Chapter 22 : Epidemiology and Evolution of Beta-Lactamases

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in

Epidemiology and Evolution of Beta-Lactamases, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555815639/9781555814144_Chap22-1.gif /docserver/preview/fulltext/10.1128/9781555815639/9781555814144_Chap22-2.gif


Genes participating in the synthesis and metabolism of the cell wall might have a common ancestor with well-disseminated beta-lactamase genes (bla genes) in pathogenic bacteria. Moreover, some of the most successful beta-lactamases have evolved by mobilization from chromosomal bla genes in environmental bacteria, and their evolution in pathogenic bacteria has been accelerated by the extensive use of beta-lactams in the clinical field over the past 70 years. The most widespread plasmid-mediated beta-lactamases are also represented in some of these subgroups such as penicillinase from Staphylococcus aureus (group 2a) or TEM-1 and SHV-1 enzymes (group 2b) and those that have suffered important evolutionary processes in the past years such as extended spectrum beta-lactamases (ESBLs) (group 2be). The ancient evolution of beta-lactamases can now be hypothesized with the aid of structural phylogenetic analysis. The majority of bla genes encoding B1 and B2 beta-lactamases are located on the chromosome but have been recently mobilized at least twice to plasmids, once for the VIM-group and once for the IMP group. The number of studies of phylogenetic groups in Klebsiella pneumoniae isolates is scarce and has mainly focused on their relationship with chromosomal beta-lactamases. The production of virulence markers has been associated with specific clones. This is the case of extraintestinal pathogenic CTX-M-producing Escherichia coli isolates that were compared in a recent study with non-ESBL producers.

Citation: Cantón R. 2008. Epidemiology and Evolution of Beta-Lactamases, p 249-270. In Baquero F, Nombela C, Cassell G, Gutiérrez-Fuentes J (ed), Evolutionary Biology of Bacterial and Fungal Pathogens. ASM Press, Washington, DC. doi: 10.1128/9781555815639.ch22
Highlighted Text: Show | Hide
Loading full text...

Full text loading...


Image of Figure 1.
Figure 1.

Schematic representation of homologous positions and amino acid sequences between beta-lactamases and PBPs (data are from Massova and Mobashery, 1998, and Bush, 1997).

Citation: Cantón R. 2008. Epidemiology and Evolution of Beta-Lactamases, p 249-270. In Baquero F, Nombela C, Cassell G, Gutiérrez-Fuentes J (ed), Evolutionary Biology of Bacterial and Fungal Pathogens. ASM Press, Washington, DC. doi: 10.1128/9781555815639.ch22
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2.
Figure 2.

Schematic representation of phylogeny of serine beta-lactamases compared with DD-peptidases. Branch lengths are not proportional to distances (modified from Hall and Barlow, 2004 and Hall and Barlow, 2003).

Citation: Cantón R. 2008. Epidemiology and Evolution of Beta-Lactamases, p 249-270. In Baquero F, Nombela C, Cassell G, Gutiérrez-Fuentes J (ed), Evolutionary Biology of Bacterial and Fungal Pathogens. ASM Press, Washington, DC. doi: 10.1128/9781555815639.ch22
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 3.
Figure 3.

Increase in number of TEM, SHV, OXA, and CTX-M derivatives (data obtained from http://www.lahey.org/studies).

Citation: Cantón R. 2008. Epidemiology and Evolution of Beta-Lactamases, p 249-270. In Baquero F, Nombela C, Cassell G, Gutiérrez-Fuentes J (ed), Evolutionary Biology of Bacterial and Fungal Pathogens. ASM Press, Washington, DC. doi: 10.1128/9781555815639.ch22
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 4.
Figure 4.

Schematic structure of class 1 integrons bearing ISCR1 and containing bla CTX-M genes (based on available sequences of In117 [Valverde et al., 2006], InV117 [Soler Bistue et al., 2006], and In60 variants [Novais et al., 2006]). Each integron includes the conserved regions 5′CS and 3′CS flanking a variable number of gene cassettes followed by ISCR1, the bla CTX-M gene, sequences showing high homology with Kluyvera genomes (represented as open boxes, as open reading frames of different lengths and orientations have been described in bla CTX-M-2 and bla CTX-M-9 integrons), and a second copy of the 3′CS designated as 3′CS2 followed by a truncated Tn402-tni module. Sequences upstream and downstream of the integron correspond to the tnp module and mer operon of Tn21-like transposons, respectively. Vertical bars indicate terminal repeats of the integrons (white) or Tn21-transposons (black). The vertical hatched box indicates the presence of IS1326 and/or IS1353 within Tn402. The white arrow with adjacent circle (59-base element) symbolizes a gene cassette. A variable region may contain different gene cassette arrays. (This figure has been modified from reference Cantón and Coque, 2006.)

Citation: Cantón R. 2008. Epidemiology and Evolution of Beta-Lactamases, p 249-270. In Baquero F, Nombela C, Cassell G, Gutiérrez-Fuentes J (ed), Evolutionary Biology of Bacterial and Fungal Pathogens. ASM Press, Washington, DC. doi: 10.1128/9781555815639.ch22
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 5.
Figure 5.

Percentage of fecal carriers in nosocomial and outpatient settings and in healthy volunteers in two different periods (1991 and 2003) in Madrid (Spain) (data obtained from Valverde et al., 2004).

Citation: Cantón R. 2008. Epidemiology and Evolution of Beta-Lactamases, p 249-270. In Baquero F, Nombela C, Cassell G, Gutiérrez-Fuentes J (ed), Evolutionary Biology of Bacterial and Fungal Pathogens. ASM Press, Washington, DC. doi: 10.1128/9781555815639.ch22
Permissions and Reprints Request Permissions
Download as Powerpoint


1. Adachi, H.,, M. Ishiguro,, S. Imajoh,, T. Ohta, and, H. Matsuzawa. 1992. Active-site residues of the transpeptidase domain of penicillin-binding protein 2 from Escherichia coli: similarity in catalytic mechanism to class A beta-lactamases. Biochemistry 31:430437.
2. Aharonowitz, Y.,, G. Cohen, and, J. F. Martín. 1992. Penicillin and cephalosporin biosynthetic genes: structure, organization, regulation, and evolution. Annu. Rev. Microbiol. 46:461495.
3. Ambler, R. P. 1980. The structure of beta-lactamases. Philos. Trans. R. Soc. Lond. B Biol. Sci. 289:321331.
4. Anderson, E. S., and, N. Datta. 1965. Resistance to penicillins and its transfer in Enterobacteriaceae. Lancet 191:407409.
5. Bagge, N.,, O. Ciofu,, M. Hentzer,, J. I. Campbell,, M. Givskov, and, N. Hoiby. 2002. Constitutive high expression of chromosomal beta-lactamase in Pseudomonas aeruginosa caused by a new insertion sequence (IS1669) located in ampD. Antimicrob. Agents Chemother. 46:34063411.
6. Baquero, F. 2004. From pieces to patterns: evolutionary engineering in bacterial pathogens. Nat. Rev. Microbiol. 2:510518.
7. Baquero, M. R.,, J. C. Galán,, M. del, C. Turrientes,, R. Cantón,, T. M. Coque,, J. L. Martínez, and, F. Baquero. 2005. Increased mutation frequencies in Escherichia coli isolates harboring extended-spectrum beta-lactamases. Antimicrob. Agents Chemother. 49:47544756.
8. Baraniak, A.,, J. Fiett,, A. Mrowka,, J. Walory,, W. Hryniewicz, and, M. Gniadkowski. 2005. Evolution of TEM-type extended-spectrum beta-lactamases in clinical Enterobacteriaceae strains in Poland. Antimicrob. Agents Chemother. 49:18721880.
9. Barlow, M., and, B. G. Hall. 2003. Experimental prediction of the evolution of cefepime resistance from the CMY-2 AmpC beta-lactamase. Genetics 164:2329.
10. Barlow, M., and, B. G. Hall. 2002. Predicting evolutionary potential: in vitro evolution accurately reproduces natural evolution of the TEM beta-lactamase. Genetics 160:823832.
11. Barnaud, G.,, G. Arlet,, C. Verdet,, O. Gaillot,, P. H. Lagrange, and, A. Philippon. 1998. Salmonella enteritidis: AmpC plasmid-mediated inducible beta-lactamase (DHA-1) with an ampR gene from Morganella morganii. Antimicrob. Agents Chemother. 42:23522358.
12. Bauernfeind, A.,, I. Stemplinger,, R. Jungwirth, and, H. Giamarellou. 1996. Characterization of the plasmidic beta-lactamase CMY-2, which is responsible for cephamycin resistance. Antimicrob. Agents Chemother. 40:221224.
13. Beckman, W., and, T. G. Lessie. 1979. Response of Pseudomonas cepacia to beta-lactam antibiotics: utilization of penicillin G as the carbon source. J. Bacteriol. 140:11261128.
14. Ben-Ami, R.,, M. J. Schwaber,, S. Navon-Venezia,, D. Schwartz,, M. Giladi,, I. Chmelnitsky,, A. Leavitt, and, Y. Carmeli. 2006. Influx of extended-spectrum beta-lactamase-producing enter-obacteriaceae into the hospital. Clin. Infect. Dis. 42:925934.
15. Bishop, R. E., and, J. H. H. Weiner. 1992. Coordinate regulation of murein peptidase activity and AmpC beta-lactamase synthesis in Escherichia coli. FEBS Lett. 304:103108.
16. Blázquez, J.,, M. R. Baquero,, R. Cantón,, I. Alós, and, F. Baquero. 1993. Characterization of a new TEM-type beta-lactamase resistant to clavulanate, sulbactam, and tazobactam in a clinical isolate of Escherichia coli. Antimicrob. Agents Chemother. 37:20592063.
17. Blázquez, J.,, M. I. Morosini,, M. C. Negri, and, F. Baquero. 2000. Selection of naturally occurring extended-spectrum TEM beta-lactamase variants by fluctuating beta-lactam pressure. Antimicrob. Agents Chemother. 44:21822184.
18. Blázquez, J.,, M. C. Negri,, M. I. Morosini,, J. M. Gómez-Gomez, and, F. Baquero. 1998. A237T as a modulating mutation in naturally occurring extended-spectrum TEM-type beta-lactamases. Antimicrob. Agents Chemother. 42:10421044.
19. Blázquez, J. 2003. Hypermutation as a factor contributing to the acquisition of antimicrobial resistance. Clin. Infect. Dis. 37:12011209.
20. Bonnet, R.,, C. Recule,, R. Baraduc,, C. Chanal,, D. Sirot,, C. De Champs, and, J. Sirot. 2003. Effect of D240G substitution in a novel ESBL CTX-M-27. J. Antimicrob. Chemother. 52:2935.
21. Bonnet, R. 2004. Growing group of extended-spectrum beta-lactamases: the CTX-M enzymes. Antimicrob. Agents Chemother. 48:114.
22. Boschi, L.,, P. S. Mercuri,, M. L. Riccio,, G. Amicosante,, M. Galleni,, J. M. Frere, and, G. M. Rossolini. 2000. The Legionella (fluoribacter) gormanii metallo-beta-lactamase: a new member of the highly divergent lineage of molecular-subclass B3 beta-lactamases. Antimicrob. Agents Chemother. 44:15381543.
23. Bouza, E., and, E. Cercenado. 2002. Klebsiella and Enterobacter: antibiotic resistance and treatment implications. Semin. Respir. Infect. 17:215230.
24. Boyd, D. A.,, S. Tyler,, S. Christianson,, A. McGeer,, M. P. Muller,, B. M. Willey,, E. Bryce,, M. Gardam,, P. Nordmann, and, M. R. Mulvey. 2004. Complete nucleotide sequence of a 92-kilobase plasmid harboring the CTX-M-15 extended-spectrum beta-lactamase involved in an outbreak in long-term-care facilities in Toronto, Canada. Antimicrob. Agents Chemother. 48:37583764.
25. Bradford, P. A. 2001. Extended-spectrum beta-lactamases in the 21st century: characterization, epidemiology, and detection of this important resistance threat. Clin. Microbiol. Rev. 14:933951.
26. Branger, C.,, O. Zamfir,, S. Geoffroy,, G. Laurans,, G. Arlet,, H. V. Thien,, S. Gouriou,, B. Picard, and, E. Denamur. 2005. Genetic background of Escherichia coli and extended-spectrum β-lactamase type. Emerg. Infect. Dis. 11:5461.
27. Brown, S., and, S. Amyes. 2006. OXA beta-lactamases in Acinetobacter: the story so far. J. Antimicrob. Chemother. 57:13.
28. Bryan, L. E. 1988. General mechanisms of resistance to antibiotics. J. Antimicrob. Chemother. 22(Suppl A): 115.
29. Bush, K.,, G. A. Jacoby, and, A. A. Medeiros. 1995. A functional classification scheme for beta-lactamases and its correlation with molecular structure. Antimicrob. Agents Chemother. 39:12111233.
30. Bush, K. 1999. beta-lactamases of increasing clinical importance. Curr. Pharm. Des. 5:839845.
31. Bush, K. 1997. The evolution of beta-lactamases. Ciba Found. Symp. 207:152163.
32. Buynak, J. D. 2006. Understanding the longevity of the beta-lactam antibiotics and of antibiotic/beta-lactamase inhibitor combinations. Biochem. Pharmacol. 71:930940.
33. Cantón, R., and, T. M. Coque. 2006. The CTX-M pandemic. Curr. Opin. Microbiol. 9:466475.
34. Cantón, R.,, A. Oliver,, T. M. Coque,, M. del, C. Varela,, J. C. Pérez-Díaz, and, F. Baquero. 2002. Epidemiology of extended-spectrum beta-lactamase-producing Enterobacter isolates in a Spanish hospital during a 12-year period. J. Clin. Microbiol. 40:12371243.
35. Cao, V.,, T. Lambert, and, P. Courvalin. 2002. ColE1-like plasmid pIP843 of Klebsiella pneumoniae encoding extended-spectrum β-lactamase CTX-M-17. Antimicrob. Agents Chemother. 46:12121217.
36. Carattoli, A.,, A. Bertini,, L. Villa,, V. Falbo,, K. L. Hopkins, and, E. J. Threlfall. 2005. Identification of plasmids by PCR-based replicon typing. J. Microbiol. Methods 63:219228.
37. Carattoli, A.,, V. Miriagou,, A. Bertini,, A. Loli,, C. Colinon,, L. Villa,, J. M. Whichard, and, G. M. Rossolini. 2006. Replicon typing of plasmids encoding resistance to newer beta-lactams. Emerg. Infect. Dis. 12:11451148.
38. Chaibi, E. B.,, D. Sirot,, G. Paul, and, R. Labia. 1999. Inhibitor-resistant TEM beta-lactamases: phenotypic, genetic and biochemical characteristics. J. Antimicrob. Chemother. 43:447458.
39. Chang, F. Y.,, L. K. Siu,, C. P. Fung,, M. H. Huang, and, M. Ho. 2001. Diversity of SHV and TEM beta-lactamases in Klebsiella pneumoniae: gene evolution in Northern Taiwan and two novel beta-lactamases, SHV-25 and SHV-26. Antimicrob. Agents Chemother. 45:24072413.
40. Chaves, J.,, M. G. Ladona,, C. Segura,, A. Coira,, R. Reig, and, C. Ampurdanes. 2001. SHV-1 beta-lactamase is mainly a chromosomally encoded species-specific enzyme in Klebsiella pneumoniae. Antimicrob. Agents Chemother. 45:28562861.
41. Chopra, I.,, A. J. O’Neill, and, K. Miller. 2003. The role of mutators in the emergence of antibiotic-resistant bacteria. Drug Resist. Update 6:137145.
42. Coque, J. J. R.,, P. Liras, and, J. F. Martín. 1993. Gene for a β-lactamase, a penicillin-binding protein and a transmembrane protein are clustered with the cephamycin biosynthetic genes in Nocardia lactamdurans. EMBO J. 12:631639.
43. Cornaglia, G.,, A. Mazzariol,, L. Lauretti,, G. M. Rossolini, and, R. Fontana. 2000. Hospital outbreak of carbapenem-resistant Pseudomonas aeruginosa producing VIM-1, a novel transferable metallo-beta-lactamase. Clin. Infect. Dis. 31:11191125.
44. Courvalin, P. 1999. Combinatorial approach of bacteria to antibiotic resistance. Res. Microbiol. 150:367373.
45. Courvalin, P. 1996. The Garrod Lecture. Evasion of antibiotic action by bacteria. J. Antimicrob. Chemother. 37:855869.
46. D’Andrea, M. M.,, E. Nucleo,, F. Luzzaro,, T. Giani,, R. Migliavacca,, F. Vailati,, V. Kroumova,, L. Pagani, and, G. M. Rossolini. 2006. CMY-16, a novel acquired AmpC-type beta-lactamase of the CMY/LAT lineage in multifocal monophyletic isolates of Proteus mirabilis from Northern Italy. Antimicrob. Agents Chemother. 50:618624.
47. Datta, N., and, V. M. Hughes. 1983. Plasmids of the same Inc groups in Enterobacteria before and after the medical use of antibiotics. Nature 306:616617.
48. Datta, N., and, P. Kontomichalou. 1965. Penicillinase synthesis controlled by infectious R factors in Enterobacteriaceae. Nature 208:239241.
49. Datta, N. 1984. Bacterial resistance to antibiotics. Ciba Found. Symp. 102:204218.
50. Delmas, J.,, F. Robin,, F. Carvalho,, C. Mongaret, and, R. Bonnet. 2006. Prediction of the evolution of ceftazidime resistance in extended-spectrum beta-lactamase CTX-M-9. Antimicrob. Agents Chemother. 50:731738.
51. Denamur, E.,, S. Bonacorsi,, A. Giraud,, P. Duriez,, F. Hilali,, C. Amorin,, E. Bingen,, A. Andremont,, B. Picard,, F. Taddei, and, I. Matic. 2002. High frequency of mutator strains among human uropathogenic Escherichia coli isolates. J. Bacteriol. 184:605609.
52. Dionisio, F.,, I. Matic,, M. Radman,, O. R. Rodrigues, and, F. Taddei. 2002. Plasmids spread very fast in heterogeneous bacterial communities. Genetics 162:15251532.
53. Doi, Y.,, J. Wachino,, M. Ishiguro,, H. Kurokawa,, K. Yamane,, N. Shibata,, K. Shibayama,, K. Yokoyama,, H. Kato,, T. Yagi, and, Y. Arakawa. 2004. Inhibitor-sensitive AmpC beta-lactamase variant produced by an Escherichia coli clinical isolate resistant to oxyiminocephalosporins and cephamycins. Antimicrob. Agents Chemother. 48:26522658.
54. Ellington, M. J.,, D. M. Livermore,, T. L. Pitt,, L. M. Hall, and, N. Woodford. 2006. Development of extended-spectrum activity in TEM beta-lactamases in hypermutable, mutS Escherichia coli. Clin. Microbiol. Infect. 12:800803.
55. Fluit, A. C., and, F. J. Schmitz. 1999. Class 1 integrons, gene cassettes, mobility, and epidemiology. Eur. J. Clin. Microbiol. Infect. Dis. 18:761770.
56. Fluit, A. C., and, F. J. Schmitz. 2004. Resistance integrons and super-integrons. Clin. Microbiol. Infect. 10:272288.
57. Ford, P. J., and, M. B. Avison. 2004. Evolutionary mapping of the SHV beta-lactamase and evidence for two separate IS26-dependent blaSHV mobilization events from the Klebsiella pneumoniae chromosome. J. Antimicrob. Chemother. 54:6975.
58. Galani, I.,, M. Souli,, Z. Chryssouli,, D. Katsala, and, H. Giamarellou. 2004. First identification of an Escherichia coli clinical isolate producing both metallo-beta-lactamase VIM-2 and extended-spectrum beta-lactamase IBC-1. Clin. Microbiol. Infect. 10:757760.
59. Galani, I.,, M. Souli,, E. Koratzanis,, Z. Chryssouli, and, H. Giamarellou. 2006. Molecular characterization of an Escherichia coli clinical isolate that produces both metallo-beta-lactamase VIM-2 and extended-spectrum beta-lactamase GES-7: identification of the In8 integron carrying the blaVIM-2 gene. J. Antimicrob. Chemother. 58:432433.
60. Galimand, M.,, P. Courvalin, and, T. Lambert. 2003. Plasmid-mediated high-level resistance to aminoglycosides in Enter-obacteriaceae due to 16S rRNA methylation. Antimicrob. Agents Chemother. 47:25652571.
61. Galleni, M.,, J. Lamotte-Brasseur,, G. M. Rossolini,, J. Spencer,, O. Dideberg, and, J. M. Frere. 2001. Metallo-beta-lactamases Working Group. Standard numbering scheme for class B beta-lactamases. Antimicrob. Agents Chemother. 45:660663.
62. Garau, G.,, A. M. Di Guilmi, and, B. G. Hall. 2005. Structure-based phylogeny of the metallo-beta-lactamases. Antimicrob. Agents Chemother. 49:27782784.
63. García, A.,, F. Navarro,, E. Miro,, B. Mirelis,, S. Campoy, and, P. Coll. 2005. Characterization of the highly variable region surrounding the bla(CTX-M-9)gene in non-related Escherichia coli from Barcelona. J. Antimicrob. Chemother. 56:819826.
64. Ghuysen, J. M. 1994. Molecular structures of penicillin-binding proteins and beta-lactamases. Trends Microbiol. 2:372380.
65. Gniadkowski, M. 2001. Evolution and epidemiology of extended-spectrum beta-lactamases (ESBLs) and ESBL-producing microorganisms. Clin. Microbiol. Infect. 7:597608.
66. Goossens, H., and, B. Grabein. 2005. Prevalence and antimicrobial susceptibility data for extended-spectrum beta-lactamase- and AmpC-producing Enterobacteriaceae from the MYSTIC Program in Europe and the United States (1997–2004). Diagn. Microbiol. Infect. Dis. 53:257264.
67. Gordon, D. M.,, S. E. Stern, and, P. J. Collignon. 2005. Influence of the age and sex of human hosts on the distribution of Escherichia coli ECOR groups and virulence traits. Microbiology 151:1523.
68. Haeggman, S.,, S. Lofdahl,, A. Paauw,, J. Verhoef, and, S. Brisse. 2004. Diversity and evolution of the class A chromosomal beta-lactamase gene in Klebsiella pneumoniae. Antimicrob. Agents Chemother. 48:24002408.
69. Hall, B. G., and, M. Barlow. 2004. Evolution of the serine β-lactamase: past, present and future. Drug Resist. Updates 7:111123.
70. Hall, B. G., and, M. Barlow. 2003. Structure-based phylogenies of the serine beta-lactamases. J. Mol. Evol. 57:255260.
71. Hall, B. G.,, S. J. Salipante, and, M. Barlow. 2004. Independent origins of subgroup Bl + B2 and subgroup B3 metallo-beta-lactamases. J. Mol. Evol. 59:133141.
72. Hay, A.,, S. Navon-Venezia,, H. Sahly,, I. Chmelnitsky,, A. Leavitt,, I. Ofek, and, Y. Carmeli. 2006. Association between extended spectrum beta-lactamase (ESBL) production and serum resistance (SR) in Klebsiella pneumoniae (Kpn) and transfer of SR by SHV-12 encoding plasmid. 46th Interscience Conference on Antimicrobial Agents and Chemotherapy. Abstract B-1309.
73. Hedges, R. W.,, N. Datta,, P. Kontomichalou, and, J. T. Smith. 1974. Molecular specificities of R factor-determined beta-lactamases: correlation with plasmid compatibility. J. Bacteriol. 117:5662.
74. Hedges, R. W., and, A. E. Jacob. 1974. Transposition of ampicillin resistance from RP4 to other replicons. Mol. Gen. Genet. 132:3140.
75. Heffron, F.,, R. Sublett,, R. W. Hedges,, A. Jacob, and, S. Falkow. 1975. Origin of the TEM-beta-lactamase gene found on plasmids. Bacteriology 122:250256.
76. Henderson, T. A.,, K. D. Young,, S. A. Denome, and, P. K. Elf. 1997. AmpC and AmpH, proteins related to the class C beta-lactamases, bind penicillin and contribute to the normal morphology of Escherichia coli. J. Bacteriol. 179:61126121.
77. Hopkins, K. L.,, E. Liebana,, L. Villa,, M. Batchelor,, E. J. Threlfall, and, A. Carattoli. 2006. Replicon typing of plasmids carrying CTX-M or CMY beta-lactamases circulating among Salmonella and Escherichia coli isolates. Antimicrob. Agents Chemother. 50:32033206.
78. Ishii, Y.,, A. Ohno,, H. Taguchi,, S. Imajo,, M. Ishiguro, and, H. Matsuzawa. 1995. Cloning and sequence of the gene encoding a cefotaxime-hydrolyzing class A beta-lactamase isolated from Escherichia coli. Antimicrob. Agents Chemother. 39:22692275.
79. Ito, H.,, Y. Arakawa,, S. Ohsuka,, R. Wacharotayankun,, N. Kato, and, M. Ohta. 1995. Plasmid-mediated dissemination of the metallo-beta-lactamase gene blaIMP among clinically isolated strains of Serratia marcescens. Antimicrob. Agents Chemother. 39:824829.
80. Jacoby, G. A., and, L. Sutton. 1991. Properties of plasmids responsible for production of extended-spectrum beta-lactamases. Antimicrob. Agents Chemother. 35:164169.
81. Jeong, S. H.,, I. K. Bae,, J. H. Lee,, S. G. Sohn,, G. H. Kang,, G. J. Jeon,, Y. H. Kim,, B. C. Jeong, and, S. H. Lee. 2004. Molecular characterization of extended-spectrum beta-lactamases produced by clinical isolates of Klebsiella pneumoniae and Escherichia coli from a Korean nationwide survey. J. Clin. Microbiol. 42:29022906.
82. Johnsen, J. 1977. Utilization of benzylpenicillin as carbon, nitrogen and energy source by a Pseudomonas fluorescens strain. Arch. Microbiol. 115:271275.
83. Karisik, E.,, M. J. Ellington,, R. Pike,, D. M. Livermore, and, N. Woodford. 2006a. Development of high-level ceftazidime resistance via single-base substitutions of blaCTX-M-3 in hypermutable Escherichia coli. Clin. Microbiol. Infect. 12:803806.
84. Karisik, E.,, M. J. Ellington,, R. Pike,, R. E. Warren,, D. M. Livermore, and, N. Woodford. 2006b. Molecular characterization of plasmids encoding CTX-M-15 beta-lactamases from Escherichia coli strains in the United Kingdom. J. Antimicrob. Chemother. 58:665668.
85. Kariuki, S.,, C. F. Gilks,, J. Kimari,, J. Muyodi,, P. Waiyaki, and, C. A. Hart. 1997. Plasmid diversity of multi-drug-resistant Escherichia coli isolated from children with diarrhoea in a poultry-farming area in Kenya. Ann. Trop. Med. Parasitol. 9:8794.
86. Kelly, J. A.,, O. Dideberg,, P. Charlier,, J. P. Wery,, M. Libert,, P. C. Moews,, J. R. Knox,, C. Duez,, C. Fraipont,, B. Joris, et al. 1986. On the origin of bacterial resistance to penicillin: comparison of a beta-lactamase and a penicillin target. Science 231:14291431.
87. Kernodle, D. S.,, C. W. Stratton,, L. W. McMurray,, J. R. Chipley, and, P. A. McGraw. 1989. Differentiation of beta-lactamase variants of Staphylococcus aureus by substrate hydrolysis profiles. J. Infect. Dis. 159:103108.
88. Kotra, L. P.,, J. P. Samama, and, S. Mobashery. 2002. Beta-lactamases and resistance to beta-lactam antibiotics, p. 123159. In K. Lewis,, A. A. Saylers,, H. W. Taber, and, R. G. Wax (ed.), Bacterial Resistance to Antimicrobials Marcel Dekker, New York, NY.
89. Kuga, A.,, R. Okamoto, and, M. Inoue. 2000. ampR gene mutations that greatly increase class C beta-lactamase activity in Enter-obacter cloacae. Antimicrob. Agents Chemother. 44:561567.
90. Lartigue, M. F.,, L. Poirel,, D. Aubert, and, P. Nordmann. 2006. In vitro analysis of ISEcp1B-mediated mobilization of naturally occurring beta-lactamase gene blaCTX-M of Kluyvera ascorbata. Antimicrob. Agents Chemother. 50:12821286.
91. Lavollay, M.,, K. Mamlouk,, T. Frank,, A. Akpabie,, B. Burghoffer,, S. Ben Redjeb,, R. Bercion,, V. Gautier, and, G. Arlet. 2006. Clonal dissemination of a CTX-M-15 beta-lactamase-producing Escherichia coli strain in the Paris area, Tunis, and Bangui. Antimicrob. Agents Chemother. 50:24332438.
92. Leflon-Guibout, V.,, B. Heym, and, M. Nicolas-Chanoine. 2000. Updated sequence information and proposed nomenclature for bla (TEM) genes and their promoters. Antimicrob. Agents Chemother. 44:32323234.
93. Leflon-Guibout, V.,, C. Jurand,, S. Bonacorsi,, F. Espinasse,, M. C. Guelfi,, F. Duportail,, B. Heym,, E. Bingen, and, M. H. Nicolas-Chanoine. 2004. Emergence and spread of three clonally related virulent isolates of CTX-M-15-producing Escherichia coli with variable resistance to aminoglycosides and tetracycline in a French geriatric hospital. Antimicrob. Agents Chemother. 48:37363742.
94. Levin, B. R. 1995. Conditions for the evolution of multiple antibiotic resistance plasmids: a theoretical and experimental excursion. In S. Baumberg,, J. P. W. Young,, E. M. H. Wellington, and, J. R. Saunders (ed.) Population Genetics of Bacteria. The Society for General Microbiology Limited, Cambridge, United Kingdom.
95. Liras, P., and, J. F. Martin. 2006. Gene clusters for beta-lactam antibiotics and control of their expression: why have clusters evolved, and from where did they originate? Int. Microbiol. 9:919.
96. Literacka, E.,, J. Empel,, A. Baraniak,, E. Sadowy,, W. Hryniewicz, and, M. Gniadkowski. 2004. Four variants of the Citrobacter freundii AmpC-type cephalosporinases, including novel enzymes CMY-14 and CMY-15, in a Proteus mirabilis clone widespread in Poland. Antimicrob. Agents Chemother. 48:41364143.
97. Livermore, D. M., and, N. Woodford. 2006. The beta-lactamase threat in Enterobacteriaceae, Pseudomonas and Acinetobacter. Trends Microbiol. 14:413420.
98. Livermore, D. M. 2003. Bacterial resistance: origins, epidemiology, and impact. Clin. Infect. Dis. 36(Suppl 1): S11S23.
99. Livermore, D. M. 1995. Beta-lactamases in laboratory and clinical resistance. Clin. Microbiol. Rev. 8:557584.
100. Luzzaro, F.,, M. Mezzatesta,, C. Mugnaioli,, M. Perilli,, S. Stefani,, G. Amicosante,, G. M. Rossolini, and, A. Toniolo. 2006. Trends in production of extended-spectrum beta-lactamases among enterobacteria of medical interest: report of the second Italian nationwide survey. J. Clin. Microbiol. 44:16591664.
101. Ma, L.,, F. Y. Chang,, C. P. Fung,, T. L. Chen,, J. C. Lin,, P. L. Lu,, L. Y. Huang,, J. C. Chang, and, L. K. Siu. 2005. Variety of TEM-, SHV-, and CTX-M-type beta-lactamases present in recent clinical isolates of Escherichia coli, Klebsiella pneumoniae, and Enterobacter cloacae from Taiwan. Microb. Drug Resist. 11:3139.
102. Ma, L.,, Y. Ishii,, M. Ishiguro,, H. Matsuzawa, and, K. Yamaguchi. 1998. Cloning and sequencing of the gene encoding Toho-2, a class A beta-lactamase preferentially inhibited by tazobactam. Antimicrob. Agents Chemother. 42:11811186.
103. Machado, E.,, R. Cantón,, F. Baquero,, J. C. Galán,, A. Rollán,, L. Peixe, and, T. M. Coque. 2005. Integron content of extended-spectrum-beta-lactamase-producing Escherichia coli strains over 12 years in a single hospital in Madrid, Spain. Antimicrob. Agents Chemother. 49:18231829.
104. Machado, E.,, T. M. Coque,, R. Cantón,, F. Baquero,, J. C. Sousa, and, L. Peixe. 2006. Dissemination in Portugal of CTX-M-15-, OXA-1-, and TEM-1-producing Enterobacteriaceae strains containing the aac(6)-Ib-cr gene, which encodes an aminoglycoside- and fluoroquinolone-modifying enzyme. Antimicrob. Agents Chemother. 50:32203221.
105. Mammeri, H.,, L. Poirel,, P. Bemer,, H. Drugeon, and, P. Nordmann. 2004. Resistance to cefepime and cefpirome due to a 4-aminoacid deletion in the chromosome-encoded AmpC beta-lactamase of a Serratia marcescens clinical isolate. Antimicrob. Agents Chemother. 48:716720.
106. Martin, J. F., and, S. Gutierrez. 1995. Genes for beta-lactam antibiotic biosynthesis. Antonie Van Leeuwenhoek 67:181200.
107. Martínez, J. L., and, F. Baquero. 2002. Interactions among strategies associated with bacterial infection: pathogenicity, epidemicity, and antibiotic resistance. Clin. Microbiol. Rev. 15:647679.
108. Massova, I., and, S. Mobashery. 1998. Kinship and diversification of bacterial penicillin-binding proteins and beta-lactamases. Antimicrob. Agents Chemother. 42:117.
109. Massova, I., and, S. Mobashery. 1999. Structural and mechanistic aspects of evolution of beta-lactamases and penicillin-binding proteins. Curr. Pharm. Des. 5:929937.
110. Mazel, D. 2006. Integrons: agents of bacterial evolution. Nat. Rev. Microbiol. 4:608620.
111. McGowan, J. E., Jr. 2006. Resistance in nonfermenting gram negative bacteria: multidrug resistance to the maximum. Am. J. Infect. Control 34(5 Suppl 1): S29S37.
112. Medeiros, A. A.,, R. W. Hedges, and, G. A. Jacoby. 1982. Spread of a “Pseudomonas-specific” beta-lactamase to plasmids of enterobacteria. J. Bacteriol. 149:700707.
113. Medeiros, A. A. 1997. Evolution and dissemination of beta-lactamases accelerated by generations of beta-lactam antibiotics. Clin. Infect. Dis. 24(Suppl 1): S19S45.
114. Meroueh, S. O.,, G. Minasov,, W. Lee,, B. K. Shoichet, and, S. Mobashery. 2003. Structural aspects for evolution of beta-lactamases from penicillin-binding proteins. J. Am. Chem. Soc. 125:96129618.
115. Mesa, R. J.,, V. Blanc,, A. R. Blanch,, P. Cortes,, J. J. Gonzalez,, S. Lavilla,, E. Miro,, M. Muniesa,, M. Saco,, M. T. Tortola,, B. Mirelis,, P. Coll,, M. Llagostera,, G. Prats, and, F. Navarro. 2006. Extended-spectrum beta-lactamase-producing Enter-obacteriaceae in different environments (humans, food, animal farms and sewage). J. Antimicrob. Chemother. 58:211215.
116. Morosini, M. I.,, M. García-Castillo,, T. M. Coque,, A. Valverde,, A. Novais,, E. Loza,, F. Baquero, and, R. Cantón. 2006. Antibiotic coresistance in extended-spectrum-beta-lactamase-producing Enterobacteriaceae and in vitro activity of tigecycline. Antimicrob. Agents Chemother. 50:26952699.
117. Morosini, M. I.,, M. C. Negri,, B. Shoichet,, M. R. Baquero,, F. Baquero, and, J. Blázquez. 1998. An extended-spectrum AmpC-type beta-lactamase obtained by in vitro antibiotic selection. FEMS Microbiol. Lett. 165:8590.
118. Munday, C. J.,, D. A. Boyd,, N. Brenwald,, M. Miller,, J. M. Andrews,, R. Wise,, M. R. Mulvey, and, P. M. Hawkey. 2004. Molecular and kinetic comparison of the novel extended-spectrum beta-lactamases CTX-M-25 and CTX-M-26. Antimicrob. Agents Chemother. 48:48294834.
119. Naas, T., and, P. Nordmann. 1999. OXA-type beta-lactamases. Curr. Pharm. Des. 5:865879.
120. Negri, M. C.,, M. Lipsitch,, J. Blazquez,, B. R. Levin, and, F. Baquero. 2000. Concentration-dependent selection of small phenotypic differences in TEM beta-lactamase-mediated antibiotic resistance. Antimicrob. Agents Chemother. 44:24852491.
121. Neu, H. C. 1992. The crisis in antibiotic resistance. Science 257:10641073.
122. Normark, S. 1995. β-Lactamase induction in gram negative bacteria is intimately linked to peptidoglycan recycling. Microb. Drug Resist. 1:111114.
123. Novais, A.,, R. Canton,, R. Moreira,, L. Peixe,, F. Baquero, and, T. M. Coque. 2007. Emergence and dissemination of Enterobacteriaceae isolates producing CTX-M-1-like enzymes in Spain are associated with IncFII (CTX-M-15) and broad-host-range (CTX-M-1, -3, -32) plasmics. Antimicrob. Agents Chemother. 51:796799.
124. Novais, A.,, R. Cantón,, A. Valverde,, E. Machado,, J. C. Galán,, L. Peixe,, A. Carattoli,, F. Baquero, and, T. M. Coque. 2006. Dissemination and persistence of blaCTX-M-9 are linked to class 1 integrons containing CR1 associated with defective transposon derivatives from Tn402 located in early antibiotic resistance plasmids of IncHI2, IncP1-α, and IncFI groups. Antimicrob. Agents Chemother. 50:27412750.
125. Oliver, A.,, T. M. Coque,, D. Alonso,, A. Valverde,, F. Baquero, and, R. Cantón. 2005. CTX-M-10 linked to a phage-related element is widely disseminated among Enterobacteriaceae in a Spanish hospital. Antimicrob. Agents Chemother. 49:15671571.
126. Olson, A. B.,, M. Silverman,, D. A. Boyd,, A. McGeer,, B. M. Willey,, V. Pong-Porter,, N. Daneman, and, M. R. Mulvey. 2005. Identification of a progenitor of the CTX-M-9 group of extended-spectrum β-lactamases from Kluyvera georgiana isolated in Guyana. Antimicrob. Agents Chemother. 49:21122115.
127. Orencia, M. C.,, J. S. Yoon,, J. E. Ness,, W. P. Stemmer, and, R. C. Stevens. 2001. Predicting the emergence of antibiotic resistance by directed evolution and structural analysis. Nat. Struct. Biol. 8:238242.
128. Oteo, J.,, C. Navarro,, E. Cercenado,, A. Delgado-Iribarren,, I. Wilhelmi,, B. Orden,, C. García,, S. Miguelanez,, M. Pérez-Vazquez,, S. García-Cobos,, B. Aracil,, V. Bautista, and, J. Campos. 2006. Spread of Escherichia coli strains with high-level cefotaxime and ceftazidime resistance between the community, long-term care facilities, and hospital institutions. J. Clin. Microbiol. 44:23592366.
129. Page, M. I. 1999. The reactivity of beta-lactams, the mechanism of catalysis and the inhibition of beta-lactamases. Curr. Pharm. Des. 5:895913.
130. Pallecchi, L.,, M. Malossi,, A. Mantella,, E. Gotuzzo,, C. Trigoso,, A. Bartoloni,, F. Paradisi,, G. Kronvall, and, G. M. Rossolini. 2004. Detection of CTX-M-type beta-lactamase genes in fecal Escherichia coli isolates from healthy children in Bolivia and Peru. Antimicrob. Agents Chemother. 48:45564561.
131. Papanicolaou, G. A.,, A. A. Medeiros, and, G. A. Jacoby. 1990. Novel plasmid-mediated beta-lactamase (MIR-1) conferring resistance to oxyimino- and alpha-methoxy beta-lactams in clinical isolates of Klebsiella pneumoniae. Antimicrob. Agents Chemother. 34:22002209.
132. Partridge, S. R., and, R. M. Hall. 2005. Evolution of transposons containing blaTEM genes. Antimicrob. Agents Chemother. 49:12671268.
133. Partridge, S. R., and, R. M. Hall. 2003. In34, a complex In5 family class 1 integron containing orf513 and dfrA10. Anti-microb. Agents Chemother. 47:342349.
134. Paterson, D. L., and, R. A. Bonomo. 2005. Extended-spectrum beta-lactamases: a clinical update. Clin. Microbiol. Rev. 18:657686.
135. Paterson, D. L. 2006. Resistance in gram negative bacteria: Enterobacteriaceae. Am. J. Infect. Control 34(Suppl 1): S20S28.
136. Paul, G. C.,, G. Gerbaud,, A. Bure,, A. M. Philippon,, B. Pangon, and, P. Courvalin. 1989. TEM-4, a new plasmid-mediated beta-lactamase that hydrolyzes broad-spectrum cephalosporins in a clinical isolate of Escherichia coli. Antimicrob. Agents Chemother. 33:19581963.
137. Pérez-Llarena, F. J.,, J. F. Martín,, J. J. R. Coque,, J. L. de la Fuente,, M. Galleni,, J.–M. Frère, and, P. Liras. 1997. The bla gene of the cephamycin cluster of Streptomyces clavuligerus encodes a class A β-lactamase of low enzymatic activity. J. Bacteriol. 179:60356040.
138. Philippon, A.,, G. Arlet, and, G. A. Jacoby. 2002. Plasmid-determined AmpC-type beta-lactamases. Antimicrob. Agents Chemother. 46:111.
139. Philippon, A.,, R. Labia, and, G. Jacoby. 1989. Extended-spectrum beta-lactamases. Antimicrob. Agents Chemother. 33:11311136.
140. Philippon, A. M.,, G. C. Paul, and, G. A. Jacoby. 1986. New plasmid-mediated oxacillin-hydrolyzing beta-lactamase in Pseudomonas aeruginosa. J. Antimicrob. Chemother. 17:415422.
141. Pitout, J. D.,, K. B. Laupland,, D. L. Church,, M. L. Menard, and, J. R. Johnson. 2005a. Virulence factors of Escherichia coli isolates that produce CTX-M-type extended-spectrum β-lactamases. Antimicrob. Agents Chemother. 49:46674670.
142. Pitout, J. D.,, P. Nordmann,, K. B. Laupland, and, L. Poirel. 2005b. Emergence of Enterobacteriaceae producing extended-spectrum beta-lactamases (ESBLs) in the community. J. Anti-microb. Chemother. 56:5259.
143. Poirel, L.,, M. F. Lartigue,, J. W. Decousser, and, P. Nordmann. 2005. ISEcp1B-mediated transposition of blaCTX-M in Escherichia coli. Antimicrob. Agents Chemother. 49:447450.
144. Poirel, L., and, P. Nordmann. 2002. Acquired carbapenem-hydrolyzing beta-lactamases and their genetic support. Curr. Pharm. Biotechnol. 3:117127.
145. Power, P.,, M. Galleni,, J. Di Conza,, J. A. Ayala, and, G. Gutkind. 2005. Description of In116, the first blaCTX-M-2-containing complex class 1 integron found in Morganella morganii isolates from Buenos Aires, Argentina. J. Antimicrob. Chemother. 55:461465.
146. Rasmussen, B. A., and, K. Bush. 1997. Carbapenem-hydrolyzing beta-lactamases. Antimicrob. Agents Chemother. 41:223232.
147. Reig, R.,, C. Roy,, M. Hermida,, D. Teruel, and, A. Coira. 1993. A survey of beta-lactamases from 618 isolates of Klebsiella spp. J. Antimicrob. Chemother. 31:2935.
148. Rice, L. B., and, B. E. Murray. 1995. Beta-lactamase-producing enterococci. Dev. Biol. Stand. 85:107114.
149. Rice, L. B.,, S. H. Willey,, G. A. Papanicolaou,, A. A. Medeiros,, G. M. Eliopoulos,, R. C. Moellering, Jr., and, G. A. Jacoby. 1990. Outbreak of ceftazidime resistance caused by extended-spectrum beta-lactamases at a Massachusetts chronic-care facility. Antimicrob. Agents Chemother. 34:21932199.
150. Rice, L. B. 2006. Antimicrobial resistance in gram positive bacteria. Am. J. Med. 119(6 Suppl 1): S11S19.
151. Robin, F.,, J. Delmas,, M. Archambaud,, C. Schweitzer,, C. Chanal, and, R. Bonnet. 2006. CMT-type beta-lactamase TEM-125, an emerging problem for extended-spectrum beta-lactamase detection. Antimicrob. Agents Chemother. 50:24032408.
152. Rodríguez, M. M.,, P. Power,, M. Radice,, C. Vay,, A. Famiglietti,, M. Galleni,, J. A. Ayala, and, G. Gutkind. 2004. Chromosome-encoded CTX-M-3 from Kluyvera ascorbata: a possible origin of plasmid-borne CTX-M-1-derived cefotaximases. Anti-microb. Agents Chemother. 48:48954897.
153. Romero, L.,, L. Lopez,, J. Rodríguez-Baño,, J. R. Hernández,, L. Martínez-Martínez, and, A. Pascual. 2005. Long-term study of the frequency of Escherichia coli and Klebsiella pneumoniae isolates producing extended-spectrum beta-lactamases. Clin. Microbiol. Infect. 11:625631.
154. Roy, C.,, A. Foz,, C. Segura,, M. Tirado,, C. Fuster, and, R. Reig. 1983. Plasmid-determined beta-lactamases identified in a group of 204 ampicillin-resistant Enterobacteriaceae. J. Anti-microb. Chemother. 12:507510.
155. Sanschagrin, F.,, F. Couture, and, R. C. Levesque. 1995. Primary structure of OXA-3 and phylogeny of oxacillin-hydrolyzing class D beta-lactamases. Antimicrob. Agents Chemother. 39:887893.
156. Sarno, R.,, G. McGillivary,, D. J. Sherratt,, L. A. Actis, and, M. E. Tolmasky. 2002. Complete nucleotide sequence of Klebsiella pneumoniae multiresistance plasmid pJHCMW1. Antimicrob. Agents Chemother. 46:34223427.
157. Saunders, J. R.,, C. A. Hart, and, V. A. Saunders. 1986. Plasmid-mediated resistance to beta-lactam antibiotics in gram negative bacteria: the role of in-vivo recyclization reactions in plasmid evolution. J. Antimicrob. Chemother. 18(Suppl C): 5766.
158. Shaokat, S.,, M. Ouellette,, D. Sirot,, B. Joly, and, R. Cluzel. 1987. Spread of SHV-1 beta-lactamase in Escherichia coli isolated from fecal samples in Africa. Antimicrob. Agents Chemother. 31:943945.
159. Shiroto, K.,, Y. Ishii,, S. Kimura,, J. Alba,, K. Watanabe,, Y. Matsushima, and, K. Yamaguchi. 2005. Metallo-beta-lactamase IMP-1 in Providencia rettgeri from two different hospitals in Japan. J. Med. Microbiol. 54:10651070.
160. Sirot, D.,, C. Recule,, E. B. Chaibi,, L. Bret,, J. Croize,, C. Chanal-Claris,, R. Labia, and, J. Sirot. 1997. A complex mutant of TEM-1 beta-lactamase with mutations encountered in both IRT-4 and extended-spectrum TEM-15, produced by an Escherichia coli clinical isolate. Antimicrob. Agents Chemother. 41:13221325.
161. Sirot, J.,, C. Chanal,, A. Petit,, D. Sirot,, R. Labia, and, G. Gerbaud. 1988. Klebsiella pneumoniae and other Enterobacteriaceae producing novel plasmid-mediated beta-lactamases markedly active against third-generation cephalosporins: epidemiologic studies. Rev. Infect. Dis. 10:850859.
162. Soler Bistue, A. J.,, F. A. Martin,, A. Petroni,, D. Faccone,, M. Galas,, M. E. Tolmasky, and, A. Zorreguieta. 2006. Vibrio cholerae InV117, a class 1 integron harboring aac(6)-Ib and blaCTX-M-2, is linked to transposition genes. Antimicrob. Agents Chemother. 50:19031907.
163. Stemmer, W. P. 1994. Rapid evolution of a protein in vitro by DNA shuffling. Nature 370:389391.
164. Sturenburg, E.,, A. Kuhn,, D. Mack, and, R. Laufs. 2004. A novel extended-spectrum beta-lactamase CTX-M-23 with a P167T substitution in the active-site omega loop associated with ceftazidime resistance. J. Antimicrob. Chemother. 54:406409.
165. Szczepanowski, R.,, S. Braun,, V. Riedel,, S. Schneiker,, I. Krahn,, A. Puhler, and, A. Schluter. 2005. The 120 592 bp IncF plasmid pRSB107 isolated from a sewage-treatment plant encodes nine different antibiotic-resistance determinants, two iron-acquisition systems and other putative virulence-associated functions. Microbiology 151:10951111.
166. Tennstedt, T.,, R. Szczepanowski,, I. Krahn,, A. Puhler, and, A. Schluter. 2005. Sequence of the 68,869 bp IncP-1alpha plasmid pTB11 from a waste-water treatment plant reveals a highly conserved backbone, a Tn402-like integron and other transposable elements. Plasmid 53:218238.
167. Tenover, F. C. 2006. Mechanisms of antimicrobial resistance in bacteria. Am. J. Med. 119(Suppl 1): S3S10.
168. Tirado, M.,, C. Roy,, C. Segura,, R. Reig,, M. Hermida, and, A. Foz. 1986. Incidence of strains producing plasmid determined beta-lactamases among carbenicillin resistant Pseudomonas aeruginosa. J. Antimicrob. Chemother. 18:453458.
169. Toleman, M. A.,, P. M. Bennett, and, T. R. Walsh. 2006. ISCR elements: novel gene-capturing systems of the 21st century? Microbiol. Mol. Biol. Rev. 70:296316.
170. Tomatis, P. E.,, R. M. Rasia,, L. Segovia, and, A. J. Vila. 2005. Mimicking natural evolution in metallo-beta-lactamases through second-shell ligand mutations. Proc. Natl. Acad. Sci. USA 102:1376113766.
171. Townsend, J. P.,, K. M. Nielsen,, D. S. Fisher, and, D. L. Hartl. 2003. Horizontal acquisition of divergent chromosomal DNA in bacteria: effects of mutator phenotypes. Genetics 164:1321.
172. Tzouvelekis, L. S., and, R. A. Bonomo. 1999. SHV-type beta-lactamases. Curr. Pharm. Des. 5:847864.
173. Vakulenko, S. B.,, D. Golemi,, B. Geryk,, M. Suvorov,, J. R. Knox,, S. Mobashery, and, S. A. Lerner. 2002. Mutational replacement of Leu-293 in the class C Enterobacter cloacae P99 beta-lactamase confers increased MIC of cefepime. Antimicrob. Agents Chemother. 46:19661970.
174. Valverde, A.,, R. Canton,, J. C. Galan,, P. Nordmann,, F. Baquero, and, T. M. Coque. 2006. In117, an unusual In0-like class 1 integron containing CR1 and bla(CTX-M-2) and associated with a Tn21-like element. Antimicrob. Agents Chemother. 50:799802.
175. Valverde, A.,, T. M. Coque,, M. P. Sanchez-Moreno,, A. Rollan,, F. Baquero, and, R. Cantón. 2004. Dramatic increase in prevalence of fecal carriage of extended-spectrum beta-lactamase-producing Enterobacteriaceae during nonoutbreak situations in Spain. J. Clin. Microbiol. 42:47694775.
176. Walsh, C. 2003. Antibiotics. Actions, Origins, and Resistance, p. 2349. ASM Press, Washington, DC.
177. Walsh, T. R.,, M. A. Toleman,, L. Poirel, and, P. Nordmann. 2005. Metallo-beta-lactamases: the quiet before the storm? Clin. Microbiol. Rev. 18:306325.
178. Walsh, T. R. 2006. Combinatorial genetic evolution of multiresistance. Curr. Opin. Microbiol. 9:476482.
179. Walsh, T. R. 2005. The emergence and implications of metallo-beta-lactamases in gram negative bacteria. Clin. Microbiol. Infect. 11(Suppl 6): 29.
180. Walther-Rasmussen, J., and, N. Hoiby. 2002. Plasmid-borne AmpC beta-lactamase. Can. J. Microbiol. 48:479493.
181. Watanabe, M.,, S. Iyobe,, M. Inoue, and, S. Mitsuhashi. 1991. Transferable imipenem resistance in Pseudomonas aeruginosa. Antimicrob. Agents Chemother. 35:147151.
182. Weigel, B. J.,, S. G. Burgett,, V. J. Chen,, P. L. Skatrud,, C. A. Frolik,, S. W. Queener, and, T. D. Ingolia. 1988. Cloning and expression in Escherichia coli of isopenicillin N-synthetase genes from Streptomyces lipmanii and Aspergillus nidulans. J. Bacteriol. 170:38173826.
183. Weldhagen, G. F. 2004. Integrons and beta-lactamases—a novel perspective on resistance. Int. J. Antimicrob. Agents 23:556562.
184. Welsh, K. J.,, M. Barlow,, F. C. Tenover,, J. W. Biddle,, J. K. Rasheed,, L. A. Clark, and, J. E. McGowan, Jr. 2005. Experimental prediction of the evolution of ceftazidime resistance in the CTXM-2 extended-spectrum beta-lactamase. Antimicrob. Agents Chemother. 49:12421244.
185. Wiedemann, B.,, D. Pfeifle,, I. Wiegand, and, E. Janas. 1998. Beta-lactamase induction and cell wall recycling in gram negative bacteria. Drug Resist. Updates 1:223226.
186. Witte, W. 2004. International dissemination of antibiotic resistant strains of bacterial pathogens. Infect. Genet. Evol. 4:187191.
187. Wu, S. W.,, K. Dornbusch,, G. Kronvall, and, M. Norgren. 1999. Characterization and nucleotide sequence of a Klebsiella oxytoca cryptic plasmid encoding a CMY-type beta-lactamase: confirmation that the plasmid-mediated cephamycinase originated from the Citrobacter freundii AmpC beta-lactamase. Antimicrob. Agents Chemother. 43:13501357.
188. Yan, J. J.,, W. C. Ko,, H. M. Wu,, S. H. Tsai,, C. L. Chuang, and, J. J. Wu. 2004. Complexity of Klebsiella pneumoniae isolates resistant to both cephamycins and extended-spectrum cephalosporins at a teaching hospital in Taiwan. J. Clin. Microbiol. 42:53375340.


Generic image for table
Table 1.

Beta-lactamase classification a

Citation: Cantón R. 2008. Epidemiology and Evolution of Beta-Lactamases, p 249-270. In Baquero F, Nombela C, Cassell G, Gutiérrez-Fuentes J (ed), Evolutionary Biology of Bacterial and Fungal Pathogens. ASM Press, Washington, DC. doi: 10.1128/9781555815639.ch22
Generic image for table
Table 2.

Introduction of beta-lactam antibiotics in therapeutics and emergence of problems with beta-lactamase or beta-lactamases producing organisms in the clinical setting

Citation: Cantón R. 2008. Epidemiology and Evolution of Beta-Lactamases, p 249-270. In Baquero F, Nombela C, Cassell G, Gutiérrez-Fuentes J (ed), Evolutionary Biology of Bacterial and Fungal Pathogens. ASM Press, Washington, DC. doi: 10.1128/9781555815639.ch22
Generic image for table
Table 3.

Beta-lactamases and incompatibility group of plasmids

Citation: Cantón R. 2008. Epidemiology and Evolution of Beta-Lactamases, p 249-270. In Baquero F, Nombela C, Cassell G, Gutiérrez-Fuentes J (ed), Evolutionary Biology of Bacterial and Fungal Pathogens. ASM Press, Washington, DC. doi: 10.1128/9781555815639.ch22

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error