1887

Chapter 10 : Multilocus Models of Bacterial Population Genetics

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in
Zoomout

Multilocus Models of Bacterial Population Genetics, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555815639/9781555814144_Chap10-1.gif /docserver/preview/fulltext/10.1128/9781555815639/9781555814144_Chap10-2.gif

Abstract:

In the multilocus Fisher-Wright model allele frequencies and the combinations of alleles (STs) fluctuate solely through genetic drift. Using multiple loci prevents recombination from obscuring the relationships between strains, because a change at one locus will not alter the information about relationships between strains present at the others. Computer simulation of bacterial populations is complementary to an analytic approach. Furthermore, simulation of the evolution of bacterial populations provides an alternative means of testing hypotheses: the effects of various evolutionary scenarios may be explored by introducing them into a simulation based on the neutral model. An example of this type of approach is discussed in this chapter, where the conditions under which an evolving bacterial population splits into separate clusters, mimicking speciation, are explored. In sum, while coalescent analyses may be the most appropriate for individual loci, and certainly have a much wider body of theoretical work to draw on than the methods discussed in the chapter, the authors are excited by the potential of methods such as multilocus sequence typing (MLST) that consider the genetics of populations of strains rather than of individual loci, to demonstrate forces other than neutrality influencing the structure of populations. The chapter also talks about the modeling of alleles and their association using recently developed techniques designed to simulate and analyze data sets obtained from MLST studies.

Citation: Hanage W, Fraser C, Connor T, Spratt B. 2008. Multilocus Models of Bacterial Population Genetics, p 93-104. In Baquero F, Nombela C, Cassell G, Gutiérrez-Fuentes J (ed), Evolutionary Biology of Bacterial and Fungal Pathogens. ASM Press, Washington, DC. doi: 10.1128/9781555815639.ch10
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of Figure 1.
Figure 1.

The simple model of diversification assumed by eBURST. (a) At the earliest time point, a strain or clone (ST1) begins to increase in frequency in the population, either through selection or drift. Different lineages are shown, but we focus for the purposes of illustration solely on the lineage starting with ST1. The size of the circle is proportional to the number of isolates with that genotype. Eventually, ST1 generates a single locus variant (SLV), by mutation or recombination, shown as ST2. Over time, as ST1 becomes increasingly common, a cloud of such SLVs surround it, and some of these may go on to produce their own SLVs (as ST2 has in the last panel). Such groups of related strains are termed clonal complexes. (b) Shows an eBURST diagram constructed from allelic profiles in the S. pneumoniae database. The clonal complex shown is predicted to have descended from ST81, a major internationally distributed antibiotic-resistant clone. SLV labels have been removed for purposes of clarity.

Citation: Hanage W, Fraser C, Connor T, Spratt B. 2008. Multilocus Models of Bacterial Population Genetics, p 93-104. In Baquero F, Nombela C, Cassell G, Gutiérrez-Fuentes J (ed), Evolutionary Biology of Bacterial and Fungal Pathogens. ASM Press, Washington, DC. doi: 10.1128/9781555815639.ch10
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Untitled
Untitled

Citation: Hanage W, Fraser C, Connor T, Spratt B. 2008. Multilocus Models of Bacterial Population Genetics, p 93-104. In Baquero F, Nombela C, Cassell G, Gutiérrez-Fuentes J (ed), Evolutionary Biology of Bacterial and Fungal Pathogens. ASM Press, Washington, DC. doi: 10.1128/9781555815639.ch10
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Untitled
Untitled

Citation: Hanage W, Fraser C, Connor T, Spratt B. 2008. Multilocus Models of Bacterial Population Genetics, p 93-104. In Baquero F, Nombela C, Cassell G, Gutiérrez-Fuentes J (ed), Evolutionary Biology of Bacterial and Fungal Pathogens. ASM Press, Washington, DC. doi: 10.1128/9781555815639.ch10
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Untitled
Untitled

Citation: Hanage W, Fraser C, Connor T, Spratt B. 2008. Multilocus Models of Bacterial Population Genetics, p 93-104. In Baquero F, Nombela C, Cassell G, Gutiérrez-Fuentes J (ed), Evolutionary Biology of Bacterial and Fungal Pathogens. ASM Press, Washington, DC. doi: 10.1128/9781555815639.ch10
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2.
Figure 2.

Schematic illustration of an infinite-alleles Fisher-Wright model for seven loci as used in the text. Three consecutive time steps are shown. Mutation events always produce a new allele. Contrastingly, recombination events shuffle alleles among the population and may result in no change at the locus if the donor and recipient alleles are identical. t + n shows the population once run to equilibrium. For simplicity, only a population of N = 5 is shown.

Citation: Hanage W, Fraser C, Connor T, Spratt B. 2008. Multilocus Models of Bacterial Population Genetics, p 93-104. In Baquero F, Nombela C, Cassell G, Gutiérrez-Fuentes J (ed), Evolutionary Biology of Bacterial and Fungal Pathogens. ASM Press, Washington, DC. doi: 10.1128/9781555815639.ch10
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 3.
Figure 3.

Allelic mismatch distributions for simulated population. (a) A near clonal population (low rate of recombination) and (b) A population with high rates of recombination.

Citation: Hanage W, Fraser C, Connor T, Spratt B. 2008. Multilocus Models of Bacterial Population Genetics, p 93-104. In Baquero F, Nombela C, Cassell G, Gutiérrez-Fuentes J (ed), Evolutionary Biology of Bacterial and Fungal Pathogens. ASM Press, Washington, DC. doi: 10.1128/9781555815639.ch10
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 4.
Figure 4.

Populations of bacteria simulated using HRST. (a) In the absence of recombination (strict clonality), the initially uniform population splits into distinct clusters. (b) With a high recombination rate ρ/θ = 10, the population forms subclusters, but these are invariably drawn back into the main population because of the cohesive force of recombination. In this example recombination between all strains occurs at the same rate. The allelic distance (over 140 loci) is reduced to two dimensions using multidimensional scaling implemented in R. The relatedness of strains (points) is shown by their distance apart in the diagram.

Citation: Hanage W, Fraser C, Connor T, Spratt B. 2008. Multilocus Models of Bacterial Population Genetics, p 93-104. In Baquero F, Nombela C, Cassell G, Gutiérrez-Fuentes J (ed), Evolutionary Biology of Bacterial and Fungal Pathogens. ASM Press, Washington, DC. doi: 10.1128/9781555815639.ch10
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555815639.ch10
1. Achtman, M., K. Zurth,, G. Morelli,, G. Torrea,, A. Guiyoule, and, E. Carniel. 1999. Yersinia pestis, the cause of plague, is a recently emerged clone of Yersinia pseudotuberculosis. Proc. Natl. Acad. Sci. USA 96:1404314048.
2. Ball, F., and, P. Neal. 2002. A general model for stochastic SIR epidemics with two levels of mixing. Math. Biosci. 180:73102
3. Boyd, E. F., and, D. L. Hartl. 1998. Diversifying selection governs sequence polymorphism in the major adhesin proteins fimA, papA, and sfaA of Escherichia coli. J. Mol. Evol. 47:258267.
4. Corander, J.,, P. Waldmann, and, M. J. Sillanpaa. 2003. Bayesian analysis of genetic differentiation between populations. Genetics 163:367374.
5. Corander, J.,, P. Waldmann,, P. Marttinen, and, M. J. Sillanpaa. 2004. BAPS 2: enhanced possibilities for the analysis of genetic population structure. Bioinformatics 20:23632369.
6. Enright, M. C., and, B. G. Spratt. 1999. Multilocus sequence typing. Trends Microbiol. 7:482487.
7. Falush, D.,, M. Torpdahl,, X. Didelot,, D. F. Conrad,, D. J. Wilson, and, M. Achtman. 2006. Mismatch induced speciation in Salmonella: model and data. Philos. Trans. R. Soc. London B Biol. Sci. 361:20452053.
8. Falush, D., et al. 2003a. Traces of human migrations in Helicobacter pylori populations. Science 299:15821585.
9. Falush, D.,, M. Stephens, and, J. K. Pritchard. 2003b. Inference of population structure using multilocus genotype data: linked loci and correlated allele frequencies. Genetics 164:15671587.
10. Fearnhead, P.,, N. G. Smith,, M. Barrigas,, A. Fox, and, N. French. 2005. Analysis of recombination in Campylobacter jejuni from MLST population data. J. Mol. Evol. 61:333340.
11. Feil, E. J., and, B. G. Spratt. 2001. Recombination and the population structures of bacterial pathogens. Annu. Rev. Microbiol. 55:561590.
12. Feil, E. J., et al. 2001. Recombination within natural populations of pathogenic bacteria: short-term empirical estimates and long-term phylogenetic consequences. Proc. Natl. Acad. Sci. USA 98:182187.
13. Feil, E. J.,, M. C. Enright, and, B. G. Spratt. 2000a. Estimating the relative contributions of mutation and recombination to clonal diversification: a comparison between Neisseria meningitidis and Streptococcus pneumoniae. Res. Microbiol. 151:465469.
14. Feil, E. J.,, B. C. Li,, D. M. Aanensen,, W. P. Hanage, and, B. G. Spratt. 2004. eBURST: inferring patterns of evolutionary descent among clusters of related bacterial genotypes from multilocus sequence typing data. J. Bacteriol. 186:15181530.
15. Feil, E. J.,, M. C. J. Maiden,, M. Achtman, and, B. G. Spratt. 1999. The relative contributions of recombination and mutation to the divergence of clones of Neisseria meningitidis. Mol. Biol. Evol. 16:14961502.
16. Feil, E. J.,, J. M. Smith,, M. C. Enright, and, B. G. Spratt. 2006. Estimating recombinational parameters in Streptococcus pneumoniae from multilocus sequence typing data. Genetics 154:14391450.
17. Fraser, C.,, W. P. Hanage, and, B. G. Spratt. 2005. Neutral micro-epidemic evolution of bacterial pathogens. Proc. Natl. Acad. Sci. USA 102:19681973.
18. Fraser, C.,, W. P. Hanage, and, B. G. Spratt. 2007. Recombination and the nature of bacterial speciation. Science 315:476480.
19. French, N., et al. 2005. Spatial epidemiology and natural population structure of Campylobacter jejuni colonizing a farmland ecosystem. Environ. Microbiol. 7:11161126.
20. Gevers, D., et al. 2005. Opinion: re-evaluating prokaryotic species. Nat. Rev. Microbiol. 3:733739.
21. Godoy, D., et al. 2003. Multilocus sequence typing and evolutionary relationships among the causative agents of melioidosis and glanders, Burkholderia pseudomallei and Burkholderia mallei. J. Clin. Microbiol. 41:20682079.
22. Hanage, W. P., et al. 2005a. Using multilocus sequence data to define the pneumococcus. J. Bacteriol. 187:62236230.
23. Hanage, W. P.,, E. J. Feil,, A. B. Brueggemann, and, B. G. Spratt. 2004. Multilocus sequence typing: strain characterization, population biology, and patterns of evolutionary descent, p. 235243. In D. H. Persing,, F. C. Tenover,, J. Versalovic,, Y.-W. Tang,, E. R. Unger,, D. A. Relman, and, T. J. White (ed.), Molecular Microbiology: Diagnostic Principles and Practice. American Society for Microbiology, Washington, DC.
24. Hanage, W. P.,, C. Fraser, and, B. G. Spratt. 2005b. Fuzzy species among recombinogenic bacteria. BMC Biol. 3:6.
25. Hanage, W. P.,, C. Fraser, and, B. G. Spratt. 2006a. Sequences, sequence clusters and bacterial species. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 361:917927.
26. Hanage, W. P.,, C. Fraser, and, B. G. Spratt. 2006b. The impact of homologous recombination on the generation of diversity in bacteria. J. Theor. Biol. 239:210219.
27. Hanage, W. P.,, C. Fraser,, K. M. Turner, and, B. G. Spratt. 2006c. Modelling bacterial speciation. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 361:20392044.
28. Hope Simpson, R. E. 1952. Infectiousness of communicable diseases in the household (measles, chickenpox, and mumps) Lancet 2:549554.
29. Hurtt, G. C., and, S. W. Pacala. 1995. The consequences of recruitment limitation reconciling chance, history and competitive differences between plants. J. Theor. Biol. 176:112.
30. Jolley, K. A.,, D. J. Wilson,, P. Kriz,, G. McVean, and, M. C. Maiden. 2005. The influence of mutation, recombination, population history, and selection on patterns of genetic diversity in Neisseria meningitidis. Mol. Biol. Evol. 22:562569.
31. Kamerbeek, J., et al. 1997. Simultaneous detection and strain differentiation of Mycobacterium tuberculosis for diagnosis and epidemiology. J. Clin. Microbiol. 35:907914.
32. Keim, P., and, K. L. Smith. 2002. Bacillus anthracis evolution and epidemiology. Curr. Top. Microbiol. Immunol. 271:2132.
33. Kingman, J. F. C. 1982. On the genealogy of large populations. J. Appl. Probab. 19A:2743.
34. Leino, T., et al. 2001. Pneumococcal carriage in children during their first two years: important role of family exposure. Pediatr. Infect. Dis. J. 20:10221027.
35. Maiden, M. C., et al. 1998. Multilocus sequence typing: a portable approach to the identification of clones within populations of pathogenic microorganisms. Proc. Natl. Acad. Sci. USA 95:31403145.
36. Majewski, J., and, F. M. Cohan. 1999a. Adapt globally, act locally: the effect of selective sweeps on bacterial sequence diversity. Genetics 152:14591474.
37. Majewski, J., and, F. M. Cohan. 1999b. DNA sequence similarity requirements for interspecific recombination in Bacillus. Genetics 153:15251533.
38. Majewski, J.,, P. Zawadzki,, P. Pickerill,, F. M. Cohan, and, C. G. Dowson. 2000. Barriers to genetic exchange between bacterial species: Streptococcus pneumoniae transformation. J. Bacteriol. 182:10161023.
39. McVean, G.,, P. Awadalla, and, P. Fearnhead. 2002. A coalescent-based method for detecting and estimating recombination from gene sequences. Genetics 160:12311241.
40. Mostrom, P.,, M. Gordon,, C. Sola,, M. Ridell, and, N. Rastogi. 2002. Methods used in the molecular epidemiology of tuberculosis. Clin. Microbiol. Infect. 8:694704.
41. Priest, F. G.,, M. Barker,, L. W. Baillie,, E. C. Holmes, and, M. C. Maiden. 2004. Population structure and evolution of the Bacillus cereus group. J. Bacteriol. 186:79597970.
42. Pritchard, J., and, M. D. P. Stephens. 2000. Inference of population structure using multilocus genotype data. Genetics 155:945959.
43. Robinson, D. A., and, M. C. Enright. 2004. Evolution of Staphylococcus aureus by large chromosomal replacements. J. Bacteriol. 186:10601064.
44. Romling, U.,, D. Grothues,, T. Heuer, and, B. Tummler. 1992. Physical genome analysis of bacteria. Electrophoresis 13:626631.
45. Rosenberg, N. A., and, M. Nordborg. 2002. Genealogical trees, coalescent theory and the analysis of genetic polymorphisms. Nat. Rev. Genet. 3:380390.
46. Selander, R. K., et al. 1986. Methods of multilocus enzyme electrophoresis for bacterial population genetics and systematics. Appl. Environ. Microbiol. 51:873884.
47. Smith, J. M.,, E. J. Feil, and, N. H. Smith. 2000. Population structure and evolutionary dynamics of pathogenic bacteria. Bioessays 22:11151122.
48. Smith, J. M.,, N. H. Smith,, M. O’Rourke, and, B. G. Spratt. 1993. How clonal are bacteria? Proc. Natl. Acad. Sci. USA 90:43844388.
49. Smith, N. H., et al. 2003. The population structure of Mycobacterium bovis in Great Britain: clonal expansion. Proc. Natl. Acad. Sci. USA 100:1527115275.
50. Spratt, B. G.,, W. P. Hanage, and, E. J. Feil. 2001. The relative contributions of recombination and point mutation to the diversification of bacterial clones. Curr. Opin. Microbiol. 4:602606.
51. Spratt, B. G.,, W. P. Hanage,, B. Li,, D. M. Aanensen, and, E. J. Feil. 2004. Displaying the relatedness among isolates of bacterial species—the eBURST approach. FEMS Microbiol. Lett. 241:129134.
52. Turner, K. M.,, W. P. Hanage,, C. Fraser,, T. R. Connor, and, B. G. Spratt. 2007. Assessing the reliability of eBURST using simulated populations with known anscestry. BMC Microbiol. 7:30.
53. Urwin, R., and, M. C. Maiden. 2003. Multi-locus sequence typing: a tool for global epidemiology. Trends Microbiol. 11:479487.
54. Venables, W., and, Ripley, B. 2002. Modern Applied Statistics with S. Springer-Verlag, New York, NY.
55. Waples, R. S., and, O. Gaggiotti. 2006. What is a population? An empirical evaluation of some genetic methods for identifying the number of gene pools and their degree of connectivity. Mol. Ecol. 15:14191439.
56. Wertz, J. E.,, C. Goldstone,, D. M. Gordon, and, M. A. Riley. 2003. A molecular phylogeny of enteric bacteria and implications for a bacterial species concept. J. Evol. Biol. 16:12361248.
57. Wilson, D. J., and, McVean, G. 2006. Estimating diversifying selection and functional constraint in the presence of recombination. Genetics 172:14111425.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error