Chapter 8 : Evolution of Pathogens in Soil

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in

Evolution of Pathogens in Soil, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555815622/9781555813000_Chap08-1.gif /docserver/preview/fulltext/10.1128/9781555815622/9781555813000_Chap08-2.gif


This chapter discusses the genetic diversity within the soil environment and some of the mechanisms that generate genetic diversity within soil-dwelling bacteria. It highlights how the physical and chemical (abiotic) properties of the soil and the living organisms (biotic) within the soil might act as selective forces on existing genetic variations, and how they contribute to the evolution of bacterial pathogens in the soil. It talks about the broadly conserved community behaviors intrinsic to the survival of soil bacteria and their relevance to pathogenesis. Many bacterial pathogens of vertebrates are either members or evolutionarily close relatives of the natural soil microflora. Some of these pathogens are able to survive outside their vertebrate hosts, either as soil saprophytes or within invertebrate hosts. In order to survive within the soil, have had both to adapt to the physicochemical properties of the soil and to escape predation by bacteria-feeding protozoans and nematodes in the soil. Like protozoa, many insects and free-living soil nematodes use bacteria as food. The innate immune response is an immediate first, and for invertebrates the only, line of cellular-based defense against virulent pathogens. The chapter presents examples that illustrate how some highly conserved bacterial community behaviors have allowed some soil microbes to successfully make the transition to human pathogens. Most prokaryotes found throughout the Earth’s soils live not as single planktonic cells, but in populations of biofilms. Most bacteria species exist in the soil as biofilms, an environment that brings many different strains of bacteria into close contact.

Citation: Muir R, Tan M. 2006. Evolution of Pathogens in Soil, p 131-146. In Seifert H, DiRita V (ed), Evolution of Microbial Pathogens. ASM Press, Washington, DC. doi: 10.1128/9781555815622.ch8

Key Concept Ranking

Bacteria and Archaea
Highlighted Text: Show | Hide
Loading full text...

Full text loading...


1. Barksdale, L., and, S. B. Arden. 1974. Persisting bacteriophage infections, lysogeny, and phage conversions. Annu. Rev. Microbiol. 28:265299.
2. Bentley, S. D.,, K. F. Chater,, A. M. Cerdeno-Tarraga,, G. L. Challis,, N. R. Thomson,, K. D. James,, D. E. Harris,, M. A. Quail,, H. Kieser,, D. Harper,, A. Bateman,, S. Brown,, G. Chandra,, C. W. Chen,, M. Collins,, A. Cronin,, A. Fraser,, A. Goble,, J. Hidalgo,, T. Hornsby,, S. Howarth,, C. H. Huang,, T. Kieser,, L. Larke,, L. Murphy,, K. Oliver,, S. O’Neil,, E. Rabbinowitsch,, M. A. Rajandream,, K. Rutherford,, S. Rutter,, K. Seeger,, D. Saunders,, S. Sharp,, R. Squares,, S. Squares,, K. Taylor,, T. Warren,, A. Wietzorrek,, J. Woodward,, B. G. Barrell,, J. Parkhill, and, D. A. Hopwood. 2002. Complete genome sequence of the model actinomycete Streptomyces coelicolor A3(2). Nature 417:141147.
3. Bossi, L.,, J. A. Fuentes,, G. Mora, and, N. Figueroa-Bossi. 2003. Prophage contribution to bacterial population dynamics. J. Bacteriol. 185:64676471.
4. Braun, V. 2001. Iron uptake mechanisms and their regulation in pathogenic bacteria. Int. J. Med. Micro-biol. 291:6779.
5. Brown, M. R. W., and, J. Barker. 1999. Unexplored reservoirs of pathogenic bacteria: protozoa and biofilms. Trends Microbiol. 7:4650.
6. Brussow, H.,, C. Canchaya, and, W. D. Hardt. 2004. Phages and the evolution of bacterial pathogens: from genomic rearrangements to lysogenic conversion. Microbiol. Mol. Biol. Rev. 68:560602, table of contents.
7. Cao, H.,, R. L. Baldini, and, L. G. Rahme. 2001. Common mechanisms for pathogens of plants and animals. Annu. Rev. Phytopathol. 39:259284.
8. Cellier, M. F.,, I. Bergevin,, E. Boyer, and, E. Richer. 2001. Polyphyletic origins of bacterial Nramp transporters. Trends Genet. 17:365370.
9. Culham, D. E.,, C. Dalgado,, C. L. Gyles,, D. Mamelak,, S. MacLellan, and, J. M. Wood. 1998. Osmoregulatory transporter ProP influences colonization of the urinary tract by Escherichia coli. Microbiology 144:91102.
10. Demaneche, S.,, E. Kay,, F. Gourbiere, and, P. Simonet. 2001. Natural transformation of Pseudomonas fluorescens and Agrobacterium tumefaciens in soil. Appl. Environ. Microbiol. 67:26172621.
11. Dubnau, D. 1999. DNA uptake in bacteria. Annu. Rev. Microbiol. 53:217244.
12. Fields, B. 1996. The molecular ecology of legionellae. Trends Microbiol. 4:286290.
13. Figueroa-Bossi, N., and, L. Bossi. 1999. Inducible prophages contribute to Salmonella virulence in mice. Mol. Microbiol. 33:167176.
14. Fliermans, C. B.,, W. B. Cherry,, L. H. Orrison,, S. J. Smith,, D. L. Tison, and, D. H. Pope. 1981. Ecological distribution of Legionella pneumophila. Appl. Environ. Microbiol. 41:916.
15. Forbes, J. R., and, P. Gros. 2001. Divalent-metal transport by NRAMP proteins at the interface of host-pathogen interactions. Trends Microbiol. 9:397403.
16. Fraser, C. M.,, J. D. Gocayne,, O. White,, M. D. Adams,, R. A. Clayton,, R. D. Fleischmann,, C. J. Bult,, A. R. Kerlavage,, G. Sutton,, J. M. Kelley, et al. 1995. The minimal gene complement of Mycoplasma genitalium. Science 270:397403.
17. Freeman, V. J. 1951. Studies on the virulence of bacteriophage-infected strains of Corynebacterium diphtheriae. J. Bacteriol. 61:675688.
18. Freiberg, C.,, R. Fellay,, A. Bairoch,, W. J. Broughton,, A. Rosenthal, and, X. Perret. 1997. Molecular basis of symbiosis between Rhizobium and legumes. Nature 387:394401.
19. Fux, C. A.,, J. W. Costerton,, P. S. Stewart, and, P. Stoodley. 2005. Survival strategies of infectious biofilms. Trends Microbiol. 13:3440.
20. Gotz, F. 2002. Staphylococcus and biofilms. Mol. Microbiol. 43:13671378.
21. Govan, J. R., and, V. Deretic. 1996. Microbial pathogenesis in cystic fibrosis: mucoid Pseudomonas aeruginosa and Burkholderia cepacia. Microbiol. Rev. 60:539574.
22. Groscop, J. A., and, M. M. Brent. 1964. The effects of selected strains of pigmented microorganisms on small free-living amoebae. Can. J. Microbiol. 10:579584.
23. Hacker, J., and, E. Carniel. 2001. Ecological fitness, genomic islands and bacterial pathogenicity. A Darwinian view of the evolution of microbes. EMBO Rep. 2:376381.
24. Hall-Stoodley, L.,, J. W. Costerton, and, P. Stoodley. 2004. Bacterial biofilms: from the natural environment to infectious diseases. Nat. Rev. Microbiol. 2:95108.
25. Han, Z. S.,, H. Enslen,, X. Hu,, X. Meng,, I. H. Wu,, T. Barrett,, R. J. Davis, and, Y. T. Ip. 1998. A conserved p38 mitogen-activated protein kinase pathway regulates Drosophila immunity gene expression. Mol. Cell. Biol. 18:35273539.
26. Harb, O. S.,, L. Y. Gao, and, Y. A. Kwaik. 2000. From protozoa to mammalian cells: a new paradigm in the life cycle of intracellular bacterial pathogens. Environ. Microbiol. 2:251265.
27. Hardalo, C., and, S. C. Edberg. 1997. Pseudomonas aeruginosa: assessment of risk from drinking water. Crit. Rev. Microbiol. 23:4775.
28. Helgason, E.,, O. A. Okstad,, D. A. Caugant,, H. A. Johansen,, A. Fouet,, M. Mock,, I. Hegna, and, A.-B. Kolsto. 2000. Bacillus anthracis, Bacillus cereus, and Bacillus thuringiensis—one species on the basis of genetic evidence. Appl. Environ. Microbiol. 66:26272630.
29. Hoffmann, J. A. 2003. The immune response of Drosophila. Nature 426:3338.
30. Jakubovics, N. S., and, H. F. Jenkinson. 2001. Out of the iron age: new insights into the critical role of manganese homeostasis in bacteria. Microbiology 147:17091718.
31. Janakiraman, A., and, J. M. Slauch. 2000. The putative iron transport system SitABCD encoded on SPI1 is required for full virulence of Salmonella typhimurium. Mol. Microbiol. 35:11461155.
32. Kehres, D. G., and, M. E. Maguire. 2003. Emerging themes in manganese transport, biochemistry and pathogenesis in bacteria. FEMS Microbiol. Rev. 27:263290.
33. Kehres, D. G.,, M. L. Zaharik,, B. B. Finlay, and, M. E. Maguire. 2000. The NRAMP proteins of Salmonella typhimurium and Escherichia coli are selective manganese transporters involved in the response to reactive oxygen. Mol. Microbiol. 36:10851100.
34. Kim, D. H.,, R. Feinbaum,, G. Alloing,, F. E. Emerson,, D. A. Garsin,, H. Inoue,, M. Tanaka-Hino,, N. Hisamoto,, K. Matsumoto,, M. W. Tan, and, F. M. Ausubel. 2002. A conserved p38 MAP kinase pathway in Caenorhabditis elegans innate immunity. Science 297:623626.
35. Koch, C., and, N. Hoiby. 1993. Pathogenesis of cystic fibrosis. Lancet 341:10651069.
36. Kwaik, Y. A.,, L. Y. Gao,, B. J. Stone, and, O. S. Harb. 1998. Invasion of mammalian and protozoan cells by Legionella pneumophila. Bull. Inst. Pasteur 96:237247.
37. Kyriakis, J. M., and, J. Avruch. 2001. Mammalian mitogen-activated protein kinase signal transduction pathways activated by stress and inflammation. Physiol. Rev. 81:807869.
38. Lau, G. W.,, H. Ran,, F. Kong,, D. J. Hassett, and, D. Mavrodi. 2004. Pseudomonas aeruginosa pyocyanin is critical for lung infection in mice. Infect. Immun. 72:42754278.
39. Lorenz, M. G., and, W. Wackernagel. 1994. Bacterial gene transfer by natural genetic transformation in the environment. Microbiol. Rev. 58:563602.
40. Lugtenberg, B. J.,, L. Dekkers, and, G. V. Bloemberg. 2001. Molecular determinants of rhizosphere colonization by Pseudomonas. Annu. Rev. Phytopathol. 39:461490.
41. Mahajan-Miklos, S.,, M.-W. Tan,, L. G. Rahme, and, F. M. Ausubel. 1999. Molecular mechanisms of bacterial virulence elucidated using a Pseudomonas aeruginosa-Caenorhabditis elagans pathogenesis model. Cell 96:4756.
42. Messenger, A. J., and, J. M. Turner. 1981. Effect of secondary metabolite production on the growth rate and variability of a pseudomonad. Soc. Gen. Microbiol. Quarterly 8:22632264.
43. Mirold, S.,, W. Rabsch,, M. Rohde,, S. Stender,, H. Tschape,, H. Russmann,, E. Igwe, and, W. D. Hardt. 1999. Isolation of a temperate bacteriophage encoding the type III effector protein SopE from an epidemic Salmonella typhimurium strain. Proc. Natl. Acad. Sci. USA 96:98459850.
44. Molofsky, A. B., and, M. S. Swanson. 2004. Differentiate to thrive: lessons from the Legionella pneumophila life cycle. Mol. Microbiol. 53:2940.
45. Mouslim, C.,, F. Hilbert,, H. Huang, and, E. A. Groisman. 2002. Conflicting needs for a Salmonella hypervirulence gene in host and non-host environments. Mol. Microbiol. 45:10191027.
46. Muder, R. R.,, V. L. Yu, and, A. H. Woo. 1986. Mode of transmission of Legionella pneumophila. Arch. Intern. Med. 146:16071612.
47. Nogueira, M. C.,, O. A. Oyarzabal, and, D. E. Gombas. 2003. Inactivation of Escherichia coli O157:H7, Listeria monocytogenes, and Salmonella in cranberry, lemon, and lime juice concentrates. J. Food Prot. 66:16371641.
48. Ochman, H.,, J. G. Lawrence, and, E. A. Groisman. 2000. Lateral gene transfer and the nature of bacterial innovation. Nature 405:299304.
49. Okinaka, R.,, K. Cloud,, O. Hampton,, A. Hoffmaster,, K. Hill,, P. Keim,, T. Koehler,, G. Lamke,, S. Kumano,, D. Manter,, Y. Martinez,, D. Ricke,, R. Svensson, and, P. Jackson. 1999. Sequence, assembly and analysis of pX01 and pX02. J. Appl. Microbiol. 87:261262.
50. Olczak, T.,, W. Simpson,, X. Liu, and, C. A. Genco. 2005. Iron and heme utilization in Porphyromonas gingivalis. FEMS Microbiol. Rev. 29:119144.
51. Pujol, N.,, E. M. Link,, L. X. Liu,, C. L. Kurz,, G. Alloing,, M. W. Tan,, K. P. Ray,, R. Solari,, C. D. Johnson, and, J. J. Ewbank. 2001. A reverse genetic analysis of components of the Toll signaling pathway in Caenorhabditis elegans. Curr. Biol. 11:809821.
52. Radnedge, L.,, P. G. Agron,, K. K. Hill,, P. J. Jackson,, L. O. Ticknor,, P. Keim, and, G. L. Andersen. 2003. Genome differences that distinguish Bacillus anthracis from Bacillus cereus and Bacillus thuringiensis. Appl. Environ. Microbiol. 69:27552764.
53. Ratledge, C., and, L. G. Dover. 2000. Iron metabolism in pathogenic bacteria. Annu. Rev. Microbiol. 54:881941.
54. Raz, R.,, B. Chazan, and, M. Dan. 2004. Cranberry juice and urinary tract infection. Clin. Infect. Dis. 38:14131419.
55. Rock, F. L.,, G. Hardiman,, J. C. Timans,, R. A. Kastelein, and, J. F. Bazan. 1998. A family of human receptors structurally related to Drosophila Toll. Proc. Natl. Acad. Sci. USA 95:588593.
56. Salamitou, S.,, F. Ramisse,, M. Brehelin,, D. Bourguet,, N. Gilois,, M. Gominet,, E. Hernandez, and, D. Lereclus. 2000. The plcR regulon is involved in the opportunistic properties of Bacillus thuringiensis and Bacillus cereus in mice and insects. Microbiology 146 (Pt. 11):28252832.
57. Schmidt, B. M.,, A. B. Howell,, B. McEniry,, C. T. Knight,, D. Seigler,, J. W. Erdman, Jr., and, M. A. Lila. 2004. Effective separation of potent antiproliferation and antiadhesion components from wild blueberry (Vaccinium angustifolium Ait.) fruits. J. Agric. Food Chem. 52:64336442.
58. Sikorski, J.,, S. Graupner,, M. G. Lorenz, and, W. Wackernagel. 1998. Natural genetic transformation of Pseudomonas stutzeri in a non-sterile soil. Microbiology 144 (Pt. 2):569576.
59. Singh, B. N. 1945. The selection of bacterial food by soil amoeba, and the toxic effects of bacterial pigments and other products on soil protozoa. Br. J. Exp. Pathol. 26:316325.
60. Singh, K. V.,, T. M. Coque,, G. M. Weinstock, and, B. E. Murray. 1998. In vivo testing of an Enterococcus faecalis efaA mutant and use of efaA homologs for species identification. FEMS Immunol. Med. Microbiol. 21:323331.
61. Sleator, R. D.,, C. G. Gahan, and, C. Hill. 2003. A postgenomic appraisal of osmotolerance in Listeria monocytogenes. Appl. Environ. Microbiol. 69:19.
62. Sleator, R. D., and, C. Hill. 2001. Bacterial osmoadaptation: the role of osmolytes in bacterial stress and virulence. FEMS Microbiol. Rev. 26:4971.
63. Sleator, R. D.,, J. Wouters,, C. G. Gahan,, T. Abee, and, C. Hill. 2001. Analysis of the role of OpuC, an osmolyte transport system, in salt tolerance and virulence potential of Listeria monocyto-genes. Appl. Environ. Microbiol. 67:26922698.
64. Steinert, M.,, U. Hentschel, and, J. Hacker. 2002. Legionella pneumophila: an aquatic microbe goes astray. FEMS Microbiol. Rev. 26:149162.
65. Swanson, M. S., and, B. K. Hammer. 2000. Legionella pneumophila pathogenesis: a fateful journey from amobae to macrophages. Annu. Rev. Microbiol. 54:567613.
66. Takeda, K., and, S. Akira. 2004. TLR signaling pathways. Semin. Immunol. 16:39.
67. Tan, M.-W. 2002. Cross-species infections and their analysis. Annu. Rev. Microbiol. 56:539565.
68. Valentine, P. J.,, B. P. Devore, and, F. Heffron. 1998. Identification of three highly attenuated Salmonella typhimurium mutants that are more immunogenic and protective in mice than a prototypical aroA mutant. Infect. Immun. 66:33783383.
69. von Eiff, C.,, C. Heilmann,, M. Herrmann, and, G. Peters. 1999. Basic aspects of the pathogenesis of staphylococcal polymer-associated infections. Infection 27 (Suppl. 1):S7S10.
70. Westall, F.,, M. J. de Wit,, J. Dann,, S. van der Gaast,, C. E. J. de Ronde, and, D. Gerneke. 2001. Early Archean fossil bacteria and biofilms in hydrothermally-influenced sediments from the Barberton greenstone belt, South Africa. Precambrian Res. 106:93116.
71. Winfield, M. D., and, E. A. Groisman. 2003. Role of nonhost environments in the lifestyles of Salmonella and Escherichia coli. Appl. Environ. Microbiol. 69:36873694.
72. Yesilkaya, H.,, A. Kadioglu,, N. Gingles,, J. E. Alexander,, T. J. Mitchell, and, P. W. Andrew. 2000. Role of manganese-containing superoxide dismutase in oxidative stress and virulence of Streptococcus pneumoniae. Infect. Immun. 68:28192826.
73. Zaharik, M. L.,, V. L. Cullen,, A. M. Fung,, S. J. Libby,, S. L. Kujat Choy,, B. Coburn,, D. G. Kehres,, M. E. Maguire,, F. C. Fang, and, B. B. Finlay. 2004. The Salmonella enterica serovar Typhimurium divalent cation transport systems MntH and SitABCD are essential for virulence in an Nramp1G169 murine typhoid model. Infect. Immun. 72:55225525.
74. Zhang, S.,, R. L. Santos,, R. M. Tsolis,, S. Mirold,, W. D. Hardt,, L. G. Adams, and, A. J. Baumler. 2002. Phage mediated horizontal transfer of the sopE1 gene increases enteropathogenicity of Salmonella enterica serotype Typhimurium for calves. FEMS Microbiol. Lett. 217:243247.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error