1887

Chapter 18 : Specific Chromosome Alterations of Candida albicans: Mechanisms for Adaptation to Pathogenicity

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in
Zoomout

Specific Chromosome Alterations of Candida albicans: Mechanisms for Adaptation to Pathogenicity, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555815639/9781555814144_Chap18-1.gif /docserver/preview/fulltext/10.1128/9781555815639/9781555814144_Chap18-2.gif

Abstract:

This chapter reviews the examples of Candida albicans survival resulting from specific chromosome alterations in vitro, as well as recent advances in understanding this regulation. Previously classified as asexual, C. albicans belongs to the genus Candida, which is composed of approximately 159 species of lower fungi reproducing by multilateral budding. Development of fluconazole resistance has been extensively studied in clinical settings and in laboratories. Series of matched clinical isolates became an important tool in these studies. Matched series are usually represented by the isolates, which were sampled from the same patient either at a certain time during infection or during recurrent episodes and which were derived from the same strain. Study of the deletion in one of the mutants confirmed the loss of at least a 305-kbp portion adjacent to the right telomere. The reason this deletion confers the Sou+ phenotype is discussed in the section Ch5 carries functionally redundant regulatory genes. In fact, an uncharacterized rearrangement of one mutant of strain CAF4-2 is probably the only true exception from the Ch5 monosomy. The major control of sorbose utilization (CSUs) on Ch5 that are controlled by this chromosome copy number, apparently can 'override' secondary CSUs, thus allowing ready adaptation to sorbose. Universality of the control caused by aneuploidy implies that C. albicans regulatory and metabolic genes are distributed nonrandomly over the chromosomes.

Citation: Rustchenko E. 2008. Specific Chromosome Alterations of Candida albicans: Mechanisms for Adaptation to Pathogenicity, p 197-212. In Baquero F, Nombela C, Cassell G, Gutiérrez-Fuentes J (ed), Evolutionary Biology of Bacterial and Fungal Pathogens. ASM Press, Washington, DC. doi: 10.1128/9781555815639.ch18
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of Figure 1.
Figure 1.

Schematic representation of Ch5 showing regions that are responsible for different phenotypes. Included are the length (1,295 kbp); centromere (C); telomeres (T); and the mjor repeat sequence (MRS). See Lephart et al. (2005) for the orientation of MRS. The contigs, including their names, are indicated under the diagram of the chromosome. The aligned contigs are presented as arrows. Orientation of the contigs flanking MRS is explained by Wu et al. (2005). Also shown are 2 portions, approximately 305 kbp adjacent to the right telomere or the entire left arm, loss or duplication of which confers the Sou+ or Flur phenotype, respectively, in naturally occurring mutants. CSU51 to CSU55 in five unique functional regions 140 (B and A), 135, C, and 139 are shown within an approximately 209-kb critical portion of the right arm of Ch5. The regions are organized in two redundant regulatory pathways, I and II. Also shown are the contig positions of the unique sequences 133, 134, 137, 141, 142, and 148, which were cloned from DNA library of Ch5 due to their repression of growth on sorbose medium (Kabir et al., 2005). Also shown are ERG11 in contig 19-10080 and TAC1 and MTL in contig 19-10170 on the left arm of Ch5. Not shown is an unknown portion, amplication of which confers Foar. Also, loss of an entire homolog of Ch5 confers Sou+. (Adapted from Wu et al., 2005, and Kabir et al., 2005).

Citation: Rustchenko E. 2008. Specific Chromosome Alterations of Candida albicans: Mechanisms for Adaptation to Pathogenicity, p 197-212. In Baquero F, Nombela C, Cassell G, Gutiérrez-Fuentes J (ed), Evolutionary Biology of Bacterial and Fungal Pathogens. ASM Press, Washington, DC. doi: 10.1128/9781555815639.ch18
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2.
Figure 2.

Schematic presentation of the electrophoretic karyotype of C. albicans strain CAF4-2 and the chromosome assignment of the genes, which are implicated with the resistance to fluconazole in clinical isolates. Metabolic genes are underlined; the regulatory gene is not. Dotted line corresponds to one homolog. Continuous line corresponds to two comigrating homologs.

Citation: Rustchenko E. 2008. Specific Chromosome Alterations of Candida albicans: Mechanisms for Adaptation to Pathogenicity, p 197-212. In Baquero F, Nombela C, Cassell G, Gutiérrez-Fuentes J (ed), Evolutionary Biology of Bacterial and Fungal Pathogens. ASM Press, Washington, DC. doi: 10.1128/9781555815639.ch18
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 3.
Figure 3.

Examples of specific chromosome alterations, which allow survival in four specific adverse environments. Portions of chromosome patterns are precisely separated using different conditions of orthogonal-field-alternation gel electrophoresis. (A) Ch5 alterations in sequential series of Sou+ and Sou derivatives from strain 3153A. Shown are the Sou parental strain 3153A, its Sou+ derivative Sor55; the Sou phenotypic revertant of the previous Sor55-1, and the Sou+ derivative of the revertant Sor55-1-1. Short Ch7, Ch6, and Ch5, or the bottom group of chromosomes, (B) are separated precisely, whereas the middle-sized or middle group, (M) and long chromosomes, or top group, (T) are compressed. (B) and (C) An approximately 250-kbp enlargement of Ch5 and trisomy of Ch4, respectively, in two classes of Foar derivatives of strain 3153A are shown. The Ch4 and Ch3 of the M-group are separated precisely. The T-group is compressed. The B-group is poorly separated, although Ch5 is clearly observed. (D) and (E) Reduction of Ch4 and concomitant reduction of Ch4 and trisomy of Ch3 in Flur derivatives of strain SGY-243 appearing after, respectively, short and long exposure to fluconazole. See explanations in (A) for the chromosome separation in (D). See explanations in (B) and (C) for the chromosome separation in (E). Note that patterns of chromosomes in parental strains 3153A and SGY-243 are different (see schematics in Fig. 2A and M for the comparison). (F) Trisomy of Ch2 coupled with an approximately 1-Mbp deletion in Aru+ derivatives of strain 3153A. (G) Hybridization of the blot in (F) to probe HIS3, revealing formation of an additional truncated homolog of Ch2. Note that two regular copies of Ch2 are compressed in the T-group of chromosomes in (F). Arrows indicate normal and altered copies of specific chromosomes. (Adapted from Rustchenko et al., 1994; Janbon et al., 1998; Perepnikhatka et al., 1999; and Wellington and Rustchenko, 2005.)

Citation: Rustchenko E. 2008. Specific Chromosome Alterations of Candida albicans: Mechanisms for Adaptation to Pathogenicity, p 197-212. In Baquero F, Nombela C, Cassell G, Gutiérrez-Fuentes J (ed), Evolutionary Biology of Bacterial and Fungal Pathogens. ASM Press, Washington, DC. doi: 10.1128/9781555815639.ch18
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 4.
Figure 4.

Cartoon showing tandemly positioned SOU1 and SOU2 on Ch4. The C-rich region between the genes is also indicated.

Citation: Rustchenko E. 2008. Specific Chromosome Alterations of Candida albicans: Mechanisms for Adaptation to Pathogenicity, p 197-212. In Baquero F, Nombela C, Cassell G, Gutiérrez-Fuentes J (ed), Evolutionary Biology of Bacterial and Fungal Pathogens. ASM Press, Washington, DC. doi: 10.1128/9781555815639.ch18
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 5.
Figure 5.

The schematic presentation of the electrophoretic karyotype of C. albicans CAF4-2 and the chromosome assignment of the genes, which are implicated with the resistance to sorbose. Metabolic gene is underlined; regulatory genes are not. Major regulatory genes CSU51 to CSU55 on Ch5 are in bold (Fig. 1). For more details see the legend of Fig. 2.

Citation: Rustchenko E. 2008. Specific Chromosome Alterations of Candida albicans: Mechanisms for Adaptation to Pathogenicity, p 197-212. In Baquero F, Nombela C, Cassell G, Gutiérrez-Fuentes J (ed), Evolutionary Biology of Bacterial and Fungal Pathogens. ASM Press, Washington, DC. doi: 10.1128/9781555815639.ch18
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555815639.ch18
1. Andaluz, E.,, T. Ciudad, and, G. Larriba. 2002. An evaluation of the role of LIG4 in genomic instability and adaptive mutagenesis in Candida albicans. FEMS Yeast Res. 2:341348.
2. Balkis, M. M.,, S. D. Leidich,, P. K. Mukherjee, and, M. A. Ghannoum. 2002. Mechanisms of fungal resistance. Drugs 62:10251040.
3. Bedini, A.,, C. Venturelli,, C. Mussini,, G. Guaraldi,, M. Codeluppi,, V. Borghi,, F. Rumpianesi,, F. Barchiesi, and, R. Esposito. 2006. Epidemiology of candidaemia and antifungal susceptibility patterns in an Italian tertiary-care hospital. Clin. Microbiol. Infect. 12:7580.
4. Bennett, R. J., and, A. D. Johnson. 2003. Completion of a para-sexual cycle in Candida albicans by induced chromosome loss in tetraploid strains. EMBO J. 22:25052515.
5. Bennett, R. J., and, A. D. Johnson. 2003. Completion of a para-sexual cycle in Candida albicans by induced chromosome loss in tetraploid strains. EMBO J. 22:25052515.
6. Bennett, R. J., and, A. D. Johnson. 2005. Mating in Candida albicans and the search for a sexual cycle. Annu. Rev. Microbiol. 59:233255.
7. Calderone, R. A. 2002. Taxonomy and biology of Candida, p. 1527. In R. A. Calderone (ed.), Candida and Candidiasis, ASM Press, Washington, DC.
8. Calvet, H. M.,, M. R. Yeaman, and, S. G. Filler. 1997. Reversible fluconazole resistance in Candida albicans: a potential in vitro model. Antimicrob. Agents Chemother. 41:535539.
9. Castagnola, E.,, M. Machetti,, B. Bucci, and, C. Viscoli. 2004. Antifungal prophylaxis with azole derivatives. Clin. Microbiol. Infect. 10(Suppl 1): 8695.
10. Chauhan, N.,, T. Ciudad,, A. Rodriguez-Alejandre,, G. Larriba,, R. Calderone, and, E. Andaluz. 2005. Virulence and karyotype analyses of rad52 mutants of Candida albicans: regeneration of a truncated chromosome of a reintegrant strain (rad52/RAD52) in the host. Infect. Immun. 73:80698078.
11. Chen, X.,, B. B. Magee,, D. Dawson,, P. T. Magee, and, C. A. Kumamoto. 2004. Chromosome 1 trisomy compromises the virulence of Candida albicans. Mol. Microbiol. 51:551565.
12. Coste, A.,, V. Turner,, F. Ischer,, J. Morschhauser,, A. Forche,, A. Selmecki,, J. Berman,, J. Bille, and, D. Sanglard. 2006. A mutation in Tac1p, a transcription factor regulating CDR1 and CDR2, is coupled with loss of heterozygosity at chromosome 5 to mediate antifungal resistance in Candida albicans. Genetics 172:21392156.
13. Coste, A. T.,, M. Karababa,, F. Ischer,, J. Bille, and, D. Sanglard. 2004. TAC1, transcriptional activator of CDR genes, is a new transcription factor involved in the regulation of Candida albicans ABC transporters CDR1 and CDR2. Eukaryot. Cell 3:16391652.
14. Cowen, L. E.,, D. Sanglard,, D. Calabrese,, C. Sirjusingh,, J. B. Anderson, and, L. M. Kohn. 2000. Evolution of drug resistance in experimental populations of Candida albicans. J. Bacteriol. 182:15151522.
15. Cutler, J. E. 1991. Putative virulence factors of Candida albicans. Annu. Rev. Microbiol. 45:187218.
16. Fincham, J. R. S., and, P. R. Day. 1971. Fungal Genetics. Oxford and Edinburgh: Blackwell Scientific.
17. Franz, R.,, S. L. Kelly,, D. C. Lamb,, D. E. Kelly,, M. Ruhnke, and, J. Morschhauser. 1998. Multiple molecular mechanisms contribute to a stepwise development of fluconazole resistance in clinical Candida albicans strains. Antimicrob. Agents Chemother. 42:30653072.
18. Greenberg, J. R.,, N. P. Price,, R. P. Oliver,, F. Sherman,, E. Rustchenko. 2005. Candida albicans SOU1 encodes a sorbose reductase required for L-sorbose utilization. Yeast 22:957969.
19. Gudlaugsson, O.,, S. Gillespie,, K. Lee,, J. Vande Berg,, J. Hu,, S. Messer,, L. Herwaldt,, M. Pfaller, and, D. Diekema. 2003. Attributable mortality of nosocomial candidemia, revisited. Clin. Infect. Dis. 37:11721177.
20. Hiraoka, Y.,, D. O. Ding,, A. Yamamoto,, C. Tsutsumi, and, Y. Chikashige. 2000. Characterization of fission yeast meiotic mutants based on live observation of meiotic prophase nuclear movement. Chromosoma 109:103109.
21. Hube, B. 1996. Candida albicans secreted aspartyl proteinases. Curr. Top. Med. Mycol. 7:5569.
22. Huber, D., and, E. Rustchenko. 2001. Large circular and linear rDNA plasmids in Candida albicans. Yeast 18:261272.
23. Hull, C. M.,, R. M. Raisner, and, A. D. Johnson. 2000. Evidence for mating of the “asexual” yeast Candida albicans in a mammalian host. Science 289:307310.
24. Iwaguchi, S.,, M. Homma, and, K. Tanaka. 1990. Variation in the electrophoretic karyotype analysed by the assignment of DNA probes in Candida albicans. J. Gen. Microbiol. 138:11771184.
25. Janbon, G.,, F. Sherman, and, E. Rustchenko. 1999. Appearance and properties of L-sorbose-utilizing mutants of Candida albicans obtained on a selective plate. Genetics 153:653664.
26. Janbon, G.,, F. Sherman, and, E. Rustchenko. 1998. Monosomy of a specific chromosome determines L-sorbose utilization: a novel regulatory mechanism in Candida albicans. Proc. Natl. Acad. Sci. USA 95:51505155.
27. Johnson, A. D. 2003. The biology of mating in Candida albicans. Nat. Rev. Microbiol. 1:106116.
28. Johnson, E. M.,, D. W. Warnock,, J. Luker,, S. R. Porter, and, C. Scully. 1995. Emergence of azole drug resistance in Candida species from HIV-infected patients receiving prolonged fluconazole therapy for oral candidosis. J. Antimicrob. Chemother. 35:103114.
29. Jones, T.,, N. A. Federspiel,, H. Chibana,, J. Dungan,, S. Kalman,, B. B. Magee,, G. Newport,, Y. R. Thorstenson,, N. Agabian,, P. T. Magee,, R. W. Davis, and, S. Scherer. 2004. The diploid genome sequence of Candida albicans. Proc. Natl. Acad. Sci. USA 101:73297334.
30. Kabir, M. A.,, A. Ahmad,, J. R. Greenberg,, Y.-K. Wang, and, E. Rustchenko. 2005. Loss and gain of chromosome 5 controls growth of Candida albicans on sorbose due to dispersed redundant negative regulators. Proc. Natl. Acad. Sci. USA 102:1214712152.
31. Klein, R. S.,, C. A. Harris,, C. B. Small,, B. Moll,, M. Lesser, and, G. H. Friedland. 1984. Oral candidiasis in high-risk patients as the initial manifestation of the acquired immunodeficiency syndrome. N. Engl. J. Med. 311:354358.
32. Lachke, S. A.,, S. R. Lockhart,, K. J. Daniels, and, D. R. Soll. 2003. Skin facilitates Candida albicans mating. Infect. Immun. 71:49704976.
33. Lasker, B. A.,, G. F. Carle,, G. S. Kobayashi, and, G. Medoff. 1989. Comparison of the separation of Candida albicans chromosome-sized DNA by pulsed-field gel electrophoresis techniques. Nucleic Acid Res. 17:37833793.
34. Lephart, P., and, P. T. Magee. 2006. Effect of the major repeat sequence (MRS) on mitotic recombination in Candida albicans. Genetics 174:17371744.
35. Lephart, P. R.,, H. Chibana, and, P. T. Magee. 2005. Effect of the major repeat sequence on chromosome loss in Candida albicans. Eukaryot. Cell 4:733741.
36. Lischewski, A.,, M. Ruhnke,, I. Tennagen,, G. Schonian,, J. Morschhauser, and, J. Hacker. 1995. Molecular epidemiology of Candida isolates from AIDS patients showing different fluconazole resistance profiles. J. Clin. Microbiol. 33:769771.
37. Lopez-Ribot, J. L.,, R. K. McAtee,, L. N. Lee,, W. R. Kirkpatrick,, T. C. White,, D. Sanglard, and, T. F. Patterson. 1998. Distinct patterns of gene expression associated with development of fluconazole resistance in serial Candida albicans isolates from human immunodeficiency virus-infected patients with oropharyngeal candidiasis. Antimicrob. Agents Chemother. 42:29322937.
38. Lopez-Ribot, J. L.,, R. K. McAtee,, S. Perea,, W. R. Kirkpatrick,, M. G. Rinaldi, and, T. F. Patterson. 1999. Multiple resistant phenotypes of Candida albicans coexist during episodes of oropharyngeal candidiasis in human immunodeficiency virus-infected patients. Antimicrob. Agents Chemother. 43:16211630.
39. Magee, B. B., and, P. T. Magee. 2000. Induction of mating in Candida albicans by construction of MTLa and MTL α strains. Science 289:310313.
40. Magee, B. B., and, P. T. Magee. 1997. WO-2, a stable aneuploid derivative of Candida albicans strain WO-1, can switch from white to opaque and form hyphae. Microbiology 143:289295.
41. Magee, P. T., and, B. B. Magee. 2004. Through a glass opaquely: the biological significance of mating in Candida albicans. Curr. Opin. Microbiol. 7:661665.
42. Magill, S. S.,, C. Shields,, C. L. Sears,, M. Choti, and, W. G. Merz. 2006. Triazole cross-resistance among Candida spp.: case report, occurrence among bloodstream isolates, and implications for antifungal therapy. J. Clin. Microbiol. 44:529535.
43. Marichal, P., and, H. Vanden Bossche. 1995. Mechanisms of resistance to azole antifungals. Acta Biochimica Polonica 42:509516.
44. Marr, K. A.,, C. N. Lyons,, T. R. Rustad,, R. A. Bowden, and, T. C. White. 1998. Rapid, transient fluconazole resistance in Candida albicans is associated with increased mRNA levels of CDR. Antimicrob. Agents Chemother. 42:25842589.
45. Marr, K. A.,, K. Seidel,, M. A. Slavin,, R. A. Bowden,, H. G. Schoch,, M. E. Flowers,, L. Corey, and, M. Boeckh. 2000. Prolonged fluconazole prophylaxis is associated with persistent protection against candidiasis-related death in allogeneic marrow transplant recipients: long-term follow-up of a randomized, placebo-controlled trial. Blood 96:20552061.
46. Marr, K. A.,, T. C. White,, J. A. van Burik, and, R. A. Bowden. 1997. Development of fluconazole resistance in Candida albicans causing disseminated infection in a patient undergoing marrow transplantation. Clin. Infect. Dis. 25:908910.
47. McGinnis, M. R. 1980. Laboratory Handbook of Medical Mycology. Academic Press, New York.
48. Merz, W. G.,, J. E. Karp,, D. Schron, and, R. Saral. 1986. Increased incidence of fungemia caused by Candida krusei. J. Clin. Microbiol. 24:581584.
49. Messer, S. A.,, R. N. Jones, and, T. R. Fritsche. 2006. International surveillance of Candida spp. and Aspergillus spp.: report from the SENTRY Antimicrobial Surveillance Program (2003). J. Clin. Microbiol. 44:17821787.
50. Meunier, F. 1989. Candidiasis. Eur. J. Clin. Microbiol. Infect. Dis. 8:438447.
51. Meyers, S. A.,, D. G. Ahearn, and, D. Yarrow. 1984. Genus 4, Candida Berkout, p. 585844. In N. J. Kreger-van Rij (ed.), The Yeasts: A Taxonomic Study, 3rd ed. Elsevier Science Publishers, Amsterdam.
52. Morais, P. B.,, M. B. Martins,, L. B. Klaczko,, L. C. Mendonca-Hagler, and, A. N. Hagler. 1995. Yeast succession in the Amazon fruit Parahancornia amapa as resource partitioning among Drosophila spp. Appl. Environ. Microbiol. 61:42514257.
53. Morschhauser, J. 2002. The genetic basis of fluconazole resistance development in Candida albicans. Biochim. Biophys. Acta 1587:240248.
54. Munoz, P.,, M. Sanchez-Somolinos,, L. Alcala,, M. Rodriguez-Creixems,, T. Pelaez, and, E. Bouza. 2005. Candida krusei fungemia: antifungal susceptibility and clinical presentation of an uncommon entity during 15 years in a single general hospital. J. Antimicrob. Chemother. 55:188193.
55. Navarro-García, F.,, M. Sánchez,, C. Nombela, and, J. Pla. 2001. Virulence genes in the pathogenic yeast Candida albicans. FEMS Microbiol. Rev. 25:245268.
56. Nébavi, F.,, F. J. Ayala,, F. Renaud,, S. Bertout,, S. Eholié,, K. Moussa,, M. Mallie, and, T. de Meeus. 2006. Clonal population structure and genetic diversity of Candida albicans in AIDS patients from Abidjan (Côte d’Ivoire). Proc. Natl. Acad. Sci. USA 103:36633668.
57. Odds, F. C.,, P. Auger,, P. Krogh,, A. N. Neely, and, E. Segal. 1989. Biotyping of Candida albicans: results of an international collaborative survey. J. Clin. Microbiol. 27:15061509.
58. Odds, F. C.,, A. J. Brown, and, N. A. Gow. 2004. Candida albicans genome sequence: a platform for genomics in the absence of genetics. Genome Biol. 5:230232.
59. Odds, F. C.,, L. Van Nuffel, and, N. A. Gow. 2000. Survival in experimental Candida albicans infections depends on inoculum growth conditions as well as animal host. Microbiology 146:18811889.
60. Odds, F. C. 1988. Candida and Candidosis. WB Saunders, Philadelphia, PA.
61. Olaiya, A. F., and, S. J. Sogin. 1979. Ploidy determination of Candida albicans. J. Bacteriol. 140:10431049.
62. Perea, S.,, J. L. Lopez-Ribot,, W. R. Kirkpatrick,, R. K. McAtee,, R. A. Santillan,, M. Martinez,, D. Calabrese,, D. Sanglard, and, T. F. Patterson. 2001. Prevalence of molecular mechanisms of resistance to azole antifungal agents in Candida albicans strains displaying high-level fluconazole resistance isolated from human immunodeficiency virus infected patients. Antimicrob. Agents Chemother. 45:26762684.
63. Perepnikhatka, V.,, F. J. Fischer,, M. Niimi,, R. A. Baker,, R. D. Cannon,, Y.-K. Wang,, F. Sherman, and, E. Rustchenko. 1999. Specific chromosome alterations in fluconazole-resistant mutants of Candida albicans. J. Bacteriol. 181:40414049.
64. Pfaller, M. A.,, D. J. Diekema,, R. N. Jones,, S. A. Messer,, R. J. Hollis andthe SENTRY Participants Group. 2002. Trends in antifungal susceptibility of Candida spp. isolated from pediatric and adult patients with bloodstream infections: SENTRY Antimicrobial Surveillance Program, 1997 to 2000. J. Clin. Microbiol. 40:852856.
65. Pizzo, G.,, F. Barchiesi,, L. Falconi Di Francesco,, G. Giuliana,, D. Arzeni,, M. E. Milici,, M. D’Angelo, and, G. Scalise. 2002. Genotyping and antifungal susceptibility of human subgingival Candida albicans isolates. Arch. Oral. Biol. 47:189196.
66. Redding, S. W.,, M. A. Pfaller,, S. A. Messer,, J. A. Smith,, J. Prows,, L. L. Bradley,, A. W. Fothergill, and, M. G. Rinaldi. 1997. Variations in fluconazole susceptibility and DNA subtyping of multiple Candida albicans colonies from patients with AIDS and oral candidiasis suffering one or more episodes of infection. J. Clin. Microbiol. 35:17611765.
67. Rex, J. H.,, M. G. Rinaldi, and, M. A. Pfaller. 1995. Resistance of Candida species to fluconazole. Antimicrob. Agents Chemother. 39:18.
68. Riggsby, W. S. 1990. Physical charaterization of the Candida albicans genome, p. 125146. In D. R. Kirsch,, R. Kelly, and, M. B. Kurtz (ed.), The Genetics of Candida. CRC Press, Boca Raton, FL.
69. Rogers, A. L., and, E. S. Beneke. 1964. Human pathogenic fungi recovered from Brasilian soil. Mycopathol. Mycol. Appl. 22:1520.
70. Ruhnke, M. 2002. Skin and mucous membrane infections, p. 307. In R. A. Calderone (ed.), Candida and Candidiasis. ASM Press, Washington, DC.
71. Rustchenko, E., and, F. Sherman. 2002. Genetic instability of Candida albicans, p. 723191. In D. H. Howard (ed.), Fungi Pathogenic for Humans and Animals. Marcel Dekker, New York, New York.
72. Rustchenko, E. 2003a. Candida albicans adaptability to environmental challenges by means of specific chromosome alteration, p. 91102. In S. G. Pandalai (ed.), Recent Research Developments in Bacteriology. Transworld Research Network.
73. Rustchenko, E. 2007. Chromosome instability in Candida albicans. FEMS Yeast Res. 7:211.
74. Rustchenko, E. 2003b. Regulation de l’expression des genes par des modifications specifiques des chromosomes, p. 223236. In F. Dromer and, O. Lortholary (ed.), Annales de l’Institut Pasteur/Actualites. Les Mycoses. Elsevier, Amsterdam.
75. Rustchenko, E. P.,, D. H. Howard, and, F. Sherman. 1994. Chromosomal alterations of Candida albicans are associated with the gain and loss of assimilating functions. J. Bacteriol. 176:32313241.
76. Rustchenko, E. P.,, D. H. Howard, and, F. Sherman. 1997. Variation in assimilating functions occurs in spontaneous Candida albicans mutants having chromosomal alterations. Microbiology 143:17651778.
77. Rustchenko-Bulgac, E. P., and, D. H. Howard. 1993. Multiple chromosomal and phenotypic changes in spontaneous mutants of Candida albicans. J. Gen. Microbiol. 139:11951207.
78. Rustchenko-Bulgac, E. P.,, F. Sherman, and, J. B. Hicks. 1990. Chromosomal rearrangements associated with morphological mutants provide a means for genetic variation of Candida albicans. J. Bacteriol. 172:12761283.
79. Rustchenko-Bulgac, E. P. 1991. Variations of Candida albicans electrophoretic karyotypes. J. Bacteriol. 173:65866596.
80. Saidane, S.,, S. Weber,, X. De Deken,, G. St-Germain, and, M. Raymond. 2006. PDR16-mediated azole resistance in Candida albicans. Mol. Microbiol. 60:15461562.
81. Sanglard, D.,, K. Kuchler,, F. Ischer,, J. L. Pagani,, M. Monod, and, J. Bille. 1995. Mechanisms of resistance to azole antifungal agents in Candida albicans isolates from AIDS patients involve specific multidrug transporters. Antimicrob. Agents Chemother. 39:23782386.
82. Sanglard, D., and, F. C. Odds. 2002a. Resistance of Candida species to antifungal agents: molecular mechanisms and clinical consequences. Lancet Infect. Dis. 2:7385.
83. Sanglard, D. 2002b. Clinical relevance of mechanisms of antifungal drug resistance in yeasts. Enferm. Infec. Microbiol. Clin. 20:462469 [quiz 470, 479].
84. Selmecki, A.,, S. Bergmann, and, J. Berman. 2005. Comparative genome hybridization reveals widespread aneuploidy in Candida albicans laboratory strains. Mol. Microbiol. 55:15531565.
85. Selmecki, A.,, A. Forche, and, J. Berman. 2006. Aneuploidy and isochromosome formation in drug-resistant Candida albicans. Science 313:367370.
86. Slutsky, B.,, J. Buffo, and, D. R. Soll. 1985. High frequency switching of colony morphology in Candida albicans. Science 230:666669.
87. Sobel, J. D. 1985. Epidemiology and pathogenesis of recurrent vulvovaginal candidiasis. Am. J. Obstet. Gynecol. 152:924935.
88. Sohnle, P. G.,, M. Bhatti, and, D. K. Wagner. 2002. Immunology of cutaneous Candidiasis, p. 211. In R. A. Calderone (ed.), Candida and Candidiasis. Washington, DC.
89. Soll, D. R. 2003. Mating-type locus homozygosis, phenotypic switching and mating: a unique sequence of dependencies in Candida albicans. Bio-Assays 26:1020.
90. Suzuki, T.,, T. Kanbe,, T. Kuroiwa, and, K. Tanaka. 1986. Occurrence of ploidy shift in a strain of the imperfect yeast Candida albicans. J. Gen. Microbiol. 132:443453.
91. Suzuki, T.,, I. Kobayashi,, T. Kanbe, and, K. Tanaka. 1989. High frequency variation of colony morphology and chromosome reorganization in the pathogenic yeast Candida albicans. J. Gen. Microbiol. 135:425434.
92. Suzuki, T.,, S. Nishibayashi,, T. Kuroiwa,, T. Kanbe, and, K. Tanaka. 1982. Variance of ploidy in Candida albicans. J. Bacteriol. 152:893896.
93. Vanden Bossche, H.,, F. Dromer,, I. Improvisi,, M. Lozano-Chiu,, J. H. Rex, and, D. Sanglard. 1998. Antifungal drug resistance in pathogenic fungi. Med. Mycol. 36(Suppl 1): 119128.
94. Vanden Bossche, H.,, P. Marichal,, J. Gorrens,, M. C. Coene,, G. Willemsens,, D. Bellens,, I. Roels,, H. Moereels, and, P. A. Janssen. 1989. Biochemical approaches to selective antifungal activity. Focus on azole antifungals. Mycoses 32(Suppl 1): 3552.
95. Vos, M. C.,, H. P. Endtz,, D. Horst-Kreft,, J. Doorduijn,, E. Lugtenburg,, H. A. Verbrugh,, B. Löwenberg,, S. de Marie,, C. van Pelt, and, A. van Belkum. 2006. Candida krusei transmission among hematology patients resolved by adapted antifungal prophylaxis and infection control measures. J. Clin. Microbiol. 44:11111114.
96. Wang, Y.-K.,, B. Das,, D. H. Huber,, M. Wellington,, M. A. Kabir,, F. Sherman, and, E. Rustchenko. 2004. Role of the 14-3-3 protein in carbon metabolism of the pathogenic yeast Candida albicans. Yeast 21:685702.
97. Wellington, M.,, M. A. Kabir, and, E. Rustchenko. 2006. 5-Fluoroorotic acid induces chromosome alterations in genetically manipulated strains of Candida albicans. Mycologia 98:393398.
98. Wellington, M., and, E. Rustchenko. 2005. 5-Fluoroorotic acid induces chromosome alterations in Candida albicans. Yeast 22:5770.
99. White, T. C.,, S. Holleman,, F. Dy,, L. F. Mirels, and, D. A. Stevens. 2002. Resistance mechanisms in clinical isolates of Candida albicans. Antimicrob. Agents Chemother. 46:17041713.
100. White, T. C.,, K. A. Marr, and, R. A. Bowden. 1998. Clinical, cellular, and molecular factors that contribute to antifungal drug resistance. Clin. Microbiol. Rev. 11:382402.
101. White, T. C. 1997. Increased mRNA levels of ERG16, CDR1, and MDR1 correlate with increases in azole resistance in Candida albicans isolates from a patient infected with human immunodeficiency virus. Antimicrob. Agents Chemother. 41:14821487.
102. Wu, W.,, C. Pujol,, S. R. Lockhart, and, D. R. Soll. 2005. Chromosome loss followed by duplication is the major mechanism of spontaneous mating-type locus homozygosis in Candida albicans. Genetics 169:13111327.

Tables

Generic image for table
Table 1.

Specific chromosome alterations confer four specific phenotypes

Citation: Rustchenko E. 2008. Specific Chromosome Alterations of Candida albicans: Mechanisms for Adaptation to Pathogenicity, p 197-212. In Baquero F, Nombela C, Cassell G, Gutiérrez-Fuentes J (ed), Evolutionary Biology of Bacterial and Fungal Pathogens. ASM Press, Washington, DC. doi: 10.1128/9781555815639.ch18

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error