1887

Chapter 14 : Group A and : Evolution, Reemergence, and Strain Diversification

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in
Zoomout

Group A and : Evolution, Reemergence, and Strain Diversification, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555815622/9781555813000_Chap14-1.gif /docserver/preview/fulltext/10.1128/9781555815622/9781555813000_Chap14-2.gif

Abstract:

This chapter highlights key aspects of the genetic variation present in group A (GAS), and relates this diversity to the evolution, reemergence, and strain diversification of this biomedically important human pathogen. Acquisition of the phage encoding these genes is thought to have contributed to the evolution of virulent from its closely related but benign putative ancestor, . Important advances in our understanding of the evolution of have been made in recent years. Genetic analysis of natural populations of in the late 1980s/early1990s provided the first estimates of the degree of genetic variation among strains associated with disease and resulted in novel insights about the evolutionary relationships of strains. Other strain analysis methods have confirmed the multiclone theory of MRSA evolution, including multilocus sequence typing, ribotyping, and pulsed-field gel electrophoresis. To investigate the evolution of RD13 and the Vr, phylogenetic trees were constructed based on DNA sequence of the conserved region of RD13 and the variable set genes. Genome-scale investigation of allelic variation, population genetics, and host interactions has provided answers to longstanding controversies, such as the evolution of methicillin-resistant strains of and the emergence of toxic shock syndrome (TSS), and provided substrates for new testable hypotheses. Genome-scale investigation of allelic variation, population genetics, and host interactions has provided answers to long-standing controversies, such as the evolution of methicillin-resistant strains of and the emergence of TSS, and provided substrates for new testable hypotheses.

Citation: Reid S, Fitzgerald J, Beres S, Green N, Musser J. 2006. Group A and : Evolution, Reemergence, and Strain Diversification, p 251-272. In Seifert H, DiRita V (ed), Evolution of Microbial Pathogens. ASM Press, Washington, DC. doi: 10.1128/9781555815622.ch14
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of FIGURE 1
FIGURE 1

Variation in the number, integration site, and virulence gene complement of GAS prophage. The core GAS genome is shown (~1.7 Mb), and phage integration sites are indicated by triangles. The recipient strain is indicated within each triangle. The prophages of each strain are numbered clockwise from the origin of replication (Ori). Stacked triangles indicate that the phages share the same chromosomal integration site. Strain-to-strain variation in phage content and phage-encoded virulence factors may substantially alter strain virulence, resistance to the host innate immune response, and the landscape of the GAS cell surface. This variation may complicate development of novel therapeutics and vaccination strategies. Modified from reference .

Citation: Reid S, Fitzgerald J, Beres S, Green N, Musser J. 2006. Group A and : Evolution, Reemergence, and Strain Diversification, p 251-272. In Seifert H, DiRita V (ed), Evolution of Microbial Pathogens. ASM Press, Washington, DC. doi: 10.1128/9781555815622.ch14
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2
FIGURE 2

Split decomposition analysis of 12 genes from 12 GAS strains representing different M serotypes. The advantage of split decomposition analysis is that it allows us to visualize the extent of past recombination depicted by the number of separate evolutionary branches. Each branch represents one possible pathway to explain the extant state. The more weblike the pathways, the greater the contribution of recombination. In this case, a large number of alternate evolutionary pathways are predicted, underscoring the importance of genetic exchange in the evolution of GAS. Modified from reference .

Citation: Reid S, Fitzgerald J, Beres S, Green N, Musser J. 2006. Group A and : Evolution, Reemergence, and Strain Diversification, p 251-272. In Seifert H, DiRita V (ed), Evolution of Microbial Pathogens. ASM Press, Washington, DC. doi: 10.1128/9781555815622.ch14
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 3
FIGURE 3

Evolutionary model of the recent emergence of a new, unusually virulent subclone of serotype M3 GAS. A single amino acid change in streptococcal pyrogenic exotoxin A (SpeA) and the stepwise acquisition of the bacteriophage-encoded virulence factors streptococcal superantigen (SSA), streptococcal phospholipase A (Sla), and streptococcal pyrogenic exotoxin K (SpeK) have led to the emergence and widespread dissemination of this M3 subclone. Modified from references and .

Citation: Reid S, Fitzgerald J, Beres S, Green N, Musser J. 2006. Group A and : Evolution, Reemergence, and Strain Diversification, p 251-272. In Seifert H, DiRita V (ed), Evolution of Microbial Pathogens. ASM Press, Washington, DC. doi: 10.1128/9781555815622.ch14
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 4
FIGURE 4

Presence or absence of large chromosomal regions of difference (RDs) in 36 isolates examined by whole-genome DNA microarray analysis. A square symbol denotes presence of an RD and an empty space its absence. Hatched squares indicate presence of RDs in MRSA strains. Gray signifies ET234 strains. Modified from reference .

Citation: Reid S, Fitzgerald J, Beres S, Green N, Musser J. 2006. Group A and : Evolution, Reemergence, and Strain Diversification, p 251-272. In Seifert H, DiRita V (ed), Evolution of Microbial Pathogens. ASM Press, Washington, DC. doi: 10.1128/9781555815622.ch14
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 5
FIGURE 5

(A) Variation in gene content of chromosomal region RD13 in eight strains: 8325, Sanger MSSA, MW2, Sanger MRSA, N315, Mu50, COL, and NCTC6571. The proteins encoded by the genes designated are as follows: through (white), hypothetical proteins; through (black), staphylococcal exotoxin-like proteins; (gray), restriction/modification subunits; (striped), transposase. Dashed lines represent DNA of unknown sequence. The central variable region (Vr) is indicated. (B) Model for the diversification of the chromosomal region RD13. The proposed ancestral state of the Vr is indicated at the hypothetical root. The loss of genes necessary to explain the extant state of each strain is indicated in red. This model is supported by the observation that the proportion of silent mutations (synonymous substitution) within each gene is the same. If the genes of the Vr were gained at different times during the evolution of RD13, one would expect the number of silent mutations to differ between genes. The trees were constructed by the neighbor-joining algorithm based on the number of synonymous substitutions per synonymous site (S). A comparison of phylogenetic trees constructed from individual gene nucleotide data and a concatenated sequence representing the conserved genes of RD13 indicated that the topologies were cognate. Thus, the extent of recombination present was insufficient to disrupt the underlying phylogenetic signal. The gene tree is shown. Bootstrap confidence limits are shown under the major nodes. Modified from reference .

Citation: Reid S, Fitzgerald J, Beres S, Green N, Musser J. 2006. Group A and : Evolution, Reemergence, and Strain Diversification, p 251-272. In Seifert H, DiRita V (ed), Evolution of Microbial Pathogens. ASM Press, Washington, DC. doi: 10.1128/9781555815622.ch14
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555815622.ch14
1. Akesson, P.,, A. G. Sjoholm, and, L. Bjorck. 1996. Protein SIC, a novel extracellular protein of Streptococcus pyogenes interfering with complement function. J. Biol. Chem. 271:10811088.
2. Archer, G. L.,, J. A. Thanassi,, D. M. Niemeyer, and, M. J. Pucci. 1996. Characterization of IS1272, an insertion sequence-like element from Staphylococcus haemolyticus. Antimicrob. Agents Chemother. 40:924929.
3. Artiushin, S. C.,, J. F. Timoney,, A. S. Sheoran, and, S. K. Muthupalani. 2002. Characterization and immunogenicity of pyrogenic mitogens SePE-H and SePE-I of Streptococcus equi. Microb. Pathog. 32:7185.
4. Baba,, T., F. Takeuchi,, M. Kuroda,, H. Yuzawa,, K. Aoki,, A. Oguchi,, Y. Nagai,, N. Iwama,, K. Asano,, T. Naimi,, H. Kuroda,, L. Cui,, K. Yamamoto, and, K. Hiramatsu. 2002. Genome and virulence determinants of high virulence community-acquired MRSA. Lancet 359:18191827.
5. Banks, D. J.,, S. B. Beres, and, J. M. Musser. 2002. The fundamental contribution of phages to GAS evolution, genome diversification and strain emergence. Trends Microbiol. 10:515521.
6. Banks, D. J.,, S. F. Porcella,, K. D. Barbian,, S. B. Beres,, L. E. Philips,, J. M. Voyich,, F. R. DeLeo,, J. M. Martin,, G. A. Somerville, and, J. M. Musser. 2004. Progress toward characterization of the group A Streptococcus metagenome: complete genome sequence of a macrolide-resistant serotype M6 strain. J. Infect. Dis. 190:727738.
7. Banks, D. J.,, S. F. Porcella,, K. D. Barbian,, J. M. Martin, and, J. M. Musser. 2003. Structure and distribution of an unusual chimeric genetic element encoding macrolide resistance in phylogenetically diverse clones of group A Streptococcus. J. Infect. Dis. 188:18981908.
8. Beall, B., R. Facklam,, T. Hoenes, and, B. Schwartz. 1997. Application of emm gene sequencing and T antigen serology for typing group A streptococcal systemic isolates. Survey of random and outbreak-related isolates. Adv. Exp. Med. Biol. 418:307311.
9. Beall, B., R. Facklam,, T. Hoenes, and, B. Schwartz. 1997. Survey of emm gene sequences and T-antigen types from systemic Streptococcus pyo-genes infection isolates collected in San Francisco, California; Atlanta, Georgia; and Connecticut in 1994 and 1995. J. Clin. Microbiol. 35:12311235.
10. Beall, B., R. Facklam, and, T. Thompson. 1996. Sequencing emm-specific PCR products for routine and accurate typing of group A streptococci. J. Clin. Microbiol. 34:953958.
11. Beres, S. B.,, G. L. Sylva,, K. D. Barbian,, B. Lei,, J. S. Hoff,, N. D. Mammarella,, M. Y. Liu,, J. C. Smoot,, S. F. Porcella,, L. D. Parkins,, D. S. Campbell,, T. M. Smith,, J. K. McCormick,, D. Y. Leung,, P. M. Schlievert, and, J. M. Musser. 2002. Genome sequence of a serotype M3 strain of group A Streptococcus: phage-encoded toxins, the high-virulence phenotype, and clone emergence. Proc. Natl. Acad. Sci. USA 99:1007810083.
12. Beres, S. B.,, G. L. Sylva,, D. E. Sturdevant,, C. N. Granville,, M. Liu,, S. M. Ricklefs,, A. R. Whitney,, L. D. Parkins,, N. P. Hoe,, G. J. Adams,, D. E. Low,, F. R. DeLeo,, A. McGeer, and, J. M. Musser. 2004. Genome-wide molecular dissection of serotype M3 group A Streptococcus strains causing two epidemics of invasive infections. Proc. Natl. Acad. Sci. USA 101:1183311838.
13. Bessen, D.,, K. F. Jones, and, V. A. Fischetti. 1989. Evidence for two distinct classes of streptococcal M protein and their relationship to rheumatic fever. J. Exp. Med. 169:269283.
14. Bessen, D. E.,, M. W. Izzo,, T. R. Fiorentino,, R. M. Caringal,, S. K. Hollingshead, and, B. Beall. 1999. Genetic linkage of exotoxin alleles and emm gene markers for tissue tropism in group A streptococci. J. Infect. Dis. 179:627636.
15. Bessen, D. E., and, A. Kalia. 2002. Genomic localization of a T serotype locus to a recombinatorial zone encoding extracellular matrix-binding proteins in Streptococcus pyogenes. Infect. Immun. 70:11591167.
16. Bessen, D. E.,, C. M. Sotir,, T. L. Readdy, and, S. K. Hollingshead. 1996. Genetic correlates of throat and skin isolates of group A streptococci. J. Infect. Dis. 173:896900.
17. Bisno, A. L. 2001. Primary care: acute pharyngitis. N Engl J Med 344:205211.
18. Bisno,, A. L.,, M. O. Brito, and, C. M. Collins. 2003. Molecular basis of group A streptococcal virulence. Lancet Infect. Dis. 3:191200.
19. Coleman, D. C.,, D. J. Sullivan,, R. J. Russell,, J. P. Arbuthnott,, B. F. Carey, and, H. M. Pomeroy. 1989. Staphylococcus aureus bacteriophages mediating the simultaneous lysogenic conversion of beta-lysin, staphylokinase and enter-otoxin A: molecular mechanism of triple conversion. J. Gen. Microbiol. 135:16791697.
20. Couto, I., H. de Lencastre,, E. Severina,, W. Kloos,, J. A. Webster,, R. J. Hubner,, I. S. Sanches, and, A. Tomasz. 1996. Ubiquitous presence of a mecA homologue in natural isolates of Staphylococcus sciuri. Microb. Drug Resist. 2:377391.
21. Cucarella, C., C. Solano,, J. Valle,, B. Amorena,, I. Lasa, and, J. R. Penades. 2001. Bap, a Staphylococcus aureus surface protein involved in biofilm formation. J. Bacteriol. 183:28882896.
22. Cunningham, M. W. 2000. Pathogenesis of group A streptococcal infections. Clin. Microbiol. Rev. 13:470511.
23. Dale,, J. B. 1999. Group A streptococcal vaccines. Infect. Dis. Clin. N. Am. 13:22743, viii.
24. Desiere, F.,, W. M. McShan,, D. van Sinderen,, J. J. Ferretti, and, H. Brussow. 2001. Comparative genomics reveals close genetic relationships between phages from dairy bacteria and pathogenic streptococci: evolutionary implications for prophage-host interactions. Virology 288:325341.
25. Diep, B. A.,, G. F. Sensabaugh,, N. S. Somboona,, H. A. Carleton, and, F. Perdreau-Remington. 2004. Widespread skin and soft-tissue infections due to two methicillin-resistant Staphylococcus aureus strains harboring the genes for Panton-Valentine leucocidin. J. Clin. Microbiol. 42:20802084.
26. Enright, M. C.,, D. A. Robinson,, G. Randle,, E. J. Feil,, H. Grundmann, and, B. G. Spratt. 2002. The evolutionary history of methicillin-resistant Staphylococcus aureus (MRSA). Proc. Natl. Acad. Sci. USA 99:76877692.
27. Enright, M. C.,, B. G. Spratt,, A. Kalia,, J. H. Cross, and, D. E. Bessen. 2001. Multilocus sequence typing of Streptococcus pyogenes and the relationships between emm type and clone. Infect. Immun. 69:24162427.
28. Facklam, R., and, B. Beall. 1997. Anomalies in emm typing of group A streptococci. Adv. Exp. Med. Biol. 418:335337.
29. Facklam, R.,, B. Beall,, A. Efstratiou,, V. Fischetti,, D. Johnson,, E. Kaplan,, P. Kriz,, M. Lovgren,, D. Martin,, B. Schwartz,, A. Totolian,, D. Bessen,, S. Hollingshead,, F. Rubin,, J. Scott, and, G. Tyrrell. 1999. emm typing and validation of provisional M types for group A streptococci. Emerg. Infect. Dis. 5:247253.
30. Facklam, R. F.,, D. R. Martin,, M. Lovgren,, D. R. Johnson,, A. Efstratiou,, T. A. Thompson,, S. Gowan,, P. Kriz,, G. J. Tyrrell,, E. Kaplan, and, B. Beall. 2002. Extension of the Lancefield classification for group A streptococci by addition of 22 new M protein gene sequence types from clinical isolates: emm 103 to emm124. Clin. Infect. Dis. 34:2838.
31. Feil,, E. J.,, J. E. Cooper,, H. Grundmann,, D. A. Robinson,, M. C. Enright,, T. Berendt,, S. J. Peacock,, J. M. Smith,, M. Murphy,, B. G. Spratt,, C. E. Moore, and, N. P. Day. 2003. How clonal is Staphylococcus aureus? J. Bacteriol. 185:33073316.
32. Ferretti, J. J.,, W. M. McShan,, D. Ajdic,, D. J. Savic,, G. Savic,, K. Lyon,, C. Primeaux,, S. Sezate,, A. N. Suvorov,, S. Kenton,, H. S. Lai,, S. P. Lin,, Y. Qian,, H. G. Jia,, F. Z. Najar,, Q. Ren,, H. Zhu,, L. Song,, J. White,, X. Yuan,, S. W. Clifton,, B. A. Roe, and, R. McLaughlin. 2001. Complete genome sequence of an M1 strain of Streptococcus pyogenes. Proc. Natl. Acad. Sci. USA 98:46584663.
33. Fischetti, V. A. 1989. Streptococcal M protein: molecular design and biological behavior. Clin. Microbiol. Rev. 2:285314.
34. Fischetti,, V. A.,, E. C. Gotschlich,, G. Siviglia, and, J. B. Zabriskie. 1977. Streptococcal M protein: an antiphagocytic molecule assembled on the cell wall. J. Infect. Dis. 136 (Suppl.):S222S233.
35. Fitzgerald, J. R.,, S. R. Monday,, T. J. Foster,, G. A. Bohach,, P. J. Hartigan,, W. J. Meaney, and, C. J. Smyth. 2001. Characterization of a putative pathogenicity island from bovine Staphylococcus aureus encoding multiple superantigens. J. Bacteriol. 183:6370.
36. Fitzgerald, J. R.,, S. D. Reid,, E. Ruotsalainen,, T. J. Tripp,, M. Liu,, R. Cole,, P. Kuusela,, P. M. Schlievert,, A. Jarvinen, and, J. M. Musser. 2003. Genome diversification in Staphylococcus aureus: molecular evolution of a highly variable chromosomal region encoding the staphylococcal exotoxin-like family of proteins. Infect. Immun. 71:28272838.
37. Fitzgerald, J. R.,, D. E. Sturdevant,, S. M. Mackie,, S. R. Gill, and, J. M. Musser. 2001. Evolutionary genomics of Staphylococcus aureus: insights into the origin of methicillin-resistant strains and the toxic shock syndrome epidemic. Proc. Natl. Acad. Sci. USA 98:88218826.
38. Green, N. M.,, S. B. Beres,, E. A. Graviss,, J. E. Allison,, A. J. McGeer,, J. Vuopio-Varkila,, R. B. Lefebvre, and, J. M. Musser. 2005. Genetic diversity among type emm28 group A Streptococcus strains causing invasive infections and pharyngitis. J. Clin. Microbiol. 43:40834091.
39. Green, N. M., S. Zhang,, S. F. Porcella,, M. J. Nagiec,, K. D. Barbian,, S. B. Beres,, R. B. Lefebvre, and, J. M. Musser. 2005. Genome sequence of a serotype M28 strain of group A Streptococcus: potential new insights into puerperal sepsis and bacterial disease specificity. J. Infect. Dis. 192:760770.
40. Herron, L. L., R. Chakravarty,, C. Dwan,, J. R. Fitzgerald,, J. M. Musser,, E. Retzel, and, V. Kapur. 2002. Genome sequence survey identifies unique sequences and key virulence genes with unusual rates of amino acid substitution in bovine Staphylococcus aureus. Infect. Immun. 70:39783981.
41. Hiramatsu, K., L. Cui,, M. Kuroda, and, T. Ito. 2001. The emergence and evolution of methicillin-resistant Staphylococcus aureus. Trends Microbiol. 9:486493.
42. Hoe, N.,, K. Nakashima,, D. Grigsby,, X. Pan,, S. J. Dou,, S. Naidich,, M. Garcia,, E. Kahn,, D. Bergmire-Sweat, and, J. M. Musser. 1999. Rapid molecular genetic subtyping of serotype M1 group A Streptococcus strains. Emerg. Infect. Dis. 5:254263.
43. Hoe, N. P.,, R. M. Ireland,, F. R. DeLeo,, B. B. Gowen,, D. W. Dorward,, J. M. Voyich,, M. Liu,, E. H. Burns, Jr.,, D. M. Culnan,, A. Bretscher, and, J. M. Musser. 2002. Insight into the molecular basis of pathogen abundance: group A Streptococcus inhibitor of complement inhibits bacterial adherence and internalization into human cells. Proc. Natl. Acad. Sci. USA 99:76467651.
44. Hoe, N. P., K. Nakashima,, S. Lukomski,, D. Grigsby,, M. Liu,, P. Kordari,, S. J. Dou,, X. Pan,, J. Vuopio-Varkila,, S. Salmelinna,, A. McGeer,, D. E. Low,, B. Schwartz,, A. Schuchat,, S. Naidich,, D. De Lorenzo,, Y. X. Fu, and, J. M. Musser. 1999. Rapid selection of complement-inhibiting protein variants in group A Streptococcus epidemic waves. Nat. Med. 5:924929.
45. Hoe, N. P.,, J. Vuopio-Varkila,, M. Vaara,, D. Grigsby,, D. De Lorenzo,, Y. X. Fu,, S. J. Dou,, X. Pan,, K. Nakashima, and, J. M. Musser. 2001. Distribution of streptococcal inhibitor of complement variants in pharyngitis and invasive isolates in an epidemic of serotype M1 group A Streptococcus infection. J. Infect. Dis. 183:633639.
46. Holden, M. T.,, E. J. Feil,, J. A. Lindsay,, S. J. Peacock,, N. P. Day,, M. C. Enright,, T. J. Foster,, C. E. Moore,, L. Hurst,, R. Atkin,, A. Barron,, N. Bason,, S. D. Bentley,, C. Chillingworth,, T. Chillingworth,, C. Churcher,, L. Clark,, C. Corton,, A. Cronin,, J. Doggett,, L. Dowd,, T. Feltwell,, Z. Hance,, B. Harris,, H. Hauser,, S. Holroyd,, K. Jagels,, K. D. James,, N. Lennard,, A. Line,, R. Mayes,, S. Moule,, K. Mungall,, D. Ormond,, M. A. Quail,, E. Rabbinowitsch,, K. Rutherford,, M. Sanders,, S. Sharp,, M. Simmonds,, K. Stevens,, S. Whitehead,, B. G. Barrell,, B. G. Spratt, and, J. Parkhill. 2004. Complete genomes of two clinical Staphylococcus aureus strains: evidence for the rapid evolution of virulence and drug resistance. Proc. Natl. Acad. Sci. USA 101:97869791.
47. Hosier, D. M.,, J. M. Craenen,, D. W. Teske, and, J. J. Wheller. 1987. Resurgence of acute rheumatic fever. Am. J. Dis. Child. 141:730733.
48. Ito, T.,, X. X. Ma,, F. Takeuchi,, K. Okuma,, H. Yuzawa, and, K. Hiramatsu. 2004. Noveltype V staphylococcal cassette chromosome mec driven by a novel cassette chromosome recombinase, ccrC. Antimicrob. Agents Chemother. 48:26372651.
49. Jespers, L.,, S. Vanwetswinkel,, H. R. Lijnen,, N. Van Herzeele,, B. Van Hoef,, E. Demarsin,, D. Collen, and, M. De Maeyer. 1999. Structural and functional basis of plasminogen activation by staphylokinase. Thromb. Haemost. 81:479485.
50. Jevons, M. P.,, A. W. Coe, and, M. T. Parker. 1963. Methicillin resistance in staphylococci. Lancet i:904907.
51. Johnson, D. R.,, D. L. Stevens, and, E. L. Kaplan. 1992. Epidemiologic analysis of group A streptococcal serotypes associated with severe systemic infections, rheumatic fever, or uncomplicated pharyngitis. J. Infect. Dis. 166:374382.
52. Jones, K. F.,, S. S. Whitehead,, M. W. Cunningham, and, V. A. Fischetti. 2000. Reactivity of rheumatic fever and scarlet fever patients’ sera with group A streptococcal M protein, cardiac myosin, and cardiac tropomyosin: a retrospective study. Infect. Immun. 68:71327136.
53. Kapur, V.,, W. M. Sischo,, R. S. Greer,, T. S. Whittam, and, J. M. Musser. 1995. Molecular population genetic analysis of Staphylococcus aureus recovered from cows. J. Clin. Microbiol. 33:376380.
54. Kline, J. B., and, C. M. Collins. 1996. Analysis of the superantigenic activity of mutant and allelic forms of streptococcal pyrogenic exotoxin A. Infect. Immun. 64:861869.
55. Kluytmans, J.,, A. van Belkum, and, H. Verbrugh. 1997. Nasal carriage of Staphylococcus aureus: epidemiology, underlying mechanisms and associated risks. Clin. Microbiol. Rev. 10:505520.
56. Kotb, M. 1995. Bacterial pyrogenic exotoxins as superantigens. Clin. Microbiol. Rev. 8:411426.
57. Kreiswirth,, B.,, J. Kornblum,, R. D. Arbeit,, W. Eisner,, J. N. Maslow,, A. McGeer,, D. E. Low, and, R. P. Novick. 1993. Evidence for a clonal origin of methicillin resistance in Staphylococcus aureus. Science 259:227230.
58. Kuroda, M.,, T. Ohta,, I. Uchiyama,, T. Baba,, H. Yuzawa,, I. Kobayashi,, L. Cui,, A. Oguchi,, K. Aoki,, Y. Nagai,, J. Lian,, T. Ito,, M. Kanamori,, H. Matsumaru,, A. Maruyama,, H. Murakami,, A. Hosoyama,, Y. Mizutani-Ui,, N. K. Takahashi,, T. Sawano,, R. Inoue,, C. Kaito,, K. Sekimizu,, H. Hirakawa,, S. Kuhara,, S. Goto,, J. Yabuzaki,, M. Kanehisa,, A. Yamashita,, K. Oshima,, K. Furuya,, C. Yoshino,, T. Shiba,, M. Hattori,, N. Ogasawara,, H. Hayashi, and, K. Hiramatsu. 2001. Whole genome sequencing of methicillin-resistant Staphylococcus aureus. Lancet 357:12251240.
59. Lacey, R. W., and, J. Grinsted. 1973. Genetic analysis of methicillin-resistant strains of Staphylococcus aureus; evidence for their evolution from a single clone. J. Med. Microbiol. 6:511526.
60. Lancefield, R. C. 1962. Current knowledge of type-specific M antigens of group A streptococci. J. Immunol. 89:307313.
61. Lancefield,, R. C., and, G. E. Perlmann. 1952. Preparation and properties of type-specific M antigen isolated from a group A, type 1 hemolytic Streptococcus. J. Exp. Med. 96:7182.
62. Lindsay, J. A., A. Ruzin,, H. F. Ross,, N. Kurepina, and, R. P. Novick. 1998. The gene for toxic shock toxin is carried by a family of mobile pathogenicity islands in Staphylococcus aureus. Mol. Microbiol. 29:527543.
63. Luong, T. T., S. Ouyang,, K. Bush, and, C. Y. Lee. 2002. Type 1 capsule genes of Staphylococcus aureus are carried in a staphylococcal cassette chromosome genetic element. J. Bacteriol. 184:36233629.
64. Martin, J. M., M. Green,, K. A. Barbadora, and, E. R. Wald. 2002. Erythromycin-resistant group A streptococci in schoolchildren in Pittsburgh. N. Engl. J. Med. 346:12001206.
65. Massell, B. F. 1997. Rheumatic Fever and Streptococcal Infection. Harvard University Press, Boston, Mass.
66. Matsuhashi, M.,, M. D. Song,, F. Ishino,, M. Wachi,, M. Doi,, M. Inoue,, K. Ubukata,, N. Yamashita, and, M. Konno. 1986. Molecular cloning of the gene of a penicillin-binding protein supposed to cause high resistance to beta-lactam antibiotics in Staphylococcus aureus. J. Bacteriol. 167:975980.
67. Matsumoto, M.,, N. P. Hoe,, M. Liu,, S. B. Beres,, G. L. Sylva,, C. M. Brandt,, G. Haase, and, J. M. Musser. 2003. Intrahost sequence variation in the streptococcal inhibitor of complement gene in patients with human pharyngitis. J. Infect. Dis. 187:604612.
68. McCormick, J. K., J. M. Yarwood, and, P. M. Schlievert. 2001. Toxic shock syndrome and bacterial superantigens: an update. Annu. Rev. Microbiol. 55:77104.
69. McGregor, K. F., B. G. Spratt,, A. Kalia,, A. Bennett,, N. Bilek,, B. Beall, and, D. E. Bessen. 2004. Multilocus sequence typing of Streptococcus pyogenes representing most known emm types and distinctions among subpopulation genetic structures. J. Bacteriol. 186:42854294.
70. Musser, J. M., A. R. Hauser,, M. H. Kim,, P. M. Schlievert,, K. Nelson, and, R. K. Selander. 1991. Streptococcus pyogenes causing toxic-shocklike syndrome and other invasive diseases: clonal diversity and pyrogenic exotoxin expression. Proc. Natl. Acad. Sci. USA 88:26682672.
71. Musser, J. M., and, V. Kapur. 1992. Clonal analysis of methicillin-resistant Staphylococcus aureus strains from intercontinental sources: association of the mec gene with divergent phylogenetic lineages implies dissemination by horizontal transfer and recombination. J. Clin. Microbiol. 30:20582063.
72. Musser, J. M., V. Kapur,, S. Kanjilal,, U. Shah,, D. M. Musher,, N. L. Barg,, K. H. Johnston,, P. M. Schlievert,, J. Henrichsen,, D. Gerlach, et al. 1993. Geographic and temporal distribution and molecular characterization of two highly pathogenic clones of Streptococcus pyogenes expressing allelic variants of pyrogenic exotoxin A (scarlet fever toxin). J. Infect. Dis. 167:337346.
73. Musser, J. M., and, R. M. Krause. 1998. The revival of group A streptococcal diseases, with a commentary on staphylococcal toxic shock syndrome, p. 185–218. In R. M. Krause (ed.), Emerging Infections. Academic Press, New York, N.Y.
74. Musser, J. M., P. M. Schlievert,, A. W. Chow,, P. Ewan,, B. N. Kreiswirth,, V. T. Rosdahl,, A. S. Naidu,, W. Witte, and, R. K. Selander. 1990. A single clone of Staphylococcus aureus causes the majority of cases of toxic shock syndrome. Proc. Natl. Acad. Sci. USA 87:225229.
75. Musser, J. M., and, R. K. Selander. 1990. Genetic analysis of natural populations of Staphylococcus aureus, p. 59–68. In R. P. Novick (ed.), Molecular Biology of the Staphylococci. VCH, New York, N. Y.
76. Nagiec, M. J., B. Lei,, S. K. Parker,, M. L. Vasil,, M. Matsumoto,, R. M. Ireland,, S. B. Beres,, N. P. Hoe, and, J. M. Musser. 2004. Analysis of a novel prophage-encoded group A Streptococcus extracellular phospholipase A(2). J. Biol. Chem. 279:4590945918.
77. Nakagawa, I., K. Kurokawa,, A. Yamashita,, M. Nakata,, Y. Tomiyasu,, N. Okahashi,, S. Kawabata,, K. Yamazaki,, T. Shiba,, T. Yasunaga,, H. Hayashi,, M. Hattori, and, S. Hamada. 2003. Genome sequence of an M3 strain of Streptococcus pyogenes reveals a large-scale genomic rearrangement in invasive strains and new insights into phage evolution. Genome Res. 13:10421055.
78. Nelson, K.,, P. M. Schlievert,, R. K. Selander, and, J. M. Musser. 1991. Characterization and clonal distribution of four alleles of the speA gene encoding pyrogenic exotoxin A (scarlet fever toxin) in Streptococcus pyogenes. J. Exp. Med. 174:12711274.
79. Novick, R. P. 2003. Mobile genetic elements and bacterial toxinoses: the superantigen-encoding pathogenicity islands of Staphylococcus aureus. Plasmid 49:93105.
80. Novick,, R. P., P. Schlievert, and, A. Ruzin. 2001. Pathogenicity and resistance islands of staphylococci. Microbes Infect. 3:585594.
81. Olivier, C. 2000. Rheumatic fever—is it still a problem? J. Antimicrob. Chemother. 45 (Suppl.):1321.
82. Ramachandran,, V.,, J. D. McArthur,, C. E. Behm,, C. Gutzeit,, M. Dowton,, P. K. Fagan,, R. Towers,, B. Currie,, K. S. Sriprakash, and, M. J. Walker. 2004. Two distinct genotypes of prtF2, encoding a fibronectin binding protein, and evolution of the gene family in Streptococcus pyogenes. J. Bacteriol. 186:76017609.
83. Reid, S. D., N. M. Green,, J. K. Buss,, B. Lei, and, J. M. Musser. 2001. Multilocus analysis of extracellular putative virulence proteins made by group A Streptococcus: population genetics, human sero-logic response, and gene transcription. Proc. Natl. Acad. Sci. USA 98:75527557.
84. Reid, S. D., N. M. Green,, G. L. Sylva,, J. M. Voyich,, E. T. Stenseth,, F. R. DeLeo,, T. Palzkill,, D. E. Low,, H. R. Hill, and, J. M. Musser. 2002. Postgenomic analysis of four novel antigens of group A Streptococcus: growth phase-dependent gene transcription and human serologic response. J. Bacteriol. 184:63166324.
85. Reid, S. D., N. P. Hoe,, L. M. Smoot, and, J. M. Musser. 2001. Group A Streptococcus: allelic variation, population genetics, and host-pathogen interactions. J. Clin. Investig. 107:393399.
86. Richter, S. S., K. P. Heilmann,, S. E. Beekmann,, N. J. Miller,, A. L. Miller,, C. L. Rice,, C. D. Doern,, S. D. Reid, and, G. V. Doern. 2005. Macrolide-resistant Streptococcus pyogenes in the United States, 2002–03. Clin. Infect. Dis. 41:599608.
87. Robinson, D. A., and, M. C. Enright. 2004. Evolution of Staphylococcus aureus by large chromosomal replacements. J. Bacteriol. 186:10601064.
88. Rotta, J.,, R. M. Krause,, R. C. Lancefield,, W. Everly, and, H. Lackland. 1971. New approaches for the laboratory recognition of M types of group A streptococci. J. Exp. Med. 134:12981315.
89. Sharkawy, A.,, D. E. Low,, R. Saginur,, D. Gregson,, B. Schwartz,, P. Jessamine,, K. Green, and, A. McGeer. 2002. Severe group A streptococcal soft-tissue infections in Ontario: 1992–1996. Clin. Infect. Dis. 34:454460.
90. Smoot, J. C., K. D. Barbian,, J. J. Van Gompel,, L. M. Smoot,, M. S. Chaussee,, G. L. Sylva,, D. E. Sturdevant,, S. M. Ricklefs,, S. F. Porcella,, L. D. Parkins,, S. B. Beres,, D. S. Campbell,, T. M. Smith,, Q. Zhang,, V. Kapur,, J. A. Daly,, L. G. Veasy, and, J. M. Musser. 2002. Genome sequence and comparative microarray analysis of serotype M18 group A Streptococcus strains associated with acute rheumatic fever outbreaks. Proc. Natl. Acad. Sci. USA 99:46684673.
91. Smoot, J. C., E. K. Korgenski,, J. A. Daly,, L. G. Veasy, and, J. M. Musser. 2002. Molecular analysis of group A Streptococcus type emm 18 isolates temporally associated with acute rheumatic fever outbreaks in Salt Lake City, Utah. J. Clin. Microbiol. 40:18051810.
92. Stockbauer, K. E., D. Grigsby,, X. Pan,, Y. X. Fu,, L. M. Mejia,, A. Cravioto, and, J. M. Musser. 1998. Hypervariability generated by natural selection in an extracellular complement-inhibiting protein of serotype M1 strains of group A Streptococcus. Proc. Natl. Acad. Sci. USA 95:31283133.
93. Sumby, P.,, K. D. Barbian,, D. J. Gardner,, A. R. Whitney,, D. M. Welty,, R. D. Long,, J. R. Bailey,, M. J. Parnell,, N. P. Hoe,, G. G. Adams,, F. R. Deleo, and, J. M. Musser. 2005. Extracellular deoxyribonuclease made by group A Streptococcus assists pathogenesis by enhancing evasion of the innate immune response. Proc. Natl. Acad. Sci. USA 102:16791684.
94. Sumby, P.,, S. F. Porcella,, A. G. Madrigal,, K. D. Barbian,, K. Virtaneva,, S. M. Ricklefs,, D. E. Sturdevant,, M. R. Graham,, J. VuopioVarkila,, N. P. Hoe, and, J. M. Musser. 2005. Evolutionary origin and emergence of a highly successful clone of serotype M1 group A Streptococcus involved multiple horizontal gene transfer events. J. Infect. Dis. 192:771782.
95. Tenover, F. C., L. M. Weigel,, P. C. Appelbaum,, L. K. McDougal,, J. Chaitram,, S. McAllister,, N. Clark,, G. Killgore,, C. M. O’Hara,, L. Jevitt,, J. B. Patel, and, B. Bozdogan. 2004. Vancomycin-resistant Staphylococcus aureus isolate from a patient in Pennsylvania. Antimicrob. Agents Chemother. 48:275280.
96. Urbanek, K., M. Kolar, and, L. Cekanova. 2005. Utilisation of macrolides and the development of Streptococcus pyogenes resistance to erythromycin. Pharm. WorldSci. 27:104107.
97. Veasy, L. G., L. Y. Tani, and, H. R. Hill. 1994. Persistence of acute rheumatic fever in the intermountain area of the United States. J. Pediatr. 124:916.
98. Yamaguchi, T.,, T. Hayashi,, H. Takami,, K. Nakasone,, M. Ohnishi,, K. Nakayama,, S. Yamada,, H. Komatsuzawa, and, M. Sugai. 2000. Phage conversion of exfoliative toxin A production in Staphylococcus aureus. Mol. Microbiol. 38:694705.
99. Yamaguchi, T.,, T. Hayashi,, H. Takami,, M. Ohnishi,, T. Murata,, K. Nakayama,, K. Asakawa,, M. Ohara,, H. Komatsuzawa, and, M. Sugai. 2001. Complete nucleotide sequence of a Staphylococcus aureus exfoliative toxin B plasmid and identification of a novel ADP-ribosyltransferase, EDIN-C. Infect. Immun. 69:77607771.
100. Yarwood, J. M., J. K. McCormick,, M. L. Paustian,, P. M. Orwin,, V. Kapur, and, P. M. Schlievert. 2002. Characterization and expression analysis of Staphylococcus aureus pathogenicity island 3. Implications for the evolution of staphylococcal pathogenicity islands. J. Biol. Chem. 277:1313813147.
101. Zhang, S.,, J. J. Iandolo, and, G. C. Stewart. 1998. The enterotoxin D plasmid of Staphylococcus aureus encodes a second enterotoxin determinant (sej). FEMS Microbiol Lett. 168:227233.

Tables

Generic image for table
TABLE 1

BLAST comparisons of sequenced GAS genomes’ protein coding sequences reveal that phage genes account for the majority of variation in gene content

Citation: Reid S, Fitzgerald J, Beres S, Green N, Musser J. 2006. Group A and : Evolution, Reemergence, and Strain Diversification, p 251-272. In Seifert H, DiRita V (ed), Evolution of Microbial Pathogens. ASM Press, Washington, DC. doi: 10.1128/9781555815622.ch14

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error