1887

Chapter 15 : Evolution of Plasmids and Evolution of Virulence and Antibiotic-Resistance Plasmids

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in
Zoomout

Evolution of Plasmids and Evolution of Virulence and Antibiotic-Resistance Plasmids, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555815639/9781555814144_Chap15-1.gif /docserver/preview/fulltext/10.1128/9781555815639/9781555814144_Chap15-2.gif

Abstract:

This chapter discusses the characteristics and features of plasmids, providing limited but significant and often cited examples of the evolution of natural plasmids. The evolution of plasmid-mediated antibiotic resistance is illustrated through the description of the IncFIme plasmid, a well-studied virulence and resistance plasmid, and of other broad-host-range resistance plasmids. Many natural plasmids are stably maintained at their characteristic copy number within the growing bacterial population. The study of how the evolution of virulence plasmids happens may allow a more complete understanding of how pathogens evolve, and the analysis of those sequences offers the opportunity to compare virulence plasmids from closely related or distant species to better understand the origin of the pathogenic traits. Furthermore, the virulence plasmid might occasionally be replaced or driven away by incoming plasmids of the same Inc group. A model developed to describe the evolution of the iteron-based replication system is that of the IncQ plasmids. Bacterial conjugation is an essential property for plasmid dissemination. Conjugative systems (Tra systems) in gram-negative bacteria support transfer between different genera and kingdoms, regardless of their replication mechanisms. They consist of three components: the transferosome, the relaxosome, and the coupling protein. The presence of multiple physically linked resistance genes on the same plasmid, conferring resistance to different classes of antibiotics, may confer a selective advantage to the bacterial host when several antimicrobials are simultaneously administered. Such synergy between different coexpressed resistance genes would allow the recipient host to be positively selected by each individual class of antibiotics.

Citation: Carattoli A. 2008. Evolution of Plasmids and Evolution of Virulence and Antibiotic-Resistance Plasmids, p 155-165. In Baquero F, Nombela C, Cassell G, Gutiérrez-Fuentes J (ed), Evolutionary Biology of Bacterial and Fungal Pathogens. ASM Press, Washington, DC. doi: 10.1128/9781555815639.ch15
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of Figure 1.
Figure 1.

Phylogenetic relationships of RepA proteins and CopA antisense RNA from various virulence plasmids. Genebank numbers are indicated. DNA sequences were aligned using the multiple alignment parameter of gap penalty 7 by the DNA-man software (Lynnon BioSoft, USA).

Citation: Carattoli A. 2008. Evolution of Plasmids and Evolution of Virulence and Antibiotic-Resistance Plasmids, p 155-165. In Baquero F, Nombela C, Cassell G, Gutiérrez-Fuentes J (ed), Evolutionary Biology of Bacterial and Fungal Pathogens. ASM Press, Washington, DC. doi: 10.1128/9781555815639.ch15
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2.
Figure 2.

(A) Genetic map of pZM3 and IncFI/97 plasmids of the IncFIme group. (B) Genetic map of the S. enterica serotype Typhimurium plasmid pSem (IncL/M), pHCM1 (IncHII), the multidrug resistance locus identified in S. enterica serotype Typhimurium DT193 (chromosomally located) and in S. enterica serotype Enteritidis (located on an IncI plasmid). All IS elements are shown as shaded boxes; resistance genes are shown as white boxes.

Citation: Carattoli A. 2008. Evolution of Plasmids and Evolution of Virulence and Antibiotic-Resistance Plasmids, p 155-165. In Baquero F, Nombela C, Cassell G, Gutiérrez-Fuentes J (ed), Evolutionary Biology of Bacterial and Fungal Pathogens. ASM Press, Washington, DC. doi: 10.1128/9781555815639.ch15
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555815639.ch15
1. Anderson, E. S.,, E. J. Threlfall,, J. M. Carr,, M. M. McConnell, and, H. R. Smith. 1977. Clonal distribution of resistance plasmid-carrying Salmonella typhimurium, mainly in the Middle East. J. Hyg. (Lond.) 79:425448.
2. Barth, S., and, R. Bauerfeind. 2005. Virulence plasmids of Salmonella enterica—incidence and properties. Berl. Munch. Tierarztl. Wochenschr. 118:823.
3. Bennett, P. M. 2004. Genome plasticity: insertion sequence elements, transposons and integrons, and DNA rearrangement. Methods Mol. Biol. 266:71113.
4. Brantl, S. 2004. Plasmid replication control by antisense RNAs, p. 4762. In B. E. Funnel and, G. J. Philips (ed.), Plasmid Biology. ASM Press, Washington, DC.
5. Burland, V.,, Y. Shao,, N. T. Perna,, G. Plunkett,, H. J. Sofia, and, F. R. Blattner. 1998. The complete DNA sequence and analysis of the large virulence plasmid of Escherichia coli O157:H7. Nucleic Acids Res. 26:41964204.
6. Carattoli, A.,, L. Villa,, C. Pezzella,, E. Bordi, and, P. Visca. 2001. Expanding drug resistance through integron acquisition by IncFI plasmids of Salmonella enterica Typhimurium. Emerg. Infect. Dis. 7:444447.
7. Chilley, P. M., and, B. M. Wilkins. 1995. Distribution of the ardA family of antirestriction genes on conjugative plasmids. Microbiology 141:21572164.
8. Colonna, B.,, M. Bernardini,, G. Micheli,, F. Maimone,, M. Nicoletti, and, M. Casalino. 1988. The Salmonella Wien virulence plasmid pZM3 carries Tn1935, a multiresistance transposon containing a composite IS1936-kanamycin resistance element. Plasmid 20:221231.
9. Couturier, M.,, F. Bex,, P. L. Bergquist, and, W. K. Maas. 1988. Identification and classification of bacterial plasmids. Microbiol. Rev. 52:375395.
10. Daly, M.,, L. Villa,, C. Pezzella,, S. Fanning, and, A. Carattoli. 2005. Comparison of multi-drug resistance gene regions between two geographically unrelated Salmonella serotypes. J. Antimicrob. Chemother. 55:558561.
11. Datta, N., and, V. M. Hughes. 1983. Plasmids of the same Inc groups in Enterobacteria before and after the medical use of antibiotics. Nature 306:616617.
12. Filutowicz, M.,, M. J. McEachern, and, D. R. Helinski. 1986. Positive and negative roles of an initiator protein at an origin of replication. Proc. Natl. Acad. Sci. USA 83:96459649.
13. Fishel, R. A.,, A. A. James, and, R. Kolodner. 1981. Rec-A independent general genetic recombination of plasmids. Nature 387:394401.
14. Giraldo, R., and, M. E. Fernandez-Tresguerres. 2004. Twenty years of the pPS10 replicon: insights on the molecular mechanism for the activation of DNA replication in iteron-containing bacterial plasmids. Plasmid 52:6983.
15. Guerra, B.,, S. Soto,, R. Helmuth, and, M. C. Mendoza. 2002. Characterization of a self-transferable plasmid from Salmonella enterica serotype Typhimurium clinical isolates carrying two integron-borne gene cassettes together with virulence and drug resistance genes. Antimicrob. Agents Chemother. 46:29772981.
16. Guiney, D. G. 1982. Host range of conjugation and replication functions of the Escherichia coli sex plasmid Flac. Comparison with the broad host-range plasmid RK2. J. Mol. Biol. 162:699703.
17. Hall, R. M., and, C. M. Collis. 1995. Mobile gene cassettes and integrons: capture and spread of genes by site-specific recombination. Mol. Microbiol. 15:593600.
18. Hamilton, H. L.,, N. M. Dominguez,, K. J. Schwartz,, K. T. Hackett, and, J. P. Dillard. 2005. Neisseria gonorrhoeae secretes chromosomal DNA via a novel type IV secretion system. Mol. Microbiol. 55:17041721.
19. Henderson, D., and, R. Meyer. 1999. The MobA-linked primase is the only replication protein of R1162 required for conjugal mobilization. J. Bacteriol. 181:29732978.
20. Herrero, A.,, M. R. Rodicio,, M. A. Gonzalez-Hevia, and, M. C. Mendoza. 2006. Molecular epidemiology of emergent multi-drug-resistant Salmonella enterica serotype Typhimurium strains carrying the virulence resistance plasmid pUO-StVR2. J. Antimicrob. Chemother. 57:3945.
21. Hofreuter, D.,, S. Odenbreit,, G. Henke, and, R. Haas. 1998. Natural competence for DANN transformation in Helicobacter pylori: identification and genetic characterization of the comb locus. Mol. Microbiol. 28:10271038.
22. Honda, Y.,, H. Sakai,, T. Komano, and, M. Bagdasarian. 1989. RepB′ is required in trans for the two single-strand DNA initiation signals in oriV of plasmid RSF1010. Gene 80:155159.
23. Karch, H. 2001. The role of virulence factors in enterohemorrhagic Escherichia coli (EHEC)—associated hemolytic-uremic syndrome. Semin. Thromb. Hemost. 27:207213.
24. Kim, D.,, Y. Rhee,, D. Rhodes,, V. Sharma,, O. Sorenson,, A. Greener, and, V. Smider. 2005. Directed evolution and identification of control regions of ColE1 plasmid replication origins using only nucleotide deletions. J. Mol. Biol. 351:763775.
25. Kollek, R.,, W. Oertel, and, W. Goebel. 1978. Isolation and characterization of the minimal fragment required for autonomous replication of a copy mutant (pKN102) of the antibiotic resistance factor R1. Mol. Gen. Genet. 162:5157.
26. Kolter, R., and, D. R. Helinski. 1982. Plasmid R6K DNA replication. II. Direct nucleotide sequence repeats are required for an active gamma-origin. J. Mol. Biol. 161:4556.
27. Kruger, R.,, A. Rakowski, and, M. Filutowicz. 2004. Participating elements in the replication of iterons-containing plasmids, p. 2545. In B. E. Funnell and, G. J. Philips (ed.), Plasmid Biology. ASM Press, Washington, DC.
28. Lawley, T.,, B. M. Wilkins, and, L. S. Frost. 2004. Bacterial conjugation in gram-negative bacteria, p. 203226. In B. E. Funnel and, G. J. Philips (ed.), Plasmid Biology. ASM Press, Washington, DC.
29. Lawley, T. D.,, W. A. Klimke,, M. J. Gubbins, and, L. S. Frost. 2003. F factor conjugation is a true type IV secretion system. FEMS Microbiol. Lett. 224:15.
30. Lenski, R. E. 1998. Bacterial evolution and the cost of antibiotic resistance. Int. Microbiol. 1:265270.
31. Leplae, R.,, A. Hebrant,, S. J. Wodak, and, A. Toussaint. 2004. ACLAME: A CLAssication of Mobile genetic Elements. Nucleic Acids Res. 32(Database issue): D45D49.
32. Light, J., and, S. Molin. 1982. The sites of action of the two copy number control functions of plasmid R1. Mol. Gen. Genet. 187:486493.
33. Lopez, J.,, I. Andres,, J. M. Ortiz, and, J. C. Rodriguez. 1990. Nucleotide sequence and expression of the copy number control gene (cop) of the incFVII plasmid pSU233. Nucleic Acids Res. 18:7177.
34. Malmgren, C.,, H. M. Engdahl,, P. Romby, and, E. G. H. Wagner. 1996. An antisense/target RNA duplex or a strong intra-molecular RNA structure 5′ of a translation initiation signal blocks ribosome binding: the case of plasmid R1. RNA 2:10221032.
35. Martínez, J. L., and, F. Baquero. 2002. Interactions among strategies associated with bacterial infection: pathogenicity, epidemicity, and antibiotic resistance. Clin. Microbiol. Rev. 15:647679.
36. McEachern, M. J.,, M. A. Bott,, P. A. Tooker, and, D. R. Helinski. 1989. Negative control of plasmid R6K replication: possible role of intermolecular coupling of replication origins. Proc. Natl. Acad. Sci. USA 86:79427946.
37. Miriagou, V.,, A. Carattoli,, E. Tzelepi,, L. Villa, and, L. S. Tzouvelekis. 2005. IS26-associated In4-type integrons forming multiresistance loci in enterobacterial plasmids. Antimicrob. Agents Chemother. 49:35413543.
38. Mohan, V. P.,, K. B. Sharma,, D. S. Agarwal,, G. Purnima, and, P. K. Pillai. 1995. Plasmid profile and phage type of Salmonella typhimurium strains encountered in different regions of India. Comp. Immunol. Microbiol. Infect. Dis. 18:283290.
39. Mukherjee, S.,, I. Patel, and, D. Bastia. 1985. Conformational changes in a replication origin induced by an initiator protein. Cell 43:189197.
40. Nordstrom, K. 2005. Plasmid R1-replication and its control. Plasmid 55:126.
41. Nordstrom, M., and, K. Nordstrom. 1985. Control of replication of FII plasmids: comparison of the basic replicons and of the copB systems of plasmids R100 and R1. Plasmid 13:8187.
42. Novick, R. P. 1987. Plasmid incompatibility. Microbiol. Rev. 51:381395.
43. Osborn, A. M.,, F. M. da Silva Tatley,, L. M. Steyn,, R. W. Pickup, and, J. R. Saunders. 2000. Mosaic plasmids and mosaic replicons: evolutionary lessons from the analysis of genetic diversity in IncFII-related replicons. Microbiology, 146:22672275.
44. Paulsson, J. 2002. Multileveled selection on plasmid replication. Genetics 161:13731384.
45. Persson, C., and, K. Nordstrom. 1986. Control of replication of the broad host range plasmid RSF1010: the incompatibility determinant consists of directly repeated DNA sequences. Mol. Gen. Genet. 203:189192.
46. Praszkier, J., and, A. J. Pittard. 2005. Control of replication in I-complex plasmids. Plasmid 53:97112.
47. Preston, K. E.,, M. A. Kacica,, R. J. Limberger,, W. A. Archinal, and, R. A. Venezia. 1997. The resistance and integrase genes of pACM1, a conjugative multiple-resistance plasmid, from Klebsiella oxytoca. Plasmid 37:105118.
48. Pupo, G. M.,, R. Lan, and, P. R. Reeves. 2000. Multiple independent origins of Shigella clones of Escherichia coli and convergent evolution of many of their characteristics. Proc. Natl. Acad. Sci. USA 97:1056710572.
49. Rawlings, D. E., and, E. Tietze. 2001. Comparative biology of IncQ and IncQ-like plasmids. Microbiol. Mol. Biol. Rev. 65:481496.
50. Rawlings, D. E. 2005. The evolution of pTF-FC2 and pTC-F14, two related plasmids of the IncQ-family. Plasmid 53:137147.
51. Reeves, P. R. 2002. Escherichia coli in disguise: molecular origins of Shigella. Microbes Infect. 4:11251132.
52. Robins-Browne, R. M., and, E. L. Hartland. 2002. Escherichia coli as a cause of diarrhea. J. Gastroenterol. Hepatol. 17:467475.
53. Saadi, S.,, W. K. Maas,, D. F. Hill, and, P. L. Bergquist. 1987. Nucleotide sequence analysis of RepFIC, a basic replicon present in IncFI plasmids P307 and F, and its relation to the RepA replicon of IncFII plasmids. J. Bacteriol. 169:18361846.
54. Scherzinger, E.,, V. Kruft, and, S. Otto. 1993. Purification of the large mobilization protein of plasmid RSF1010 and characterization of its site-specific DNA cleaving/DNA joining activity. Eur. J. Biochem. 217:929938.
55. Scholz, P.,, V. Haring,, B. Wittmann-Liebold,, K. Ashman,, M. Bagdasarian, and, E. Scherzinger. 1989. Complete nucleotide sequence and gene organization of the broad-host-range plasmid RSF1010. Gene 75:271288.
56. Schubert, S.,, A. Rakin, and, J. Heesemann. 2004. The Yersinia high-pathogenicity island (HPI): evolutionary and functional aspects. Int. J. Med. Microbiol. 294:8394.
57. Segal, G.,, J. J. Russo, and, H. A. Shuman. 1999. Relationships between a new type IV secretion system and the icm/dot system of Legionella pneumophila. Mol. Microbiol. 34:799809.
58. Sherburne, C. K.,, T. D. Lawley,, M. W. Gilmore,, F. R. Blattner,, V. Burland,, E. Grotbeck,, D. J. Rose, and, D. E. Taylor. 2000. The complete DNA sequence and analysis of R27, a large IncH1 plasmid from Salmonella typhi that is temperature sensitive for transfer. Nucleic Acids Res. 28:21772186.
59. Sykora, P. 1992. Macroevolution of plasmids: a model for plasmid speciation. J. Theor. Biol. 159:5365.
60. Thomas, C. M., and, K. M. Nielsen. 2005. Mechanisms of, and barriers to, horizontal gene transfer between bacteria. Nat. Rev. Microbiol. 3:711721.
61. Thomas, C. M. 2004. Evolution and population genetics of bacterial plasmids, p. 509528. In B. E. Funnel and, G. J. Philips (ed.), Plasmid Biology. ASM Press, Washington, DC.
62. Tobe, T.,, T. Hayashi,, C. G. Han,, G. K. Schoolnik,, E. Ohtsubo, and, C. Sasakawa. 1999. Complete DNA sequence and structural analysis of the enteropathogenic Escherichia coli adherence factor plasmid. Infect. Immun. 67:54555462.
63. Tosini, F.,, P. Visca,, I. Luzzi,, A. M. Dionisi,, C. Pezzella,, A. Petrucca, and, A. Carattoli. 1998. Class1 integron-borne multiple antibiotic resistance carried by IncFI and IncL/M plasmids in Salmonella enterica serotype Typhimurium. Antimicrob. Agents Chemother. 42:30533058.
64. Venkatesan, M., and, V. Burland. 2004. Genome-scale analysis of virulence plasmids: the contribution of plasmid-borne virulence genes to enterobacterial pathogenesis, p. 395411. In B. E. Funnel and, G. J. Philips (ed.), Plasmid Biology. ASM Press, Washington, DC.
65. Venkatesan, M. M.,, M. B. Goldberg,, D. J. Rose,, E. J. Grotbeck,, V. Burland, and, F. R. Blattner. 2001. Complete DNA sequence and analysis of the large virulence plasmid of Shigella flexneri. Infect. Immun. 69:32713285.
66. Villa, L., and, A. Carattoli. 2005. Integrons and transposons on the Salmonella Typhimurium virulence plasmid. Antimicrob. Agents Chemother. 49:11941197.
67. Villa, L.,, C. Pezzella,, F. Tosini,, P. Visca,, A. Petrucca, and, A. Carattoli. 2000. Multiple-antibiotic resistance mediated by structurally-related IncL/M plasmids carrying an extended-spectrum β-lactamase gene and a class 1 integron. Antimicrob. Agents Chemother. 44:29112914.
68. Villa, L.,, P. Visca,, F. Tosini,, C. Pezzella, and, A. Carattoli. 2002. Composite integron array generated by insertion of an ORF341-type integron within a Tn21-like element. Microb. Drug Resist. 8:18.
69. Vocke, C., and, D. Bastia. 1983. DNA-protein interaction at the origin of DNA replication of the plasmid pSC101. Cell 35:495502.
70. Wegrzyn, G. 2005. What does “plasmid biology” currently mean? Summary of the Plasmid Biology 2004 Meeting. Plasmid 53:1422.
71. Woodward, M. J.,, C. Wray,, G. A. Ridha, and, J. R. Walton. 1990. Plasmid and chromosomal related toxin polymorphism of Escherichia coli serogroup O 138; plasmid transfer and co-integration with pRP4. J. Med. Microbiol. 31:241249.
72. Wren, B. W. 2003. The yersiniae—a model genus to study the rapid evolution of bacterial pathogens. Nat. Rev. Microbiol. 1:5564.
73. Yang, F.,, J. Yang,, X. Zhang,, L. Chen,, Y. Jiang,, Y. Yan,, X. Tang,, J. Wang,, Z. Xiong,, J. Dong,, Y. Xue,, Y. Zhu,, X. Xu,, L. Sun,, S. Chen,, H. Nie,, J. Peng,, J. Xu,, Y. Wang,, Z. Yuan,, Y. Wen,, Z. Yao,, Y. Shen,, B. Qiang,, Y. Hou,, J. Yu, and, Q. Jin. 2005. Genome dynamics and diversity of Shigella species, the etiologic agents of bacillary dysentery. Nucleic Acids Res. 33:64456458.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error