1887

Chapter 19 : Evolution of a Mating System Uniquely Dependent upon Switching and Pathogenesis in Candida albicans

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in
Zoomout

Evolution of a Mating System Uniquely Dependent upon Switching and Pathogenesis in Candida albicans, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555815639/9781555814144_Chap19-1.gif /docserver/preview/fulltext/10.1128/9781555815639/9781555814144_Chap19-2.gif

Abstract:

In 1999, researchers identified in the emerging Candida albicans genome the mating-type locus, and one year later two reports documented cell type-dependent mating. With these discoveries, C. albicans had become a sexual organism, but the sequence of discoveries did not stop there. If switching and the mating process proved to play important roles in biofilm formation and pathogenesis, then there could exist strong selection pressure to maintain them. To test biofilm hypothesis, researchers collected spontaneous mating type-like (MTL)-homozygous offspring from natural a/α strains that exhibited high frequencies of MTL-homozygosis and compared virulence of offspring and parent strains in the murine model for systemic infection in two ways. First, they simply followed the survival curves of outbred mice injected individually with each strain. Second, they coinjected parent and offspring with equal numbers of parent and offspring, and at the time of death or extreme morbidity quantitated the concentration of the two strains in the kidney. In the great majority of cases, the parent was more virulent than the offspring in both tests, supporting their hypothesis for a/α maintenance. The intricate relationships between switching, mating, and pathogenesis in C. albicans have therefore provided not only explanations for some of the unique characteristics of each of the component processes, but insights as well into how the basic biology of an organism is manipulated in the evolution of hostpathogen interactions.

Citation: Soll D. 2008. Evolution of a Mating System Uniquely Dependent upon Switching and Pathogenesis in Candida albicans, p 213-220. In Baquero F, Nombela C, Cassell G, Gutiérrez-Fuentes J (ed), Evolutionary Biology of Bacterial and Fungal Pathogens. ASM Press, Washington, DC. doi: 10.1128/9781555815639.ch19
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of Figure 1.
Figure 1.

A comparison of mating between S. cerevisiae and C. albicans. (A) The mating locus of S. cerevisiae. (B) The cassette system in haploid S. cerevisiae a and α cells and mating type switching. (C) The mating process of S. cerevisiae. (D) The mating type locus of C. albicans. (E) The mating process of C. albicans. Arrows in panels A and D denote direction of transcription. The components encapsulated by dashed lines denote characteristics unique to the respective switching systems.

Citation: Soll D. 2008. Evolution of a Mating System Uniquely Dependent upon Switching and Pathogenesis in Candida albicans, p 213-220. In Baquero F, Nombela C, Cassell G, Gutiérrez-Fuentes J (ed), Evolutionary Biology of Bacterial and Fungal Pathogens. ASM Press, Washington, DC. doi: 10.1128/9781555815639.ch19
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2.
Figure 2.

The sequence of landmark events related to mating in the evolution of the hemiascomycetes. Derived from Fig. 4 of Butler et al. (2004) and Fig. 6 of Tsong et al. (2003), with the addition of either the loss or gain of white-opaque switching.

Citation: Soll D. 2008. Evolution of a Mating System Uniquely Dependent upon Switching and Pathogenesis in Candida albicans, p 213-220. In Baquero F, Nombela C, Cassell G, Gutiérrez-Fuentes J (ed), Evolutionary Biology of Bacterial and Fungal Pathogens. ASM Press, Washington, DC. doi: 10.1128/9781555815639.ch19
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 3.
Figure 3.

The hypothesis proposed by Daniels et al. (2006) that opaque cells signal white cells to form a white cell biofilm that facilitates mating between opaque cells. The thin arrows in panel B represent rare switches to opaque. The thick, tapered arrows in panels D and E represent the release of pheromone. The arrowheads in panels F, G, and H represent pheromone gradients. The haziness in panels D through I represent 3-D development of the multicellular biofilm.

Citation: Soll D. 2008. Evolution of a Mating System Uniquely Dependent upon Switching and Pathogenesis in Candida albicans, p 213-220. In Baquero F, Nombela C, Cassell G, Gutiérrez-Fuentes J (ed), Evolutionary Biology of Bacterial and Fungal Pathogens. ASM Press, Washington, DC. doi: 10.1128/9781555815639.ch19
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555815639.ch19
1. Bennett, R. J., and, A. D. Johnson. 2003. Completion of a para-sexual cycle in Candida albicans by induced chromosome loss in tetraploid strains. EMBO J. 22:25052515.
2. Bennett, R. J., and, A. D. Johnson. 2005. Mating in Candida albicans and the search for a sexual cycle. Annu. Rev. Microbiol. 59:233255.
3. Bennett, R. J.,, M. G. Miller,, P. R. Chua,, M. E. Maxon, and, A. D. Johnson. 2005. Nuclear fusion occurs during mating in Candida albicans and is dependent on the KAR3 gene. Mol. Microbiol. 55:10461059.
4. Bennett, R. J.,, M. A. Uhl,, M. G. Miller, and, A. D. Johnson. 2003. Identification and characterization of a Candida albicans mating pheromone. Mol. Cell. Biol. 23:81898201.
5. Butler, G.,, C. Kenny,, A. Fagan,, C. Kurischko,, C. Gaillardin, and, K. H. Wolfe. 2004. Evolution of the MAT locus and its HO endonuclease in yeast species. Proc. Natl. Acad. Sci. USA 101:16321637.
6. Chen, J.,, J. Chen,, S. Lane, and, H. Liu. 2002. A conserved mitogen-activated protein kinase pathway is required for mating in Candida albicans. Mol. Microbiol. 46:13351344.
7. Daniels, K. J.,, S. R. Lockhart,, P. Sundstrum, and, D. R. Soll. 2003. During Candida albicans mating, the adhesin Hwp1 and the first daughter bud localize to the a/a portion of the conjugation bridge. Mol. Biol. Cell 14:49204930.
8. Daniels, K. J.,, T. Srikantha,, S. R. Lockhart,, C. Pujol, and, D. R. Soll. 2006. Do mating-competent opaque cells signal mating-incompetent white cells to form biofilms to facilitate mating in Candida albicans? EMBO J. 25:22402252.
9. Hull, C. M., and, A. D. Johnson. 1999. Identification of a mating type-like locus in the asexual pathogenic yeast Candida albicans. Science 285:12711275.
10. Hull, C. M.,, R. M. Raisner, and, A. D. Johnson. 2000. Evidence for mating of the “asexual” yeast Candida albicans in a mammalian host. Science 289:307310.
11. Ibrahim, A. S.,, B. B. Magee,, D. C. Sheppard,, M. Yang,, S. Kauffman,, J. Becker,, J. E. Edwards, Jr., and, P. T. Magee. 2005. Effects of ploidy and mating type on virulence of Candida albicans. Infect. Immun. 73:73667374.
12. Kvaal, C.,, S. A. Lachke,, T. Srikantha,, K. Daniels,, J. McCoy, and, D. R. Soll. 1999. Misexpression of the opaque phase-specific gene PEP1 (SAP1) in the white phase of Candida albicans confers increased virulence in a mouse model of cutaneous infection. Infect. Immun. 67:66526662.
13. Lachke, S. A.,, S. R. Lockhart,, K. J. Daniels, and, D. R. Soll. 2003. Skin facilitates Candida albicans mating. Infect. Immun. 71:49704976.
14. Lan, C.,, G. Newport,, L. A. Murillo,, T. Jones,, S. Scherer,, R. W. Davis,, N. Agabian. 2002. Metabolic specialization associated with phenotypic switching in Candida albicans. Proc. Natl. Acad. Sci. USA 99:1490714912.
15. Legrand, M.,, P. Lephart,, A. Forsche,, F. -M. C. Mueller,, T. Walsh,, P. T. Magee, and, B. B. Magee. 2004. Homozygosity at the MTL locus in clinical strains of Candida albicans: karyotypic rearrangements and tetraploid formation. Mol. Microbiol. 52:14511462.
16. Lockhart, S. R.,, K. J. Daniels,, R. Zhao,, D. Wessels, and, D. R. Soll. 2003a. Cell biology of mating in Candida albicans. Euk. Cell 2:4961.
17. Lockhart, S. R.,, C. Pujol,, K. Daniels,, M. Miller,, A. Johnson, and, D. R. Soll. 2002. In Candida albicans, white-opaque switchers are homozygous for mating type. Genetics 162:737745.
18. Lockhart, S. R.,, W. Wu,, J. Radke, and, D. R. Soll. 2005. Increased virulence and competitive advantage of a/α over a/a or α/α offspring conserves the mating system of Candida albicans. Genetics 169:18831890.
19. Lockhart, S. R.,, R. Zhao,, K. J. Daniels, and, D. R. Soll. 2003b. α-Pheromone-induced shmooing and gene regulation require white-opaque switching during Candida albicans mating. Euk. Cell 2:847855.
20. Magee, B. B.,, M. Legrand,, A. M. Alarco,, M. Raymond, and, P. T. Magee. 2002. Many of the genes required for mating in Saccharomyces cerevisiae are also required for mating in Candida albicans. Mol. Microbiol 46:13451351.
21. Magee, B. B, and, P. T. Magee. 2000. Induction of mating in Candida albicans by construction of MTL a and MTLalpha strains. Science 289:310313.
22. Miller, M. G., and, A. D. Johnson. 2002. White-opaque switching in Candida albicans is controlled by mating-type locus homeodomain proteins and allows efficient mating. Cell 110:293302.
23. Odds, F. C. 1988. Candida and Candidosis, 2nd ed. Bailliere Tindall, London, United Kingdom.
24. Pujol, C.,, A. Dodgson, and, D. R. Soll. 2005. Population genetics of ascomycetes pathogenic to humans and animals, p. 149188. In J.-P. Xu (ed.). Evolutionary Genetics of Fungi. Horizon Scientific Press, Norfolk, United Kingdom.
25. Rikkerink, E. H.,, B. B. Magee, and, P. T. Magee. 1988. Opaque-white phenotype transition: a programmed morphological transition in Candida albicans. J. Bacteriol. 170:895899.
26. Slutsky, B.,, M. Staebell,, J. Anderson,, L. Risen,, M. Pfaller, and, D. R. Soll. 1987. “White-opaque transition”: a second high-frequency switching system in Candida albicans. J. Bacteriol. 169:189197.
27. Soll, D. R. 2003. Candida albicans, p. 165201. In A. Craig and, A. Scherf (ed.), Antigenic Variation. Academic Press, London, United Kingdom.
28. Srikantha, T., and, D. R. Soll. 1993. A white-specific gene in the white-opaque switching system of Candida albicans. Gene 131:5360.
29. Tavanti, A.,, A. D. Davidson,, M. J. Fordyce,, N. A. R. Gow,, M. C. J. Maiden, and, F. C. Odds. 2005. Population structure and properties of Candida albicans as determined by multilocus sequence typing. J. Clin. Microbiol. 43:56015613.
30. Tsong, A. E.,, M. G. Miller,, R. M. Raisner, and, A. D. Johnson. 2003. Evolution of a combinatorial transcriptional circuit: a case study in yeasts. Cell 115:389399.
31. Wu, W.,, S. R. Lockhart,, C. Pujol,, T. Srikantha, and, D. R. Soll. 2007. Heterozygosity of genes on the sex chromosome regulates Candida albicans virulence. Mol. Microbiol. 64:15871604.
32. Wu, W.,, C. Pujol,, S. R. Lockhart, and, D. R. Soll. 2005. Mechanisms of mating type homozygosis in C. albicans. Genetics 169:13111327.
33. Zhao, R.,, K. J. Daniels,, S. R. Lockhart,, K. M. Yeater,, L. L. Hoyer, and, D. R. Soll. 2005. Unique aspects of gene expression during Candida albicans mating and possible G1 dependency. Euk. Cell 4:11751190.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error