1887

Chapter 28 : Multiple Stages in the Evolution of Methicillin-Resistant Staphylococcus aureus

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in
Zoomout

Multiple Stages in the Evolution of Methicillin-Resistant Staphylococcus aureus, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555815639/9781555814144_Chap28-1.gif /docserver/preview/fulltext/10.1128/9781555815639/9781555814144_Chap28-2.gif

Abstract:

The appearance of methicillin-resistant Staphylococcus aureus (MRSA) represents a fascinating detective story of evolution in multiple stages beginning with the original source of the resistant gene mecA followed by its mobilization and association with the unique staphylococcal chromosomal cassettes (SCC), which appear to have their own independent evolutionary history. In this chapter the authors have concentrated on the stages of this evolutionary process that are relatively rarely discussed in reviews. A DNA probe generated from the S. aureus mecA sequence was used to search for a staphylococcal species in which all epidemiologically unrelated isolates produced a hybridizing signal under stringent conditions even if the isolates were susceptible to methicillin. The high-level methicillin resistance of the S. aureus transductants had an absolute dependence on the S. sciuri gene. The evolution of the mecA gene may have occurred on a much longer timescale and under the selective pressure of penicillin in a staphylococcal species such as S. sciuri, which appears to be free of the penicillinase plasmid. Ongoing studies in several laboratories of structural variants of SCCmec in various staphylococcal strains should eventually shed some light on the stages of molecular evolution between the original source of mecA and the construction of an SCC vector capable of capturing and delivering the chromosomal mecA determinant to an S. aureus recipient. Characterization of MRSA clones by molecular and microbiological techniques indicates that the evolution of MRSA does not stop after the acquisition of the SCCmec determinant.

Citation: Lencastre H, Tomasz A. 2008. Multiple Stages in the Evolution of Methicillin-Resistant Staphylococcus aureus, p 333-346. In Baquero F, Nombela C, Cassell G, Gutiérrez-Fuentes J (ed), Evolutionary Biology of Bacterial and Fungal Pathogens. ASM Press, Washington, DC. doi: 10.1128/9781555815639.ch28
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of Figure 1.
Figure 1.

Amino acid sequence of the putative transpeptidase domains of mecA from S. aureus and the mecA of S. sciuri. Reproduced from Wu et al., 1996, with permission.

Citation: Lencastre H, Tomasz A. 2008. Multiple Stages in the Evolution of Methicillin-Resistant Staphylococcus aureus, p 333-346. In Baquero F, Nombela C, Cassell G, Gutiérrez-Fuentes J (ed), Evolutionary Biology of Bacterial and Fungal Pathogens. ASM Press, Washington, DC. doi: 10.1128/9781555815639.ch28
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2.
Figure 2.

(A) Dependence of the methicillin-resistant phenotype on the presence of mecA in the bacteria. S. aureus mutant RU4 was transduced to high-level methicillin resistance either by the introduction of the S. sciuri mecA on plasmid pSTW8 (containing the mecA from S. sciuri K1M200) to generate transductant SS1 (●) or by the introduction of the S. aureus mecA on plasmid pSTW2C (containing the mecA from strain COL) to generate transductant SS2 (■). Loss of the plasmid-borne mecA constructs in the cured cells SS*1(○) and SS*2 (□) resulted in loss of resistance. (B) S. sciuri mecA catalyzes the production of S. aureus–type peptidoglycan in methicillin-resistant transductants of S. aureus. Strains were grown from small inocula in the presence of the following concentrations of methicillin: S. sciuri K1M200 (20 μg/ml), S. aureus strain COL (20 μg/ml), and S. aureus transductants SS1(5 μg/ml) and SS2 (20 μg/ml). Muropeptide hydrolysates were analyzed by high-pressure liquid chromatography. (Reproduced with permission from Severin et al., 2005.)

Citation: Lencastre H, Tomasz A. 2008. Multiple Stages in the Evolution of Methicillin-Resistant Staphylococcus aureus, p 333-346. In Baquero F, Nombela C, Cassell G, Gutiérrez-Fuentes J (ed), Evolutionary Biology of Bacterial and Fungal Pathogens. ASM Press, Washington, DC. doi: 10.1128/9781555815639.ch28
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 3.
Figure 3.

Multidrug resistance of the first European MRSA. Sequential appearance of methicillin-susceptible and methicillin-resistant blood isolates of S. aureus belonging to phage group III and the related 83A complex (in Denmark). (■), P-S-T-M isolates; (♦), P-S-T isolates. The numbers plotted represent all S. aureus blood isolates identified in Denmark during the particular year. (Reproduced with permission from Crisostomo et al., 2001.)

Citation: Lencastre H, Tomasz A. 2008. Multiple Stages in the Evolution of Methicillin-Resistant Staphylococcus aureus, p 333-346. In Baquero F, Nombela C, Cassell G, Gutiérrez-Fuentes J (ed), Evolutionary Biology of Bacterial and Fungal Pathogens. ASM Press, Washington, DC. doi: 10.1128/9781555815639.ch28
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 4.
Figure 4.

The rise and fall of phage group III and 83A complex in Denmark. SAB, S. aureus bacteremia. (Adapted with permission from Westh et al., 1992.)

Citation: Lencastre H, Tomasz A. 2008. Multiple Stages in the Evolution of Methicillin-Resistant Staphylococcus aureus, p 333-346. In Baquero F, Nombela C, Cassell G, Gutiérrez-Fuentes J (ed), Evolutionary Biology of Bacterial and Fungal Pathogens. ASM Press, Washington, DC. doi: 10.1128/9781555815639.ch28
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 5.
Figure 5.

Gradual resurgence of MRSA in Denmark after the year 2000. (Adapted with permission from DANMAP, 2006.)

Citation: Lencastre H, Tomasz A. 2008. Multiple Stages in the Evolution of Methicillin-Resistant Staphylococcus aureus, p 333-346. In Baquero F, Nombela C, Cassell G, Gutiérrez-Fuentes J (ed), Evolutionary Biology of Bacterial and Fungal Pathogens. ASM Press, Washington, DC. doi: 10.1128/9781555815639.ch28
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 6.
Figure 6.

Sequential replacement of MRSA clones in Portuguese hospitals. (Adapted with permission from Aires de Sousa and de Lencastre, 2004.)

Citation: Lencastre H, Tomasz A. 2008. Multiple Stages in the Evolution of Methicillin-Resistant Staphylococcus aureus, p 333-346. In Baquero F, Nombela C, Cassell G, Gutiérrez-Fuentes J (ed), Evolutionary Biology of Bacterial and Fungal Pathogens. ASM Press, Washington, DC. doi: 10.1128/9781555815639.ch28
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555815639.ch28
1. Aires de Sousa, M.,, T. Conceicao,, C. Simas,, H. de Lencastre. 2005. Comparison of genetic backgrounds of methicillin-resistant and -susceptible Staphylococcus aureus isolates from Portuguese hospitals and the community. J. Clin. Microbiol. 43:51505157.
2. Aires de Sousa, M., and, H. de Lencastre. 2004. Bridges from hospitals to the laboratory: genetic portraits of methicillin-resistant Staphylococcus aureus clones. FEMS Immunol. Med. Microbiol. 40:101111.
3. Aires de Sousa, M., and, H. de Lencastre. 2003. Evolution of sporadic isolates of methicillin-resistant Staphylococcus aureus (MRSA) in hospitals and their similarities to isolates of community-acquired MRSA. J. Clin. Microbiol. 41:38063815.
4. Aires-de-Sousa, M.,, T. Conceicao, and, H. de Lencastre. 2006. Unusually high prevalence of nosocomial Panton-Valentine leukocidin-positive Staphylococcus aureus isolates in Cape Verde Islands. J. Clin. Microbiol. 44:37903793.
5. Anonymous. 2002. Staphylococcus aureus resistant to vancomycin—United States 2002. Morb. Mortal. Wkly. Rep. 51:565567.
6. Baba, T.,, F. Takeuchi,, M. Kuroda,, H. Yuzawa,, K. Aoki,, A. Oguchi, et al. 2002. Genome and virulence determinants of high virulence community-acquired MRSA. Lancet 359:18191827.
7. Beck, W. D.,, B. Berger-Bachi, and, F. H. Kayser. 1986. Additional DNA in methicillin-resistant Staphylococcus aureus and molecular cloning of mec-specific DNA. J. Bacteriol. 165:373378.
8. Chongtrakool, P.,, T. Ito,, X. X. Ma,, Y. Kondo,, S. Trakulsomboon,, C. Tiensasitorn, et al. 2006. Staphylococcal cassette chromosome mec (SCCmec) typing of methicillin-resistant Staphylococcus aureus strains isolated in 11 Asian countries: a proposal for a new nomenclature for SCCmec elements. Antimicrob. Agents Chemother. 50:10011012.
9. Chung, M.,, H. de Lencastre,, P. Matthews,, A. Tomasz,, I. Adamsson,, M. Aires de Sousa, et al. 2000. Molecular typing of methicillin-resistant Staphylococcus aureus by pulsed-field gel electrophoresis: comparison of results obtained in a multilaboratory effort using identical protocols and MRSA strains. Microb. Drug Resist. 6:189198.
10. Chung, M.,, G. Dickinson,, H. de Lencastre, and, A. Tomasz. 2004. International clones of methicillin-resistant Staphylococcus aureus in two hospitals in Miami, Florida. J. Clin. Microbiol. 42:542547.
11. Coombs, G. W.,, G. R. Nimmo,, J. M. Bell,, F. Huygens,, F. G. O’Brien,, M. J. Malkowski, et al. 2004. Genetic diversity among community methicillin-resistant Staphylococcus aureus strains causing outpatient infections in Australia. J. Clin. Microbiol. 42:47354743.
12. Couto, I.,, H. de Lencastre,, E. Severina,, W. Kloos,, J. A. Webster,, R. J. Hubner, et al. 1996. Ubiquitous presence of a mecA homologue in natural isolates of Staphylococcus sciuri. Microb. Drug Resist. 2:377391.
13. Couto, I.,, S. W. Wu,, A. Tomasz, and, H. de Lencastre. 2003. Development of methicillin resistance in clinical isolates of Staphylococcus sciuri by transcriptional activation of the mecA homologue native to the species. J. Bacteriol. 185:645653.
14. Crisostomo, M. I.,, H. Westh,, A. Tomasz,, M. Chung,, D. C. Oliveira, and, H. de Lencastre. 2001. The evolution of methicillin resistance in Staphylococcus aureus: similarity of genetic backgrounds in historically early methicillin-susceptible and -resistant isolates and contemporary epidemic clones. Proc. Natl. Acad. Sci. USA 98:98659870.
15. Dakic, I.,, D. Vukovic,, S. Stepanovic,, T. Hauschild,, P. Jezek,, P. Petras, et al. 2005. Survey of genes encoding staphylococcal enterotoxins, toxic shock syndrome toxin 1, and exfoliative toxins in members of the Staphylococcus sciuri group. J. Clin. Microbiol. 43:48754876.
16. DANMAP. 2006. Use of Antimicrobial Agents and Occurrence of Antimicrobial Resistance in Bacteria from Food Animals, Foods and Humans in Denmark. Statens Serum Institut, Copenhagen, Denmark.
17. de Jonge, B. L.,, Y. S. Chang,, D. Gage, and, A. Tomasz. 1992. Peptidoglycan composition in heterogeneous Tn551 mutants of a methicillin-resistant Staphylococcus aureus strain. J. Biol. Chem. 267:1125511259.
18. de Lencastre, H.,, M. Chung, and, H. Westh. 2000. Archaic strains of methicillin-resistant Staphylococcus aureus: molecular and microbiological properties of isolates from the 1960s in Denmark. Microb. Drug Resist. 6:110.
19. de Lencastre, H.,, S. W. Wu,, M. G. Pinho,, A. M. Ludovice,, S. Filipe,, S. Gardete, et al. 1999. Antibiotic resistance as a stress response: complete sequencing of a large number of chromosomal loci in Staphylococcus aureus strain COL that impact on the expression of resistance to methicillin. Microb. Drug Resist. 5:163175.
20. Diep, B. A.,, S. R. Gill,, R. F. Chang,, T. H. Phan,, J. H. Chen,, M. G. Davidson, et al. 2006. Complete genome sequence of USA300, an epidemic clone of community-acquired methicillin-resistant Staphylococcus aureus. Lancet 367:731739.
21. Enright, M. C.,, N. P. Day,, C. E. Davies,, S. J. Peacock, and, B. G. Spratt. 2000. Multilocus sequence typing for characterization of methicillin-resistant and methicillin-susceptible clones of Staphylococcus aureus. J. Clin. Microbiol. 38:10081015.
22. Enright, M. C.,, D. A. Robinson,, G. Randle,, E. J. Feil,, H. Grund-mann, and, B. G. Spratt. 2002. The evolutionary history of methicillin-resistant Staphylococcus aureus (MRSA). Proc. Natl. Acad. Sci. USA 99:76877692.
23. Faria, N. A.,, D. C. Oliveira,, H. Westh,, D. L. Monnet,, A. R. Larsen,, R. Skov, et al. 2005. Epidemiology of emerging methicillin-resistant Staphylococcus aureus (MRSA) in Denmark: a nationwide study in a country with low prevalence of MRSA infection. J. Clin. Microbiol. 43:18361842.
24. Faruque, S. M.,, I. B. Naser,, M. J. Islam,, A. S. Faruque,, A. N. Ghosh,, G. B. Nair, et al. 2005. Seasonal epidemics of cholera inversely correlate with the prevalence of environmental cholera phages. Proc. Natl. Acad. Sci. USA 102:17021707.
25. Gardete, S.,, S. W. Wu,, S. Gill, and, A. Tomasz. 2006. Role of VraSR in antibiotic resistance and antibiotic-induced stress response in Staphylococcus aureus. Antimicrob. Agents Chemother. 50:34243434.
26. Gomes, A. R.,, S. Vinga,, M. Zavolan, and, H. de Lencastre. 2005. Analysis of the genetic variability of virulence-related loci in epidemic clones of methicillin-resistant Staphylococcus aureus. Antimicrob. Agents Chemother. 49:366379.
27. Gomes, A. R.,, H. Westh, and, H. de Lencastre. 2006. Origins and evolution of methicillin-resistant Staphylococcus aureus clonal lineages. Antimicrob. Agents Chemother. 50:32373244.
28. Hanssen, A. M., and, J. U. Ericson Sollid. 2006. SCCmec in staphylococci: genes on the move. FEMS Immunol. Med. Microbiol. 46:820.
29. Hanssen, A. M.,, G. Kjeldsen, and, J. U. Sollid. 2004. Local variants of Staphylococcal cassette chromosome mec in sporadic methicillin-resistant Staphylococcus aureus and methicillin-resistant coagulase-negative staphylococci: evidence of horizontal gene transfer? Antimicrob. Agents Chemother. 48:285296.
30. Hartman, B. J., and, A. Tomasz. 1984. Low-affinity penicillin-binding protein associated with beta-lactam resistance in Staphylococcus aureus. J. Bacteriol. 158:513516.
31. Henze, U. U., and, B. Berger-Bachi. 1995. Staphylococcus aureus penicillin-binding protein 4 and intrinsic beta-lactam resistance. Antimicrob. Agents Chemother. 39:24152422.
32. Hiramatsu, K.,, H. Hanaki,, T. Ino,, K. Yabuta,, T. Oguri, and, F. C. Tenover. 1997. Methicillin-resistant Staphylococcus aureus clinical strain with reduced vancomycin susceptibility. J. Antimicrob. Chemother. 40:135136.
33. Holden, M. T.,, E. J. Feil,, J. A. Lindsay,, S. J. Peacock,, N. P. Day,, M. C. Enright, et al. 2004. Complete genomes of two clinical Staphylococcus aureus strains: evidence for the rapid evolution of virulence and drug resistance. Proc. Natl. Acad. Sci. USA 101:97869791.
34. Ito, T.,, Y. Katayama, and, K. Hiramatsu. 1999. Cloning and nucleotide sequence determination of the entire mec DNA of premethicillin-resistant Staphylococcus aureus N315. Antimicrob. Agents Chemother. 43:14491458.
35. Jevons, M. P. 1961. Celbenine-resistant staphylococci. Br. Med. J. 1:124125.
36. Katayama, Y.,, T. Ito, and, K. Hiramatsu. 2001. Genetic organization of the chromosome region surrounding mecA in clinical staphylococcal strains: role of IS431-mediated mecI deletion in expression of resistance in mecA-carrying, low-level methicillin-resistant Staphylococcus haemolyticus. Antimicrob. Agents Chemother. 45:19551963.
37. Katayama, Y.,, D. A. Robinson,, M. C. Enright, and, H. F. Chambers. 2005. Genetic background affects stability of mecA in Staphylococcus aureus. J. Clin. Microbiol. 43:23802383.
38. Katayama, Y.,, H. Z. Zhang,, D. Hong, and, H. F. Chambers. 2003. Jumping the barrier to beta-lactam resistance in Staphylococcus aureus. J. Bacteriol. 185:54655472.
39. Kloos, W. E.,, D. N. Ballard,, J. A. Webster,, R. J. Hubner,, A. Tomasz,, I. Couto, et al. 1997. Ribotype delineation and description of Staphylococcus sciuri subspecies and their potential as reservoirs of methicillin resistance and staphylolytic enzyme genes. Int. J. Syst. Bacteriol. 47:313323.
40. Kolmos, H. J. 2001. Role of the clinical microbiology laboratory in infection control—a Danish perspective. J. Hosp. Infect. 48(Suppl A): S50S54.
41. Kuroda, M.,, H. Kuroda,, T. Oshima,, F. Takeuchi,, H. Mori, and, K. Hiramatsu. 2003. Two-component system VraSR positively modulates the regulation of cell-wall biosynthesis pathway in Staphylococcus aureus. Mol. Microbiol. 49:807821.
42. Leski, T. A., and, A. Tomasz. 2005. Role of penicillin-binding protein 2 (PBP2) in the antibiotic susceptibility and cell wall cross-linking of Staphylococcus aureus: evidence for the cooperative functioning of PBP2, PBP4, and PBP2A. J. Bacteriol. 187:18151824.
43. Lindsay, J. A.,, C. E. Moore,, N. P. Day,, S. J. Peacock,, A. A. Witney,, R. A. Stabler, et al. 2006. Microarrays reveal that each of the ten dominant lineages of Staphylococcus aureus has a unique combination of surface-associated and regulatory genes. J. Bacteriol. 188:669676.
44. Luong, T. T.,, S. Ouyang,, K. Bush, and, C. Y. Lee. 2002. Type 1 capsule genes of Staphylococcus aureus are carried in a staphylococcal cassette chromosome genetic element. J. Bacteriol. 184:36233629.
45. Matthews, P., and, A. Tomasz. 1990. Insertional inactivation of the mec gene in a transposon mutant of a methicillin-resistant clinical isolate of Staphylococcus aureus. Antimicrob. Agents Chemother. 34:17771779.
46. Matthews, P. R., and, P. R. Stewart. 1988. Amplification of a section of chromosomal DNA in methicillin-resistant Staphylococcus aureus following growth in high concentrations of methicillin. J. Gen. Microbiol. 134:14551464.
47. Miragaia, M.,, J. C. Thomas,, I. Couto,, M. C. Enright, and, H. de Lencastre. 2007. Inferring a population structure for Staphylococcus epidermidis from multilocus sequence typing (MLST) data. J. Bacteriol. 189:25402552.
48. Mongkolrattanothai, K.,, S. Boyle,, T. V. Murphy, and, R. S. Daum. 2004. Novel non-mecA-containing staphylococcal chromosomal cassette composite island containing pbp4 and tagF genes in a commensal staphylococcal species: a possible reservoir for antibiotic resistance islands in Staphylococcus aureus. Antimicrob. Agents Chemother. 48:18231836.
49. Murakami, K., and, A. Tomasz. 1989. Involvement of multiple genetic determinants in high-level methicillin resistance in Staphylococcus aureus. J. Bacteriol. 171:874879.
50. Naimi, T. S.,, K. H. LeDell,, D. J. Boxrud,, A. V. Groom,, C. D. Steward,, S. K. Johnson, et al. 2001. Epidemiology and clonality of community-acquired methicillin-resistant Staphylococcus aureus in Minnesota, 1996–1998. Clin. Infect. Dis. 33:990996.
51. Okuma, K.,, K. Iwakawa,, J. D. Turnidge,, W. B. Grubb,, J. M. Bell,, F. G. O’Brien, et al. 2002. Dissemination of new methicillin-resistant Staphylococcus aureus clones in the community. J. Clin. Microbiol. 40:42894294.
52. Oliveira, D. C.,, M. L. Amorim,, J. M. Amorim,, C. Vasconcelos,, E. Calado,, A. P. Castro, et al. 2004. Mapping reservoirs and transmission routes of methicillin-resistant Staphylococcus aureus (MRSA) in a tertiary hospital, abst ME-22, p. 148. In Plenary Sessions & Poster Abstracts of the 11th International Symposium on Staphylococci and Staphylococcal Infections. Charleston, S. C., October 24–27, 2004.
53. Oliveira, D. C., and, H. de Lencastre. 2002. Multiplex PCR strategy for rapid identification of structural types and variants of the mec element in methicillin-resistant Staphylococcus aureus. Antimicrob. Agents Chemother. 46:21552161.
54. Oliveira, D. C.,, A. Tomasz, and, H. de Lencastre. 2002. Secrets of success of a human pathogen: molecular evolution of pandemic clones of methicillin-resistant Staphylococcus aureus. Lancet Infect. Dis. 2:180189.
55. Pan, E. S.,, B. A. Diep,, E. D. Charlebois,, C. Auerswald,, H. A. Carleton,, G. F. Sensabaugh, et al. 2005. Population dynamics of nasal strains of methicillin-resistant Staphylococcus aureus—and their relation to community-associated disease activity. J. Infect. Dis. 192:811818.
56. Rasmussen, F. 2007. Discovery, isolation, production and introduction of penicillin for veterinary use in Denmark during World War II. J. Vet. Hist. Soc. 13:339352.
57. Reynolds, P. E., and, D. F. Brown. 1985. Penicillin-binding proteins of beta-lactam-resistant strains of Staphylococcus aureus. Effect of growth conditions. FEBS Lett. 192:2832.
58. Roberts, R. B.,, A. de Lencastre,, W. Eisner,, E. P. Severina,, B. Shopsin,, B. N. Kreiswirth, et al. 1998. Molecular epidemiology of methicillin-resistant Staphylococcus aureus in 12 New York hospitals. MRSA Collaborative Study Group. J. Infect. Dis. 178:164171.
59. Robinson, D. A., and, M. C. Enright. 2003. Evolutionary models of the emergence of methicillin-resistant Staphylococcus aureus. Antimicrob. Agents Chemother. 47:39263934.
60. Rohrer, S.,, H. Maki, and, B. Berger-Bachi. 2003. What makes resistance to methicillin heterogeneous? J. Med. Microbiol. 52:605607.
61. Sa-Leao, R.,, I. S. Sanches,, I. Couto,, C. R. Alves, and, H. de Lencastre. 2001. Low prevalence of methicillin-resistant strains among Staphylococcus aureus colonizing young and healthy members of the community in Portugal. Microb. Drug Resist. 7:237245.
62. Santos Sanches, I.,, R. Mato,, H. de Lencastre, and, A. Tomasz. 2000. Patterns of multidrug resistance among methicillin-resistant hospital isolates of coagulase-positive and coagulase-negative staphylococci collected in the international multicenter study RESIST in 1997 and 1998. Microb. Drug Resist. 6:199211.
63. Severin, A.,, S. W. Wu,, K. Tabei, and, A. Tomasz. 2005. High level beta-lactam resistance and cell wall synthesis catalyzed by the mecA homologue of Staphylococcus sciuri introduced into Staphylococcus aureus. J. Bacteriol. 187:66516658.
64. Sieradzki, K.,, T. Leski,, J. Dick,, L. Borio, and, A. Tomasz. 2003. Evolution of a vancomycin-intermediate Staphylococcus aureus strain in vivo: multiple changes in the antibiotic resistance phenotypes of a single lineage of methicillin-resistant S. aureus under the impact of antibiotics administered for chemotherapy. J. Clin. Microbiol. 41:16871693.
65. Signoretto, C.,, M. Boaretti, and, P. Canepari. 1994. Cloning, sequencing and expression in Escherichia coli of the low-affinity penicillin binding protein of Enterococcus faecalis. FEMS Microbiol. Lett. 123:99106.
66. Song, M. D.,, M. Wachi,, M. Doi,, F. Ishino, and, M. Matsuhashi. 1987. Evolution of an inducible penicillin-target protein in methicillin-resistant Staphylococcus aureus by gene fusion. FEBS Lett. 221:167171.
67. Stewart, G. C., and, E. D. Rosenblum. 1980. Genetic behavior of the methicillin resistance determinant in Staphylococcus aureus. J. Bacteriol. 144:12001202.
68. Takeuchi, F.,, S. Watanabe,, T. Baba,, H. Yuzawa,, T. Ito,, Y. Morimoto, et al. 2005. Whole-genome sequencing of Staphylococcus haemolyticus uncovers the extreme plasticity of its genome and the evolution of human-colonizing staphylococcal species. J. Bacteriol. 187:72927308.
69. Tenover, F. C.,, L. K. McDougal,, R. V. Goering,, G. Killgore,, S. J. Projan,, J. B. Patel, et al. 2006. Characterization of a strain of community-associated methicillin-resistant Staphylococcus aureus widely disseminated in the United States. J. Clin. Microbiol. 44:108118.
70. Tomasz, A.,, H. B. Drugeon,, H. M. de Lencastre,, D. Jabes,, L. McDougall, and, J. Bille. 1989. New mechanism for methicillin resistance in Staphylococcus aureus: clinical isolates that lack the PBP 2a gene and contain normal penicillin-binding proteins with modified penicillin-binding capacity. Antimicrob. Agents Chemother. 33:18691874.
71. Utsui, Y., and, T. Yokota. 1985. Role of an altered penicillin-binding protein in methicillin- and cephem-resistant Staphylococcus aureus. Antimicrob. Agents Chemother. 28:397403.
72. Vandenesch, F.,, T. Naimi,, M. C. Enright,, G. Lina,, G. R. Nimmo,, H. Heffernan, et al. 2003. Community-acquired methicillin-resistant Staphylococcus aureus carrying Panton-Valentine leukocidin genes: worldwide emergence. Emerg. Infect. Dis. 9:978984.
73. Waldron, D. E., and, J. A. Lindsay. 2006. Sau1: a novel lineage-specific type I restriction-modification system that blocks horizontal gene transfer into Staphylococcus aureus and between S. aureus isolates of different lineages. J. Bacteriol. 188:55785585.
74. Weigel, L. M.,, D. B. Clewell,, S. R. Gill,, N. C. Clark,, L. K. McDougal,, S. E. Flannagan, et al. 2003. Genetic analysis of a high-level vancomycin-resistant isolate of Staphylococcus aureus. Science 302:15691571.
75. Westh, H.,, J. O. Jarlov,, H. Kjersem, and, V. T. Rosdahl. 1992. The disappearance of multiresistant Staphylococcus aureus in Denmark: changes in strains of the 83A complex between 1969 and 1989. Clin. Infect. Dis. 14:11861194.
76. Wisplinghoff, H.,, A. E. Rosato,, M. C. Enright,, M. Noto,, W. Craig, and, G. L. Archer. 2003. Related clones containing SCCmec type IV predominate among clinically significant Staphylococcus epidermidis isolates. Antimicrob. Agents Chemother. 47:35743579.
77. Wu, S.,, H. de Lencastre, and, A. Tomasz. 1998. Genetic organization of the mecA region in methicillin-susceptible and methicillin-resistant strains of Staphylococcus sciuri. J. Bacteriol. 180:236242.
78. Wu, S.,, C. Piscitelli,, H. de Lencastre, and, A. Tomasz. 1996. Tracking the evolutionary origin of the methicillin resistance gene: cloning and sequencing of a homologue of mecA from a methicillin susceptible strain of Staphylococcus sciuri. Microb. Drug Resist. 2:435441.
79. Wu, S. W.,, H. de Lencastre, and, A. Tomasz. 2001. Recruitment of the mecA gene homologue of Staphylococcus sciuri into a resistance determinant and expression of the resistant phenotype in Staphylococcus aureus. J. Bacteriol. 183:24172424.

Tables

Generic image for table
Table 1.

Genetic backgrounds of future MRSA clones present in Denmark among MSSA clones in the period 1957 to 1973

Citation: Lencastre H, Tomasz A. 2008. Multiple Stages in the Evolution of Methicillin-Resistant Staphylococcus aureus, p 333-346. In Baquero F, Nombela C, Cassell G, Gutiérrez-Fuentes J (ed), Evolutionary Biology of Bacterial and Fungal Pathogens. ASM Press, Washington, DC. doi: 10.1128/9781555815639.ch28

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error