, and, S. Knutton. 2002. Afa, a diffuse adherence fibrillar adhesin associated with enteropathogenic Escherichia coli. Infect. Immun. 70:26812689.
77. Kim, J. F., and, J. R. Alfano. 2002. Pathogenicity islands and virulence plasmids of bacterial plant pathogens. Curr. Top. Microbiol. Immunol. 264(II):127147.
78. Klose, K. E. 2001. Regulation of virulence in Vibrio cholerae. Int. J. Med. Microbiol. 291:8188.
79. Kreft, J.,, J. A. Vazquez-Boland,, S. Altrock,, G. Dominguez-Bernal, and, W. Goebel. 2002. Pathogenicity islands and other virulence elements in Listeria. Curr. Top. Microbiol. Immunol. 264 (II):109125.
80. Kuroda, M.,, T. Ohta,, I. Uchiyama,, T. Baba,, H. Yuzawa,, I. Kobayashi,, L. Cui,, A. Oguchi,, K. Aoki,, Y. Nagai,, J. Lian,, T. Ito,, M. Kanamori,, H. Matsumaru,, A. Maruyama,, H. Murakami,, A. Hosoyama,, Y. Mizutani-Ui,, N. K. Takahashi,, T. Sawano,, R. Inoue,, C. Kaito,, K. Sekimizu,, H. Hirakawa,, S. Kuhara,, S. Goto,, J. Yabuzaki,, M. Kanehisa,, A. Yamashita,, K. Oshima,, K. Furuya,, C. Yoshino,, T. Shiba,, M. Hattori,, N. Ogasawara,, H. Hayashi, and, K. Hiramatsu. 2001. Whole genome sequencing of methicillin-resistant Staphylococcus aureus. Lancet 357:12251240.
81. Lalioui, L., and, C. Le Bouguenec. 2001. afa-8 gene cluster is carried by a pathogenicity island inserted into the tRNA(Phe) of human and bovine pathogenic Escherichia coli isolates. Infect. Immun. 69:937948.
82. Liang, X.,, X. Q. Pham,, M. V. Olson, and, S. Lory. 2001. Identification of a genomic island present in the majority of pathogenic isolates of Pseudomonas aeruginosa. J. Bacteriol. 183:843853.
83. Lindqvist, B. H.,, G. Deho, and, R. Calendar. 1993. Mechanisms of genome propagation and helper exploitation by satellite phage P4. Microbiol. Rev. 57:683702.
84. Lindsay, J. A.,, A. Ruzin,, H. F. Ross,, N. Kurepina, and, R. P. Novick. 1998. The gene for toxic shock toxin is carried by a family of mobile pathogenicity islands in Staphylococus aureus. Mol. Microbiol. 29:527543.
85. Lostroh, C. P., and, C. A. Lee. 2001. The Salmonella pathogenicity island-1 type III secretion system. Microbes Infect. 3:12811291.
86. Lucas, R. L., and, C. A. Lee. 2000. Unravelling the mysteries of virulence gene regulation in Salmonella typhimurium. Mol. Microbiol. 36:10241033.
87. Luck, S. N.,, S. A. Turner,, K. Rajakumar,, H. Sakellaris, and, B. Adler. 2001. Ferric dicitrate transport system (Fec) of Shigella flexneri 2a YSH6000 is encoded on a novel pathogenicity island carrying multiple antibiotic resistance genes. Infect. Immun. 69:60126021.
88. Marie, C.,, W. J. Broughton, and, W. J. Deakin. 2001. Rhizobium type III secretion systems: legume charmers or alarmers? Curr. Opin. Plant Biol. 4:336342.
89. Maurelli, A. T.,, R. E. Fernandez,, C. A. Bloch,, C. K. Rode, and, A. Fasano. 1998. ‘Black holes’ and bacterial pathogenicity: a large genomic deletion that enhances virulence of Shigella spp. and enteroinvasive Escherichia coli. Proc. Natl. Acad. Sci. USA 95:39433948.
90. Mazel, D.,, B. Dychinco,, V. A. Webb, and, J. Davies. 1998. A distinctive class of integron in the Vibrio cholerae genome. Science 280:605608.
91. McClelland, M.,, K. E. Sanderson,, J. Spieth,, S. W. Clifton,, P. Latreille,, L. Courtney,, S. Porwollik,, J. Ali,, M. Dante,, F. Du,, S. Hou,, D. Layman,, S. Leonard,, C. Nguyen,, K. Scott,, A. Holmes,, N. Grewal,, E. Mulvaney,, E. Ryan,, H. Sun,, L. Florea,, W. Miller,, T. Stoneking,, M. Nhan,, R. Waterston, and, R. K. Wilson. 2001. Complete genome sequence of Salmonella enterica serovar Typhimurium LT2. Nature 413:852856.
92. McDaniel, T. K.,, K. G. Jarvis,, M. S. Donnersberg, and, J. B. Kaper. 1995. A genetic locus of enterocyte effacement conserved among diverse enterobacterial pathogens. Proc. Natl. Acad. USA 92:16641668.
93. Mellies, J. L.,, F. Navarro-Garcia,, I. Okeke,, J. Frederickson,, J. P. Nataro, and, J. B. Kaper. 2001. espC pathogenicity island of enteropathogenic Escherichia coli encodes an enterotoxin. Infect. Immun. 69:315324.
94. Middendorf, B.,, B. Hochhut,, K. Leipold,, U. Dobrindt,, G. Blum-Oehler, and, J. Hacker. 2004. Instability of pathogenicity islands in uropathogenic Escherichia coli 536. J. Bacteriol. 186:30863096.
95. Mills, D. M.,, V. Bajaj, and, C. A. Lee. 1995. A 40 kb chromosomal fragment encoding Salmonella typhimurium invasion genes is absent from the corresponding region of the Escherichia coli K-12 chromosome. Mol. Microbiol. 15:749759.
96. Mirold, S.,, W. Rabsch,, M. Rohde,, S. Stender,, H. Tschäpe,, H. Russmann,, E. Igwe, and, W. D. Hardt. 1999. Isolation of a temperate bacteriophage encoding the type III effector protein SopE from an epidemic Salmonella typhimurium strain. Proc. Natl. Acad. Sci. USA 96:98459850.
97. Morschhäuser, J.,, V. Vetter,, L. Emödy, and, J. Hacker. 1994. Adhesin regulatory genes within large, unstable DNA regions of pathogenic Escherichia coli: cross-talk between different adhesin gene clusters. Mol. Microbiol. 11:555566.
98. Moss, J. E.,, T. J. Cardozo,, A. Zychlinsky, and, E. A. Groisman. 1999. The selC- associated SHI-2 pathogenicity island of Shigella flexneri. Mol. Microbiol. 33:7483.
99. Noel, L.,, F. Thieme,, D. Nennstiel, and, U. Bonas. 2002. Two novel type III-secreted proteins of Xanthomonas campestris pv. vesicatoria are encoded within the hrp pathogenicity island. J. Bacteriol. 184:13401348.
100. Novick, R. P.,, P. Schlievert, and, A. Ruzin. 2001. Pathogenicity and resistance islands of staphylococci. Microbes Infect. 3:585594.
101. Ochman, H.,, J. G. Lawrence, and, E. A. Groisman. 2000. Lateral gene transfer and the nature of bacterial innovation. Nature 405:299304.
102. Odenbreit, S., and, R. Haas. 2002. Helicobacter pylori: impact of gene transfer and the role of the cag pathogenicity island for host adaptation and virulence. Curr. Top. Microbiol. Immunol. 264 (II):122.
103. Ölschläger, T. A.,, D. Zhang,, S. Schubert,, E. Carniel,, W. Rabsch,, H. Karch, and, J. Hacker. 2003. The high pathogenicity island is absent in human pathogens of Salmonella enterica subspecies I but present in isolates of subspecies III and VI. J. Bacteriol. 185:11071111.
104. O’Shea, Y. A., and, E. F. Boyd. 2002. Mobilization of the Vibrio pathogenicity island between Vibrio cholerae isolates mediated by CP-T1 generalized transduction. FEMS Microbiol. Lett. 214:153157.
105. Parkhill, J.,, G. Dougan,, K. D. James,, N. R. Thomson,, D. Pickard,, J. Wain,, C. Churcher,, K. L. Mungall,, S. D. Bentley,, M. T. Holden,, M. Sebaihia,, S. Baker,, D. Basham,, K. Brooks,, T. Chillingworth,, P. Connerton,, A. Cronin,, P. Davis,, R. M. Davies,, L. Dowd,, N. White,, J. Farrar,, T. Feltwell,, N. Hamlin,, A. Haque,, T. T. Hien,, S. Holroyd,, K. Jagels,, A. Krogh,, T. S. Larsen,, S. Leather,, S. Moule,, P. O’Gaora,, C. Parry,, M. Quail,, K. Rutherford,, M. Simmonds,, J. Skelton,, K. Stevens,, S. Whitehead, and, B. G. Barrell. 2001. Complete genome sequence of a multiple drug resistant Salmonella enterica serovar Typhi CT18. Nature 413:848852.
106. Perna, N. T.,, G. Plunkett III,, V. Burland,, B. Mau,, J. D. Glasner,, D. J. Rose,, G. F. Mayhew,, P. S. Evans,, J. Gregor,, H. A. Kirkpatrick,, G. Posfai,, J. Hackett,, S. Klink,, A. Boutin,, Y. Shao,, L. Miller,, E. J. Grotbeck,, N. W. Davis,, A. Lim,, E. T. Dimalanta,, K. D. Potamousis,, J. Apodaca,, T. S. Anantharaman,, J. Lin,, G. Yen,, D. C. Schwartz,, R. A. Welch, and, F. R. Blattner. 2001. Genome sequence of enterohaemorrhagic Escherichia coli O157:H7. Nature 409:529533.
107. Piechaczek, K.,, U. Dobrindt,, A. Schierhorn,, G. S. Fischer,, M. Hecker, and, J. Hacker. 2000. Influence of pathogenicity islands and the minor leuX-encoded tRNA5Leu on the proteome pattern of the uropathogenic Escherichia coli strain 536. Int. J. Med. Microbiol. 290:7584.
108. Podbielski, A.,, M. Woischnik,, B. Pohl, and, K. H. Schmidt. 1996. What is the size of the group A streptococcal vir regulon? The Mga regulator affects expression of secreted and surface virulence factors. Med. Microbiol. Immunol. 185:171181.
109. Preston, G. M.,, B. Haubold, and, P. B. Rainey. 1998. Bacterial genomics and adaptation to life on plants: implications for the evolution of pathogenicity and symbiosis. Curr. Opin. Microbiol. 1:589597.
110. Rajakumar, K.,, C. Sasakawa, and, B. Adler. 1997. Use of a novel approach, termed island probing, identifies the Shigella flexneri she pathogenicity island which encodes a homolog of the immunoglobulin A protease-like family of proteins. Infect. Immun. 65:46064614.
111. Rakin, A.,, C. Noelting,, P. Schropp, and, J. Heesemann. 2001. Integrative module of the high-pathogenicity island of Yersinia. Mol. Microbiol. 39:407415.
112. Rasko, D. A.,, J. A. Phillips,, X. Li, and, H. L. Mobley. 2001. Identification of DNA sequences from a second pathogenicity island of uropathogenic Escherichia coli CFT073: probes specific for uropathogenic populations. J. Infect. Dis. 184:10411049.
113. Ravatn, R.,, S. Studer,, A. J. Zehnder, and, J. R. van der Meer. 1998. Int-B13, an unusual site-specific recombinase of the bacteriophage P4 integrase family, is responsible for chromosomal insertion of the 105-kilobase clc element of Pseudomonas sp. strain B13. J. Bacteriol. 180:55055514.
114. Redford, P., and, R. A. Welch. 2002. Extraintestinal Escherichia coli as a model system for the study of pathogenicity islands. Curr. Top. Microbiol. Immunol. 264:1530.
115. Reiter, W.-D.,, P. Palm, and, S. Yeats. 1989. Transfer RNA genes frequently serve as integration sites for prokaryotic genetic elements. Nucleic Acids Res. 17:19071914.
116. Ritter, A.,, D. L. Gally,, P. B. Olsen,, U. Dobrindt,, A. Friedrich,, P. Klemm, and, J. Hacker. 1997. The PAI-associated leuX specific tRNA5Leu affects type1 fimbriation in pathogenic E. coli by control of FimB recombinase expression. Mol. Microbiol. 25:871882.
117. Rowe-Magnus, D. A.,, A.-M. Guerout,, P. Ploncard,, B. Dychinco,, J. Davies, and, D. Mazel. 2001. The evolutionary history of chromosomal super-integrons provides an ancestry for multiresistant integrons. Proc. Natl. Acad. Sci. USA 98:652657.
118. Ruzin, A.,, J. Lindsay, and, R. P. Novick. 2001. Molecular genetics of SaPI1—a mobile pathogenicity island in Staphylococcus aureus. Mol. Microbiol. 41:365377.
119. Salanoubat, M.,, S. Genin,, F. Artiguenave,, J. Gouzy,, S. Mangenot,, M. Arlat,, A. Billault,, P. Brottier,, J. C. Camus,, L. Cattolico,, M. Chandler,, N. Choisne,, C. Claudel-Renard,, S. Cunnac,, N. Demange,, C. Gaspin,, M. Lavie,, A. Moisan,, C. Robert,, W. Saurin,, T. Schiex,, P. Siguier,, P. Thebault,, M. Whalen,, P. Wincker,, M. Levy,, J. Weissenbach, and, C. A. Boucher. 2002. Genome sequence of the plant pathogen Ralstonia solanacearum. Nature 415:497502.
120. Salyers, A. A.,, N. B. Shoemaker,, A. M. Stevens, and, L.-Y. Li. 1995. Conjugative transposons: an unusual and diverse set of integrated gene transfer elements. Microbiol. Rev. 59:579590.
121. Schmidt, H., and, M. Hensel. 2004. Pathogenicity islands in bacterial pathogenesis. Clin. Microbiol. Rev. 17:1456.
122. Schmidt, H.,, W. L. Zhang,, U. Hemmrich,, S. Jelacic,, W. Brunder,, P. I. Tarr,, U. Dobrindt,, J. Hacker, and, H. Karch. 2001. Identification and characterization of a novel genomic island integrated at selC in locus of enterocyte effacement-negative, Shiga toxin-producing Escherichia coli. Infect. Immun. 69:68636873.
123. Schneider, G.,, U. Dobrindt,, H. Brüggemann,, G. Nagy,, B. Janke,, G. Blum-Oehler,, C. Buchrieser,, G. Gottschalk,, L. Emödy, and, J. Hacker. 2004. The pathogenicity island-associated K15 capsule determinant exhibits a novel genetic structure and correlates with virulence in uropathogenic Escherichia coli strain 536. Infect. Immun. 72:59936001.
124. Schubert, S.,, S. Dufke,, J. Sorsa, and, J. Heesemann. 2004. A novel integrative and conjugative element (ICE) of Escherichia coli: the putative progenitor of the Yersinia high-pathogenicity island. Mol. Microbiol. 51:837848.
125. Schubert, S.,, A. Rakin,, H. Karch,, E. Carniel, and, J. Heesemann. 1998. Prevalence of the ‘high-pathogenicity island’ of Yersinia species among Escherichia coli strains that are pathogenic to humans. Infect. Immun. 66:480485.
126. Scott, J. R., and, G. G. Churchward. 1995. Conjugative transposition. Annu. Rev. Microbiol. 49:367397.
127. Selbach, M.,, S. Moese,, R. Hurwitz,, C. R. Hauck,, T. F. Meyer, and, S. Backert. 2003. The Helicobacter pylori CagA protein induces cortactin dephosphorylation and actin rearrangement by c-Src inactivation. EMBO J. 22:515528.
128. Shankar, N.,, A. S. Baghdayan, and, M. S. Gilmore. 2002. Modulation of virulence within a pathogenicity island in vancomycin-resistant Enterococcus faecalis. Nature 417:746750.
129. So, M., and, B. J. McCarthy. 1980. Nucleotide sequence of the bacterial transposon Tn1681 encoding a heat-stable (ST) toxin and its identification in enterotoxigenic Escherichia coli strains. Proc. Natl. Acad. Sci. USA 77:40114015.
130. Sperandio, V.,, J. B. Kaper,, M. R. Bortolini,, B. C. Neves,, R. Keller, and, L. R. Trabulsi. 1998. Characterization of the locus of enterocyte effacement (LEE) in different enteropathogenic Escherichia coli (EPEC) and Shiga-toxin producing Escherichia coli (STEC) serotypes. FEMS Microbiol. Lett. 164:133139.
131. Stein, M. A.,, K. Y. Leung,, M. Zwick,, F. Garcia-del Portillo, and, B. B. Finlay. 1996. Identification of a Salmonella virulence gene required for formation of filamentous structures containing lysosomal membrane glycoproteins within epithelial cells. Mol. Microbiol. 20:151164.
132. Sullivan, J. T., and, C. W. Ronson. 1998. Evolution of rhizobia by acquisition of a 500 kb symbiosis island that integrates into a phe-tRNA gene. Proc. Natl. Acad. Sci. USA 95:51455149.
133. Sullivan, J. T.,, J. R. Trzebiatowski,, R. W. Cruickshank,, J. Gouzy,, S. D. Brown,, R. M. Elliot,, D. J. Fleetwood,, N. G. McCallum,, U. Rossbach,, G. S. Stuart,, J. E. Weaver,, R. J. Webby,, F. J. De Bruijn, and, C. W. Ronson. 2002. Comparative sequence analysis of the symbiosis island of Mesorhizobium loti strain R7A. J. Bacteriol. 184:30863095.
134. Swenson, D. L.,, N. O. Bukanov,, D. E. Berg, and, R. A. Welch. 1996. Two pathogenicity islands in uropathogenic Escherichia coli J96: cosmid cloning and sample sequencing. Infect. Immun. 64:37363743.
135. Tauschek, M.,, R. A. Strugnell, and, R. M. Robins-Browne. 2002. Characterization and evidence of mobilization of the LEE pathogenicity island of rabbit-specific strains of enteropathogenic Escherichia coli. Mol. Microbiol. 44:15331550.
136. Tinker, J. K., and, S. Clegg. 2001. Control of FimY translation and type 1 fimbrial production by the arginine tRNA encoded by fimU in Salmonella enterica serovar Typhimurium. Mol. Microbiol. 40:757768.
137. van der Meer, J. R.,, R. Ravatn, and, V. Sentchilo. 2001. The clc element of Pseudomonas sp. strain B13 and other mobile degradative elements employing phage-like integrases. Arch. Microbiol. 175:7985.
138. Van Sluys, M. A.,, C. B. Monteiro-Vitorello,, L. E. Camargo,, C. F. Menck,, A. C. Da Silva,, J. A. Ferro,, M. C. Oliveira,, J. C. Setubal,, J. P. Kitajima, and, A. J. Simpson. 2002. Comparative genomic analysis of plant-associated bacteria. Annu. Rev. Phytopathol. 40:169189.
139. Vokes, S. A.,, S. A. Reeves,, A. G. Torres, and, S. M. Payne. 1999. The aerobactin iron transport system genes in Shigella flexneri are present within a pathogenictiy island. Mol. Microbiol. 33:6373.
140. Waldor, M. K., and, J. J. Mekalanos. 1996. Lysogenic conversion by a filamentous phage encoding cholera toxin. Science 272:19101914.
141. Welch, R. A.,, V. Burland,, G. Plunkett III,, P. Redford,, P. Roesch,, D. Rasko,, E. L. Buckles,, S. R. Liou,, A. Boutin,, J. Hackett,, D. Stroud,, G. F. Mayhew,, D. J. Rose,, S. Zhou,, D. C. Schwartz,, N. T. Perna,, H. L. Mobley,, M. S. Donnenberg, and, F. R. Blattner. 2002. Extensive mosaic structure revealed by the complete genome sequence of uropathogenic Escherichia coli. Proc. Natl. Acad. Sci. USA 99:1702017024.
142. Whittam, T. S.,, M. L. Wolfe, and, R. A. Wilson. 1989. Genetic relationships among Escherichia coli isolates causing urinary tract infections in humans and animals. Epidemiol. Infect. 102:3746.
143. Whittle, G.,, G. A. Bloomfield,, M. E. Katz, and, B. F. Cheetham. 1999. The site-specific integration of genetic elements may modulate thermostable protease production, a virulence factor in Dichelobacter nodosus, the causative agent of ovine footrot. Microbiology 145:28452855.
144. Williams, K. P. 2002. Integration sites for genetic elements in prokaryotic tRNA and tmRNA genes: sublocation preference of integrase subfamilies. Nucleic Acids Res. 30:866875.
145. Wong, K. K.,, M. McClelland,, L. C. Stillwell,, E. C. Sisk,, S. J. Thurston, and, J. D. Saffer. 1998. Identification and sequence analysis of a 27-kilobase chromosomal fragment containing a Salmonella pathogenicity island located at 92 minutes on the chromosome map of Salmonella enterica serovar Typhimurium LT2. Infect. Immun. 66:33653371.
146. Wood, M. W.,, M. A. Jones,, P. R. Watson,, S. Hedges,, T. S. Wallis, and, E. E. Galyov. 1998. Identification of a pathogenicity island required for Salmonella enteropathogenicity. Mol. Microbiol. 29:883891.
147. Yamaguchi, T.,, K. Nishifuji,, M. Sasaki,, Y. Fudaba,, M. Aepfelbacher,, T. Takata,, M. Ohara,, H. Komatsuzawa,, M. Amagai, and, M. Sugai. 2002. Identification of the Staphylococcus aureus etd pathogenicity island which encodes a novel exfoliative toxin, ETD, and EDIN-B. Infect. Immun. 70:58355845.
148. Yarwood, J. M.,, J. K. McCormick,, M. L. Paustian,, P. M. Orwin,, V. Kapur, and, P. M. Schlievert. 2002. Characterization and expression analysis of Staphylococcus aureus pathogenicity island 3. Implications for the evolution of staphylococcal pathogenicity islands. J. Biol. Chem. 277:1313813147.
149. Zhu, C.,, T. S. Agin,, S. J. Elliott,, L. A. Johnson,, T. E. Thate,, J. B. Kaper, and, E. C. Boedeker. 2001. Complete nucleotide sequence and analysis of the locus of enterocyte effacement from rabbit diarrheagenic Escherichia coli RDEC-1. Infect. Immun. 69:21072115.

Tables

Generic image for table
TABLE 1

Properties of mobile genetic elements

Citation: Hochhut B, Dobrindt U, Hacker J. 2006. The Contribution of Pathogenicity Islands to the Evolution of Bacterial Pathogens, p 83-107. In Seifert H, DiRita V (ed), Evolution of Microbial Pathogens. ASM Press, Washington, DC. doi: 10.1128/9781555815622.ch5
Generic image for table
TABLE 2

Pathogenicity islands (PAIs) or PAI-like structures of pathogenic enterobacteria”

Citation: Hochhut B, Dobrindt U, Hacker J. 2006. The Contribution of Pathogenicity Islands to the Evolution of Bacterial Pathogens, p 83-107. In Seifert H, DiRita V (ed), Evolution of Microbial Pathogens. ASM Press, Washington, DC. doi: 10.1128/9781555815622.ch5
Generic image for table
TABLE 3

PAIs of other gram-negative bacteria

Citation: Hochhut B, Dobrindt U, Hacker J. 2006. The Contribution of Pathogenicity Islands to the Evolution of Bacterial Pathogens, p 83-107. In Seifert H, DiRita V (ed), Evolution of Microbial Pathogens. ASM Press, Washington, DC. doi: 10.1128/9781555815622.ch5
Generic image for table
TABLE 4

PAIs of gram-positive bacteria

Citation: Hochhut B, Dobrindt U, Hacker J. 2006. The Contribution of Pathogenicity Islands to the Evolution of Bacterial Pathogens, p 83-107. In Seifert H, DiRita V (ed), Evolution of Microbial Pathogens. ASM Press, Washington, DC. doi: 10.1128/9781555815622.ch5
Generic image for table
TABLE 5

Genomic islands (GEIs) and their encoded functions

Citation: Hochhut B, Dobrindt U, Hacker J. 2006. The Contribution of Pathogenicity Islands to the Evolution of Bacterial Pathogens, p 83-107. In Seifert H, DiRita V (ed), Evolution of Microbial Pathogens. ASM Press, Washington, DC. doi: 10.1128/9781555815622.ch5

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error