1887

Chapter 24 : Evolution of Glycopeptide Resistance

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in
Zoomout

Evolution of Glycopeptide Resistance, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555815639/9781555814144_Chap24-1.gif /docserver/preview/fulltext/10.1128/9781555815639/9781555814144_Chap24-2.gif

Abstract:

This chapter briefly reviews the mode of action and the mechanism of bacterial resistance to glycopeptides, as exemplified by the VanB type, and discusses its diversity, regulation, evolution, origin, and recent dissemination to methicillin-resistant Staphylococcus aureus. Classification of glycopeptide resistance is based on the primary sequence of the structural genes for the resistance ligases. Although the six types of resistance involve related enzymic functions, they can be distinguished by the location of the corresponding genes and by the mode of regulation of gene expression. An interesting phenomenon that has developed in some VanB- and VanA-type enterococci is vancomycin dependence. These glycopeptide-dependent strains are also able to grow in the absence of glycopeptides if supplied with the dipeptide D-Ala-D-Ala, confirming that they are unable to produce the ligase encoded by the chromosomal ddl gene. The vanF operon is composed of five genes (vanYF, vanZF, vanHF, vanF, and vanXF) encoding homologues of VanY, VanZ, VanH, VanA, and VanX, and the genes essential for resistance (vanHF, vanF, and vanXF) are organized and oriented as in VanA-type strains. The evolutionary lineage of these groups of homologous genes is not clear, but they may have a common ancestor, or Paenibacillus could be a progenitor of the resistance operons acquired by enterococci. Conjugal transfer of plasmids that have acquired Tn1546-like elements by transposition appears to be responsible for the spread of glycopeptide resistance in enterococci.

Citation: Courvalin P. 2008. Evolution of Glycopeptide Resistance, p 279-295. In Baquero F, Nombela C, Cassell G, Gutiérrez-Fuentes J (ed), Evolutionary Biology of Bacterial and Fungal Pathogens. ASM Press, Washington, DC. doi: 10.1128/9781555815639.ch24
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of Figure 1.
Figure 1.

VanB-type glycopeptide resistance. (Top) Synthesis of peptidoglycan precursors in a VanB-type resistant strain. Tri, -Ala-γ--Glu--Lys; Tetra, -Ala-γ--Glu--Lys--Ala; Penta, -Ala-γ--Glu--Lys--Ala--Ala; Pentadepsi, -Ala-γ--Glu-LLys--Ala--Lac. (Bottom) organization of the vanB operon. Open arrows represent coding sequences and indicate the direction of transcription. The regulatory and resistance genes are cotranscribed from promoters Preg and Pres , respectively.

Citation: Courvalin P. 2008. Evolution of Glycopeptide Resistance, p 279-295. In Baquero F, Nombela C, Cassell G, Gutiérrez-Fuentes J (ed), Evolutionary Biology of Bacterial and Fungal Pathogens. ASM Press, Washington, DC. doi: 10.1128/9781555815639.ch24
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2.
Figure 2.

VanC-type glycopeptide resistance. (Top) Synthesis of peptidoglycan precursors in a VanC-type strain. Tri, -Ala-γ--Glu--Lys; Tetra, -Ala-γ--Glu--Lys--Ala. (Bottom) Organization of the vanC operon. Open arrows represent coding sequences and indicate the direction of transcription.

Citation: Courvalin P. 2008. Evolution of Glycopeptide Resistance, p 279-295. In Baquero F, Nombela C, Cassell G, Gutiérrez-Fuentes J (ed), Evolutionary Biology of Bacterial and Fungal Pathogens. ASM Press, Washington, DC. doi: 10.1128/9781555815639.ch24
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 3.
Figure 3.

Comparison of the van gene clusters. Open arrows represent coding sequences and indicate the direction of transcription. The guanosine plus cytosine content (percent GC) is indicated in the arrows. The percentage of amino acid (aa) identity between the deduced proteins of reference strains BM4147 (VanA) (Arthur et al., 1993), V583 (VanB) (Evers and Courvalin, 1996), BM4339 (VanD) (Casadewall and Courvalin, 1999), BM4174 (VanC) (Arias et al., 2000), BM4405 (VanE) (Abadía et al., 2002), and BM4518 (VanG) (Depardieu et al., 2003a) is indicated under the arrows. NA, not applicable; IR, inverted repeat; L, left; R, right.

Citation: Courvalin P. 2008. Evolution of Glycopeptide Resistance, p 279-295. In Baquero F, Nombela C, Cassell G, Gutiérrez-Fuentes J (ed), Evolutionary Biology of Bacterial and Fungal Pathogens. ASM Press, Washington, DC. doi: 10.1128/9781555815639.ch24
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 4.
Figure 4.

VanRBSB two-component regulatory system. (Top) Structure of VanSB and VanRB. Asp, aspartate; His, histidine; P, phosphate. (Bottom) Phosphorylation (left) and dephosphorylation (right) of VanRB by VanSB.

Citation: Courvalin P. 2008. Evolution of Glycopeptide Resistance, p 279-295. In Baquero F, Nombela C, Cassell G, Gutiérrez-Fuentes J (ed), Evolutionary Biology of Bacterial and Fungal Pathogens. ASM Press, Washington, DC. doi: 10.1128/9781555815639.ch24
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 5.
Figure 5.

Synthesis of peptidoglycan precursors in a VanB-type vancomycin-dependent strain. Because of inactivation of the host chromosomal -Ala:-Ala ligase (Ddl), presence of vancomycin in the environment is required to induce expression of the resistance pathway required for cell wall synthesis. Tri, -Ala-γ--Glu--Lys; Pentadepsi, -Ala-γ--Glu--LysD-Ala--Lac.

Citation: Courvalin P. 2008. Evolution of Glycopeptide Resistance, p 279-295. In Baquero F, Nombela C, Cassell G, Gutiérrez-Fuentes J (ed), Evolutionary Biology of Bacterial and Fungal Pathogens. ASM Press, Washington, DC. doi: 10.1128/9781555815639.ch24
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 6.
Figure 6.

VanB genetic tinkering. i, inducible; D, dependent; R, resistant; S, susceptible; Te, teicoplanin; Vm, vancomycin.

Citation: Courvalin P. 2008. Evolution of Glycopeptide Resistance, p 279-295. In Baquero F, Nombela C, Cassell G, Gutiérrez-Fuentes J (ed), Evolutionary Biology of Bacterial and Fungal Pathogens. ASM Press, Washington, DC. doi: 10.1128/9781555815639.ch24
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 7.
Figure 7.

VanD-type glycopeptide resistance. (Top) Synthesis of peptidoglycan precursors in a VanD-type resistant strain. (Bottom) Organization of the vanD operon. Open arrows represent coding sequences and indicate the direction of transcription. The regulatory and resistance genes are cotranscribed from promoters PRD and PYD , respectively. X, mutated ddl and vanSD nonfunctional genes.

Citation: Courvalin P. 2008. Evolution of Glycopeptide Resistance, p 279-295. In Baquero F, Nombela C, Cassell G, Gutiérrez-Fuentes J (ed), Evolutionary Biology of Bacterial and Fungal Pathogens. ASM Press, Washington, DC. doi: 10.1128/9781555815639.ch24
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 8.
Figure 8.

Schematic representation of the genes for -Ala:-Ala ligases of enterococci. The positions of the amino acids implicated in the binding of -Ala1, -Ala2, and ATP and conserved in E. faecium and E. faecalis are indicated by dotted, hatched, and black bars, respectively (McKessar et al., 2000; Stinear et al., 2001). In E. faecium strains BM4339(ddl[(::5bp37)]; vanSD [C517A]), BM4416(ddl[::IS19 at position 762]; vanSD [Δ1bp670]), A902(ddl[A38G]; vanSD [Δ1bp657]), and BM4538 (ddl[G956A]; vanRD [G419A]) the differences relative to ddl from E. faecium BM4147 are indicated in italics. In E. faecalis strains BM4539(ddl[::7bp870]; vanSD [::7bp753]) and BM4540(ddl[::7bp361]; vanSD [::7bp753]), a 7-bp insertion (italics) at the positions corresponding to amino acid 290 or 121, respectively, is responsible for a frameshift mutation leading to the synthesis of 297–and 128–amino acid peptides instead of the putative 348–amino acid Ddl.

Citation: Courvalin P. 2008. Evolution of Glycopeptide Resistance, p 279-295. In Baquero F, Nombela C, Cassell G, Gutiérrez-Fuentes J (ed), Evolutionary Biology of Bacterial and Fungal Pathogens. ASM Press, Washington, DC. doi: 10.1128/9781555815639.ch24
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 9.
Figure 9.

Comparison of the vanD gene clusters. Arrows represent coding sequences and indicate direction of transcription. The two-component regulatory systems are represented by dotted arrows, the -carboxypeptidases by hatched arrows, and the genes necessary for resistance by open arrows. The guanosine plus cytosine content (percent GC) is indicated in the arrows. The percentages of identity between the deduced proteins relative to those of BM4339 are indicated under the arrows. Insertion sequence ISEfa4 in 10/96A is indicated by a double headed arrow and horizontally hatched arrows corresponding to ORFA and ORFB. The asterisks indicate the positions of point mutations. The vertical bars in vanSD of BM4416, A902, and of BM4539/BM4540 and vanYD of 10/96A indicate the positions of the frameshift mutations leading to predicted truncated proteins.

Citation: Courvalin P. 2008. Evolution of Glycopeptide Resistance, p 279-295. In Baquero F, Nombela C, Cassell G, Gutiérrez-Fuentes J (ed), Evolutionary Biology of Bacterial and Fungal Pathogens. ASM Press, Washington, DC. doi: 10.1128/9781555815639.ch24
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 10.
Figure 10.

Schematic representation of the VanSB sensor and location of the amino acid substitutions in teicoplanin-resistant mutants. H, N, G1, F, and G2 refer to the motifs conserved in histidine protein kinases. The putative membrane-associated sensor domain (dotted black) containing transmembrane segments (black) and the putative cytoplasmic kinase domain (white) are indicated. Het, heterogeneously resistant; R, resistant; S, susceptible; Te, teicoplanin; Vm, vancomycin.

Citation: Courvalin P. 2008. Evolution of Glycopeptide Resistance, p 279-295. In Baquero F, Nombela C, Cassell G, Gutiérrez-Fuentes J (ed), Evolutionary Biology of Bacterial and Fungal Pathogens. ASM Press, Washington, DC. doi: 10.1128/9781555815639.ch24
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 11.
Figure 11.

Phylogenetic tree derived from the alignment of -Ala:-Ala ligases and related enzymes.

Citation: Courvalin P. 2008. Evolution of Glycopeptide Resistance, p 279-295. In Baquero F, Nombela C, Cassell G, Gutiérrez-Fuentes J (ed), Evolutionary Biology of Bacterial and Fungal Pathogens. ASM Press, Washington, DC. doi: 10.1128/9781555815639.ch24
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 12.
Figure 12.

Proposed mechanism for van gene transfer from Enterococcus to Staphylococcus. Wavy lines represent resident DNA (chromosome or plasmid). pBHRT is a plasmid with a broad host range of transfer.

Citation: Courvalin P. 2008. Evolution of Glycopeptide Resistance, p 279-295. In Baquero F, Nombela C, Cassell G, Gutiérrez-Fuentes J (ed), Evolutionary Biology of Bacterial and Fungal Pathogens. ASM Press, Washington, DC. doi: 10.1128/9781555815639.ch24
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555815639.ch24
1. Abadía, L.,, P. Courvalin, and, B. Périchon. 2002. vanE gene cluster of vancomycin-resistant Enterococcus faecalis BM4405. J. Bacteriol. 184:64576464.
2. Arias, C. A.,, P. Courvalin, and, P. E. Reynolds. 2000. vanC cluster of vancomycin-resistant Enterococcus gallinarum BM4174. Antimicrob. Agents Chemother. 44:16601666.
3. Arthur, M.,, F. Depardieu,, L. Cabanié,, P. Reynolds, and, P. Courvalin. 1998. Requirement of the VanY and VanX D,D-peptidases for glycopeptide resistance in enterococci. Mol. Microbiol. 30:819830.
4. Arthur, M.,, F. Depardieu, and, P. Courvalin. 1999. Regulated interactions between partner and non partner sensors and responses regulators that control glycopeptide resistance gene expression in enterococci. Microbiology 145:18491858.
5. Arthur, M.,, F. Depardieu,, G. Gerbaud,, M. Galimand,, R. Leclercq, and, P. Courvalin. 1997. The VanS sensor negatively controls VanR-mediated transcriptional activation of glycopeptide resistance genes of Tn1546 and related elements in the absence of induction. J. Bacteriol. 179:97106.
6. Arthur, M.,, F. Depardieu,, P. Reynolds, and, P. Courvalin. 1996a. Quantitative analysis of the metabolism of soluble cytoplasmic peptidoglycan precursors of glycopeptide-resistant enterococci. Mol. Microbiol. 21:3344.
7. Arthur, M.,, C. Molinas, and, P. Courvalin. 1992. The VanS-VanR two-component regulatory system controls synthesis of depsipeptide peptidoglycan precursors in Enterococcus faecium BM4147. J. Bacteriol. 174:25822591.
8. Arthur, M.,, C. Molinas,, F. Depardieu, and, P. Courvalin. 1993. Characterization of Tn1546, a Tn3-related transposon conferring glycopeptide resistance by synthesis of depsipeptide peptidoglycan precursors in Enterococcus faecium BM4147. J. Bacteriol. 175:117127.
9. Arthur, M.,, P. Reynolds, and, P. Courvalin. 1996b. Glycopeptide resistance in enterococci. Trends Microbiol. 4:401407.
10. Aslangul, E.,, M. Baptista,, B. Fantin,, F. Depardieu,, M. Arthur,, P. Courvalin, et al. 1997. Selection of glycopeptide-resistant mutants of VanB-type Enterococcus faecalis BM4281 in vitro and in experimental endocarditis. J. Infect. Dis. 175:598605.
11. Baptista, M.,, F. Depardieu,, P. Reynolds,, P. Courvalin, and, M. Arthur. 1997. Mutations leading to increased levels of resistance to glycopeptide antibiotics in VanB-type enterococci. Mol. Microbiol. 25:93105.
12. Baptista, M.,, P. Rodrigues,, F. Depardieu,, P. Courvalin, and, M. Arthur. 1999. Single-cell analysis of glycopeptide resistance gene expression in teicoplanin-resistant mutants of a VanB-type Enterococcus faecalis. Mol. Microbiol. 32:1728.
13. Bell, J. M.,, J. C. Paton, and, J. Turnidge. 1998. Emergence of vancomycin-resistant enterococci in Australia: phenotypic and genotypic characteristics of isolates. J. Clin. Microbiol. 36:21872190.
14. Berg, C. M. 1995. Transposable elements as tools for molecular analysis in bacteria, p. 3868. In D. J. Sherrat (ed.), Mobile Genetic Elements. Oxford University Press, New York, NY.
15. Biavasco, E.,, E. Giovanetti,, A. Miele,, C. Vignaroli,, B. Facinelli, and, P. E. Varaldo. 1996. In vitro conjugative transfer of VanA vancomycin resistance between Enterococci and Listeriae of different species. Eur. J. Clin. Microbiol. Infect. Dis. 15:5059.
16. Billot-Klein, D.,, L. Gutmann,, S. Sablé,, E. Guittet, and, J. van Heijenoort. 1994. Modification of peptidoglycan precursors is a common feature of the low-level vancomycin-resistant VANB-type Enterococcus D366 and of the naturally glycopeptide-resistant species Lactobacillus casei, Pediococcus pentosaceus, Leuconostoc mesenteroides, and Enterococcus gallinarum. J. Bacteriol. 176:23982405.
17. Boyd, D. A.,, J. Conly,, H. Dedier,, G. Peters,, L. Robertson,, E. Slater, et al. 2000. Molecular characterization of the vanD gene cluster and a novel insertion element in a vancomycin-resistant enterococcus isolated in Canada. J. Clin. Microbiol. 38:23922394.
18. Bugg, T. D. H.,, G. D. Wright,, S. Dutka-Malen,, M. Arthur,, P. Courvalin, and, C. T. Walsh. 1991. Molecular basis for vancomycin resistance in Enterococcus faecium BM4147: biosynthesis of a depsipeptide peptidoglycan precursor by vancomycin resistance proteins VanH and VanA. Biochemistry 30:1040810415.
19. Casadewall, B., and, P. Courvalin. 1999. Characterization of the vanD glycopeptide resistance gene cluster from Enterococcus faecium BM4339. J. Bacteriol. 181:36443648.
20. Casadewall. B.,, P. E. Reynolds, and, P. Courvalin. 2001. Regulation of expression of the vanD glycopeptide resistance gene cluster from Enterococcus faecium BM4339. J. Bacteriol. 183:34363446.
21. Dahl, K. H.,, G. S. Simonsen,, O. Olsvik, and, A. Sundsfjord. 1999. Heterogeneity in the vanB gene cluster of genomically diverse clinical strains of vancomycin-resistant enterococci. Antimicrob. Agents Chemother. 43:11051110.
22. Depardieu, F.,, M. G. Bonora,, P. E. Reynolds, and, P. Courvalin. 2003a. The vanG glycopeptide resistance operon from Enterococcus faecalis revisited. Mol. Microbiol. 50:931948.
23. Depardieu, F.,, P. Courvalin, and, A. Kolb. 2005. Binding sites of VanRB and sigma70 RNA polymerase in the vanB vancomycin resistance operon of Enterococcus faecium BM4524. Mol. Microbiol. 57:550564.
24. Depardieu, F.,, P. Courvalin, and, T. Msadek T. 2003b. A six amino acid deletion, partially overlapping the VanSB G2 ATP-binding motif, leads to constitutive glycopeptide resistance in VanB-type Enterococcus faecium. Mol. Microbiol. 50:10691083.
25. Depardieu, F.,, M. Kolbert,, H. Pruul,, J. Bell, and, P. Courvalin. 2004. VanD-type vancomycin-resistant Enterococcus faecium and Enterococcus faecalis. Antimicrob. Agents Chemother. 48:38923904.
26. Depardieu, F.,, P. E. Reynolds, and, P. Courvalin. 2003c. VanD-type vancomycin-resistant Enterococcus faecium 10/96A. Antimicrob. Agents Chemother. 47:718.
27. Dever, L. L.,, S. M. Smith,, S. Handwerger, and, R. H. Eng. 1995. Vancomycin-dependent Enterococcus faecium isolated from stool following oral vancomycin therapy. J. Clin. Microbiol. 33:27702773.
28. Domingo, M. C.,, A. Huletsky,, R. Giroux,, K. Boissinot,, A. Bernal,, F. J. Picard, et al. 2003. Characterization of a vanD gene cluster from anaerobic bacterium of the normal flora of human bowel. 43rd Interscience Conference on Antimicrobial Agents and Chemotherapy (ICAAC, Chicago, IL), Abstract C2-2166.
29. Dutka-Malen, S.,, R. Leclercq,, V. Coutant,, J. Duval, and, P. Courvalin. 1990. Phenotypic and genotypic heterogeneity of glycopeptide resistance determinants in gram-positive bacteria. Antimicrob. Agents Chemother. 34:18751879.
30. Evers, S., and, P. Courvalin. 1996. Regulation of VanB-type vancomycin resistance gene expression by the VanSB-VanRB two-component regulatory system in Enterococcus faecalis V583. J. Bacteriol. 178:13021309.
31. Flannagan, S. E.,, J. W. Chow,, S. M. Donabedian,, W. J. Brown,, M. B. Perri,, M. J. Zervos, et al. 2003. Plasmid content of a vancomycin-resistant Enterococcus faecalis isolate from a patient also colonized by Staphylococcus aureus with a VanA phenotype. Antimicrob. Agents Chemother. 47:39543959.
32. Fraimow, H. S.,, D. L. Jungkind,, D. W. Lander,, D. R. Delso, and, J. L. Dean. 1994. Urinary tract infection with an Enterococcus faecalis isolate that requires vancomycin for growth. Ann. Intern. Med. 121:2226.
33. Gay Elisha, B., and, P. Courvalin. 1995. Analysis of genes encoding D-alanine:D-alanine ligase-related enzymes in Leuconostoc mesenteroides and Lactobacillus spp. Gene 152:7983.
34. Green, M.,, J. H. Shlaes,, K. Barbadora, and, D. M. Shlaes. 1995. Bacteremia due to vancomycin-dependent Enterococcus faecium. Clin. Infect. Dis. 20:712714.
35. Guardabassi, L.,, B. Périchon,, J. Van Heijenoort,, D. Blanot, and, P. Courvalin. 2005. Glycopeptide resistance van operons in Paenibacillus from soil: implications on the origin of glycopeptide resistance. Antimicrob. Agents Chemother. 49:42274233.
36. Handwerger, S.,, M. J. Pucci,, K. J. Volk,, J. Liu, and, M. Lee. 1994. Vancomycin-resistant Leuconostoc mesenteroides and Lactobacillus casei synthesize cytoplasmic peptidoglycan precursors that terminate in lactate. J. Bacteriol. 176:260264.
37. Handwerger, S., and, J. Skoble. 1995. Identification of chromosomal mobile element conferring high-level vancomycin resistance in Enterococcus faecium. Antimicrob. Agents Chemother. 39:2446-2453.
38. Hasman, H.,, F. M. Aarestrup,, A. Dalsgaard, and, L. Guardabassi. 2006. Heterologous expression of glycopeptide resistance vanHAX gene clusters from soil bacteria in Enterococcus faecalis. J. Antimicrob. Chemother. 57:648653.
39. Holman, T. R.,, Z. Wu,, B. L. Wanner, and, C. T. Walsh. 1994. Identification of the DNA-binding site for the phosphorylated VanR protein required for vancomycin resistance in Enterococcus faecium. Biochemistry 33:46254631.
40. Kacica, M., and, L. C. McDonald. 2004. Vancomycin-resistant Staphylococcus aureus-New York, 2004. Morb. Mortal. Wkly Rep. 53:322323.
41. Launay, A.,, S. A. Ballard,, P. D. Johnson,, M. L. Grayson, and, T. Lambert. 2006. Transfer of vancomycin resistance transposon Tn1549 from Clostridium symbiosum to Enterococcus spp. in the gut of gnotobiotic mice. Antimicrob. Agents Chemother. 50:10541062.
42. Leclercq, R.,, E. Derlot,, J. Duval, and, P. Courvalin. 1988. Plasmid-mediated resistance to vancomycin and teicoplanin in Enterococcus faecium. N. Engl. J. Med. 319:157161.
43. Leclercq, R.,, E. Derlot,, M. Weber,, J. Duval, and, P. Courvalin. 1989. Transferable vancomycin and teicoplanin resistance in Enterococcus faecium. Antimicrob. Agents Chemother. 33:1015.
44. Ligozzi, M.,, G. Lo Cascio, and, R. Fontana. 1998. vanA gene cluster in a vancomycin-resistant clinical isolate of Bacillus circulans. Antimicrob. Agents Chemother. 42:20552059.
45. Marshall, C. G.,, G. Broadhead,, B. K. Leskiw, and, G. D. Wright. 1997. D-Ala:D-Ala ligases from glycopeptide antibiotic-producing organisms are highly homologous to the enterococcal vancomycin-resistance ligases VanA and VanB. Proc. Natl. Acad. Sci. USA 94:64806483.
46. Marshall, C. G.,, I. A. Lessard,, I. Park, and, G. D. Wright. 1998. Glycopeptide antibiotic resistance genes in glycopeptide-producing organisms. Antimicrob. Agents Chemother. 42:22152220.
47. Marshall, C. G., and, G. D. Wright. 1998. DdlN from vancomycin-producing Amycolatopsis orientalis C329.2 is a VanA homologue with D-alanyl-D-lactate ligase activity. J. Bacteriol. 180:57925795.
48. McKessar, S. J.,, A. M. Berry,, J. M. Bell,, J. D. Turnidge, and, J. C. Paton. 2000. Genetic characterization of vanG, a novel vancomycin resistance locus of Enterococcus faecalis. Antimicrob. Agents Chemother. 44:32243228.
49. Miller, D.,, V. Urdaneta,, A. Weltman, and, S. Park. 2002. Vancomycin-resistant Staphylococcus aureus- Pennsylvania, 2002. Morb. Mortal. Wkly. Rep. 51:902.
50. Navarro, F., and, P. Courvalin. 1994. Analysis of genes encoding D-alanine:D-alanine ligase-related enzymes in Enterococcus casseliflavus and Enterococcus flavescens. Antimicrob. Agents Chemother. 38:17881793.
51. Noble, W. C.,, Z. Virani, and, R. G. A. Cree. 1942. Co-transfer of vancomycin and other resistance genes from Enterococcus faecalis NCTC 12201 to Staphylococcus aureus. FEMS Microbiol. Lett. 93:195198.
52. Patel, R.,, K. Piper,, F. R. Cockerill, III,, J. M. Steckelberg, and, A. A. Yousten. 2000. The biopesticide Paenibacillus popilliae has a vancomycin resistance gene cluster homologous to the enterococcal VanA vancomycin resistance gene cluster. Antimicrob. Agents Chemother. 44:705709.
53. Patel, R.,, J. R. Uhl,, P. Kohner,, M. K. Hopkins,, J. M. Steckelberg,, B. Kline, et al. 1998. DNA sequence variation within vanA, vanB, vanC-1, and vanC-2/3 genes of clinical Enterococcus isolates. Antimicrob. Agents Chemother. 42:202205.
54. Périchon, B.,, B. Casadewall,, P. Reynolds, and, P. Courvalin. 2000. Glycopeptide-resistant Enterococcus faecium BM4416 is a VanD-type strain with an impaired D-Alanine:D-Alanine ligase. Antimicrob. Agents Chemother. 44:13461348.
55. Périchon, B., and, P. Courvalin. 2004. Heterologous expression of the enterococcal vanA operon in methicillin-resistant Staphylococcus aureus. Antimicrob. Agents Chemother. 48:42814285.
56. Périchon, B., and, P. Courvalin. 2006. Synergism between β-lactams and glycopeptides against VanA-type methicillin-resistant Staphylococcus aureus and heterologous expression of the vanA operon. Antimicrob. Agents Chemother. 80:36223630.
57. Pootoolal, J.,, M. G. Thomas,, C. G. Marshall,, J. M. Neu,, B. K. Hubbard,, C. T. Walsh, et al. 2002. Assembling the glycopeptide antibiotic scaffold: the biosynthesis of A47934 from Streptomyces toyocaensis NRRL15009. Proc. Natl. Acad. Sci. USA 99:89628967.
58. Power, E. G.,, Y. H. Abdulla,, H. G. Talsania,, W. Spice,, S. Aathithan, and, G. L. French. 1995. vanA genes in vancomycin-resistant clinical isolates of Oerskovia turbata and Arcanobacterium (Corynebacterium) haemolyticum. J. Anti-microb. Chemother. 36:595606.
59. Poyart, C.,, C. Pierre,, G. Quesne,, B. Pron,, P. Berche, and, P. Trieu-Cuot. 1997. Emergence of vancomycin resistance in the genus Streptococcus: characterization of a vanB transferable determinant in Streptococcus bovis. Antimicrob. Agents Chemother. 41:2429.
60. Quintiliani R. Jr.,, S. Evers, and, P. Courvalin. 1993. The vanB gene confers various levels of self-transferable resistance to vancomycin in enterococci. J. Infect. Dis. 167:12201223.
61. Reynolds, P. E.,, C. A. Arias, and, P. Courvalin. 1999. Gene vanXYC encodes D,D-dipeptidase (VanX) and D,D-carboxypeptidase (VanY) activities in vancomycin-resistant Enterococcus gallinarum BM4174. Mol. Microbiol. 34:341349.
62. Reynolds, P. E., and, P. Courvalin. 2005. Vancomycin resistance in enterococci due to synthesis of precursors terminating in D-alanyl-D-serine. Antimicrob. Agents Chemother. 49:2125.
63. Reynolds, P. E.,, F. Depardieu,, S. Dutka-Malen,, M. Arthur, and, P. Courvalin. 1994. Glycopeptide resistance mediated by enterococcal transposon Tn1546 requires production of VanX for hydrolysis of D-alanyl-D-alanine. Mol. Microbiol. 13:10651070.
64. Reynolds, P. E. 1998. Control of peptidoglycan synthesis in vancomycin-resistant enterococci: D,D-peptidases and D,D-carboxypeptidases. Cell Mol. Life Sci. 54:325331.
65. Reynolds, P. E. 1989. Structure, biochemistry and mechanism of action of glycopeptide antibiotics. Eur. J. Clin. Microbiol. Infect. Dis. 8:943950.
66. Sievert, D. M.,, M. L. Boulton,, G. Stolman,, D. Johnson,, M. G. Stobierski,, F. P. Downes, et al. 2002. Staphylococcus aureus resistant to vancomycin—United States, 2002. Morb. Mortal. Wkly. Rep. 51:565567.
67. Stinear, T. P,, D. C. Olden,, P. D. Johnson,, J. K. Davies, and, M. L. Grayson. 2001. Enterococcal vanB resistance locus in anaerobic bacteria in human faeces. Lancet 357:855856.
68. Tenover, F. C.,, L. M. Weigel,, P. C. Appelbaum,, L. K. McDougal,, J. Chaitram,, S. McAllister, et al. 2004. Vancomycin-resistant Staphylococcus aureus isolate from a patient in Pennsylvania. Antimicrob. Agents Chemother. 48:275280.
69. Uttley, A. H.,, C. H. Collins,, J. Naidoo, and, R. C. Georges. 1988. Vancomycin resistant enterococci. Lancet i:5758.
70. Van Bambeke, F.,, M. Chauvel,, P. E. Reynolds,, H. S. Fraimow, and, P. Courvalin P. 1999. Vancomycin-dependent Enterococcus faecalis clinical isolates and revertant mutants. Antimicrob. Agents Chemother. 43:4147.
71. Weigel, L. M.,, D. B. Clewell,, S. R. Gill,, N. C. Clark,, L. K. McDougal,, S. E. Flannagan, et al. 2003. Genetic analysis of a high-level vancomycin-resistant isolate of Staphylococcus aureus. Science 302:15691571.
72. Woodford, N.,, A. P. Johnson,, D. Morrison, and, D. C. E. Speller. 1995. Current perspectives on glycopeptide resistance. Clin. Microbiol. Rev. 8:585615.
73. Wright, G. D.,, T. R. Holman, and, C. T. Walsh. 1993. Purification and characterization of VanR and the cytosolic domain of VanS: a two-component regulatory system required for vancomycin resistance in Enterococcus faecium BM4147. Biochemistry 32:50575063.

Tables

Generic image for table
Table 1.

Glycopeptide resistance in gram-positive bacteria

Citation: Courvalin P. 2008. Evolution of Glycopeptide Resistance, p 279-295. In Baquero F, Nombela C, Cassell G, Gutiérrez-Fuentes J (ed), Evolutionary Biology of Bacterial and Fungal Pathogens. ASM Press, Washington, DC. doi: 10.1128/9781555815639.ch24

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error