Chapter 29 : Evolution of Salmonella and Salmonella Infections

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in

Evolution of Salmonella and Salmonella Infections, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555815639/9781555814144_Chap29-1.gif /docserver/preview/fulltext/10.1128/9781555815639/9781555814144_Chap29-2.gif


Human disease is mainly caused by Salmonella serotypes belonging to subspecies I. Salmonella is capable of causing a variety of disease syndromes: typhoid (enteric) fever, gastroenteritis, septicemia, and focal infections, depending on the serotype and the host susceptibility. Speciation of the genus Salmonella are correlated with the acquisition of virulence genes, mainly by horizontal transfer. Acquisition of SPI-1 is believed to be an essential event for the separation of the Escherichia and Salmonella genera and permitted the latter to invade intestinal epithelial cells. The invasion step in which the enzymatic activity of SigD is essential is the biogenesis of the Salmonella-containing vacuole (SCV) after membrane ruffling. A new step in the evolution of Salmonella could be gained by acquisition of the pathogenicity island SPI-2, a region of 40 kb composed of at least two distinct elements. Several of them are involved in the control of trafficking and evolution of these vesicles, but details about their function are still scarce. The evolution of all these, relatively recent, serotypes has involved acquisition and loss of a substantial number of genes. The nature of many pseudogenes and some phenotypic traits is different in the two serotypes, indicating an independent evolution pathway. Currently, ceftriaxone is considered the most effective antimicrobial agent for Salmonella infections, and the fluoroquinolones are an alternative option.

Citation: Rotger R. 2008. Evolution of Salmonella and Salmonella Infections, p 349-359. In Baquero F, Nombela C, Cassell G, Gutiérrez-Fuentes J (ed), Evolutionary Biology of Bacterial and Fungal Pathogens. ASM Press, Washington, DC. doi: 10.1128/9781555815639.ch29
Highlighted Text: Show | Hide
Loading full text...

Full text loading...


Image of Figure 1.
Figure 1.

Phylogenetic groups of Salmonella. Acquisition of pathogenicity islands (SPI) and other genes during speciation is indicated (↓); in parentheses, the estimated number of acquired genes. 1 Genetically defined group belonging to subsp. IV. *Monophasic salmonellae. **Diphasic salmonellae. SPV: Salmonella virulence plasmid. Based on data from Baumler, 1997; Boyd et al., 1996; Groisman and Ochman, 1997; and Porwollik et al., 2002.

Citation: Rotger R. 2008. Evolution of Salmonella and Salmonella Infections, p 349-359. In Baquero F, Nombela C, Cassell G, Gutiérrez-Fuentes J (ed), Evolutionary Biology of Bacterial and Fungal Pathogens. ASM Press, Washington, DC. doi: 10.1128/9781555815639.ch29
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2.
Figure 2.

Location in centisomes (in parentheses) of Salmonella pathogenicity islands (SPI) and other virulence genes in the chromosome of serotype Typhimurium LT2 (except for those marked with “*” that correspond to the chromosome of serotype Typhi). The site of insertion is indicated in brackets. (Based on data from Hensel, 2004; Mirold et al., 2001.)

Citation: Rotger R. 2008. Evolution of Salmonella and Salmonella Infections, p 349-359. In Baquero F, Nombela C, Cassell G, Gutiérrez-Fuentes J (ed), Evolutionary Biology of Bacterial and Fungal Pathogens. ASM Press, Washington, DC. doi: 10.1128/9781555815639.ch29
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 3.
Figure 3.

Schematic representation of the Salmonella invasion of epithelial cells. Bacterial effectors are represented in ovals, and those of host cells in rectangles. SCV: Salmonella-containing vesicle; EEA1: Early endosomal antigen-1.

Citation: Rotger R. 2008. Evolution of Salmonella and Salmonella Infections, p 349-359. In Baquero F, Nombela C, Cassell G, Gutiérrez-Fuentes J (ed), Evolutionary Biology of Bacterial and Fungal Pathogens. ASM Press, Washington, DC. doi: 10.1128/9781555815639.ch29
Permissions and Reprints Request Permissions
Download as Powerpoint


1. Alemán, A.,, I. Rodríguez-Escudero,, G. Mallo,, V. J. Cid,, M. Molina, and, R. Rotger. 2005. The amino-terminal non-catalytic region of Salmonella typhimurium SigD affects actin organization in yeast and mammalian cells. Cell. Microbiol. 7:14321446.
2. Arricau, N.,, D. Hermant,, H. Waxin,, C. Ecobichon,, P. S. Duffey, and, M. Y. Popoff. 1998. The RcsB-RcsC regulatory system of Salmonella typhi differentially modulates the expression of invasion proteins, flagellin and Vi antigen in response to osmolarity. Mol. Microbiol. 29:835850.
3. Baumler, A. J.,, B. M. Hargis, and, R. M. Tsolis. 2000. Tracing the origins of Salmonella outbreaks. Science 287:5052.
4. Bäumler, A. J.,, R. M. Tsolis,, T. A. Ficht, and, L. G. Adams. 1998. Evolution of host adaptation in Salmonella enterica. Infect. Immun. 66:45794587.
5. Baumler, A. J. 1997. The record of horizontal gene transfer in Salmonella. Trends Microbiol. 5:318322.
6. Bijlsma, J. J. E., and, E. A. Groisman. 2005. The PhoP/PhoQ system controls the intramacrophage type three secretion system of Salmonella enterica. Mol. Microbiol. 57:8596.
7. Bouwman, C. W.,, M. Kohli,, A. Killoran,, G. A. Touchie,, R. J. Kadner, and, N. L. Martin. 2003. Characterization of SrgA, a Salmonella enterica serovar Typhimurium virulence plasmid-encoded paralogue of the disulfide oxidoreductase DsbA, essential for biogenesis of plasmid-encoded fimbriae. J. Bacteriol. 185:9911000.
8. Boyd, D.,, G. A. Peters,, A. Cloeckaert,, K. S. Boumedine,, E. Chaslus-Dancla,, H. Imberechts, et al. 2001. Complete nucleotide sequence of a 43-kilobase genomic island associated with the multidrug resistance region of Salmonella enterica serovar Typhimurium DT104 and its identification in phage type DT120 and serovar Agona. J. Bacteriol. 183:57255732.
9. Boyd, E. F., and, D. L. Hartl. 1998. Salmonella virulence plasmid: Modular acquisition of the spv virulence region by an F-plasmid in Salmonella enterica subspecies I and insertion into the chromosome of subspecies II, IIIa, IV and VII isolates. Genetics 149:11831190.
10. Boyd, E. F.,, F. S. Wang,, T. S. Whittam, and, R. K. Selander. 1996. Molecular genetic relationships of the Salmonellae. Appl. Environ. Microbiol. 62:804808.
11. Buchwald, G.,, A. Friebel,, J. E. Galán,, W. D. Hardt,, A. Wittinghofer, and, K. Scheffzek. 2002. Structural basis for the reversible activation of a Rho protein by the bacterial toxin SopE. EMBO J. 21:32863295.
12. Carattoli, A.,, E. Filetici,, L. Villa,, A. M. Dionisi,, A. Ricci, and, I. Luzzi. 2002. Antibiotic resistance genes and Salmonella genomic island 1 in Salmonella enterica serovar Typhimurium isolated in Italy. Antimicrob. Agents Chemother. 46:28212828.
13. Darwin, K. H., and, V. L. Miller. 1999. Molecular basis of the interaction of Salmonella with the intestinal mucosa. Clin. Microbiol. Rev. 12:405428.
14. de la Torre, E.,, D. Zapata,, M. Tello,, W. Mejia,, N. Frias,, F. J. Garcia Pena, et al. 2003. Several Salmonella enterica subsp. enterica serotype 4,5,12:i:–phage types isolated from swine samples originate from serotype Typhimurium DT U302. J. Clin. Microbiol. 41:23952400.
15. Dorsey, C. W.,, M. C. Laarakker,, A. D. Humphries,, E. H. Weening, and, A. J. Baumler. 2005. Salmonella enterica serotype Typhimurium MisL is an intestinal colonization factor that binds fibronectin. Mol. Microbiol. 57:196211.
16. Doublet, B.,, D. Boyd,, M. R. Mulvey, and, A. Cloeckaert. 2005. The Salmonella genomic island 1 is an integrative mobilizable element. Mol. Microbiol. 55:19111924.
17. Drecktrah, D.,, L. A. Knodler, and, O. Steele-Mortimer. 2004. Modulation and utilization of host cell phosphoinositides by Salmonella spp. Infect. Immun. 72:43314335.
18. Echeita, M. A.,, A. Aladuena,, S. Cruchaga, and, M. A. Usera. 1999. Emergence and spread of an atypical Salmonella enterica subsp. enterica serotype 4,5,12:i:–strain in Spain. J. Clin. Microbiol. 37:3425.
19. Ehrbar, K., and, W. D. Hardt. 2005. Bacteriophage-encoded type III effectors in Salmonella enterica subspecies 1 serovar Typhimurium. Infect. Genet. Evol. 5:19.
20. Foultier, B.,, P. Troisfontaines,, S. Muller,, F. R. Opperdoes, and, G. R. Cornelis. 2002. Characterization of the ysa pathogenicity locus in the chromosome of Yersinia enterocolitica and phylogeny analysis of type III secretion systems. J. Mol. Evol. 55:3751.
21. García-del Portillo, F.,, M. B. Zwick,, K. Y. Leung, and, B. B. Finlay. 1993. Salmonella induces the formation of filamentous structures containing lysosomal membrane glycoproteins in epityhelial cells. Proc. Natl. Acad. Sci. USA 90:1054410548.
22. Groisman, E. A., and, H. Ochman. 1997. How Salmonella became a pathogen. Trends Microbiol. 5:343349.
23. Gruenheid, S., and, B. B. Finlay. 2003. Microbial pathogenesis and cytoskeletal function. Nature 422:775781.
24. Guerra, B.,, I. Laconcha,, S. M. Soto,, M. A. Gonzalez-Hevia, and, M. C. Mendoza. 2000. Molecular characterization of emergent multiresistant Salmonella enterica serotype [4,5,12:i:–] organisms causing human salmonellosis. FEMS Microbiol. Lett. 190:341347.
25. Guerra, B.,, B. Malorny,, A. Schroeter, and, R. Helmuth. 2003. Multiple resistance mechanisms in fluoroquinolone-resistant Salmonella isolates from Germany. Antimicrob. Agents Chemother. 47:2059.
26. Guerra, B.,, S. Soto,, R. Helmuth, and, M. C. Mendoza. 2002. Characterization of a self-transferable plasmid from Salmonella enterica serotype Typhimurium clinical isolates carrying two integron-borne gene cassettes together with virulence and drug resistance genes. Antimicrob. Agents Chemother. 46:29772981.
27. Guerri, M. L.,, A. Aladuena,, A. Echeita, and, R. Rotger. 2004. Detection of integrons and antibiotic-resistance genes in Salmonella enterica serovar Typhimurium isolates with resistance to ampicillin and variable susceptibility to amoxicillin-clavulanate. Int. J. Antimicrob. Agents 24:327333.
28. Guiney, D. G., and, M. Lesnick. 2005. Targeting of the actin cytoskeleton during infection by Salmonella strains. Clin. Immunol. 114:248255.
29. Gulig, P. A.,, H. Danbara,, D. G. Guiney,, A. J. Lax,, F. Norel, and, M. Rhen. 1993. Molecular analysis of spv virulence genes of the Salmonella virulence plasmids. Mol. Microbiol. 7:825830.
30. Helms, M.,, S. Ethelberg, and, K. Molbak. 2005. International Salmonella Typhimurium DT104 infections, 1992–2001. Emerg. Infect. Dis. 11:859867.
31. Hensel, M. 2004. Evolution of pathogenicity islands of Salmonella enterica. Int. J. Med. Microbiol. 294:95102.
32. Hernandez, L. D.,, K. Hueffer,, M. R. Wenk, and, J. E. Galan. 2004. Salmonella modulates vesicular traffic by altering phosphoinositide metabolism. Science 304:18051807.
33. Heyndrickx, M.,, F. Pasmans,, R. Ducatelle,, A. Decostere, and, F. Haesebrouck. 2005. Recent changes in Salmonella nomenclature: the need for clarification. Vet. J. 170:275277.
34. Hossain, A.,, M. D. Reisbig, and, N. D. Hanson. 2004. Plasmid-encoded functions compensate for the biological cost of AmpC overexpression in a clinical isolate of Salmonella typhimurium. J. Antimicrob. Chemother. 53:964970.
35. Hyland, K. A.,, L. Kohrt,, L. Vulchanova, and, M. P. Murtaugh. 2006. Mucosal innate immune response to intragastric infection by Salmonella enterica serovar Choleraesuis. Mol. Immunol. 43:18901899.
36. Iqbal, M.,, V. J. Philbin,, G. S. K. Withanage,, P. Wigley,, R. K. Beal,, M. J. Goodchild, et al. 2005. Identification and functional characterization of chicken Toll-like receptor 5 reveals a fundamental role in the biology of infection with Salmonella enterica serovar Typhimurium. Infect. Immun. 73:23442350.
37. Kidgell, C.,, U. Reichard,, J. Wain,, B. Linz,, M. Torpdahl,, G. Dougan, et al. 2002. Salmonella typhi, the causative agent of typhoid fever, is approximately 50,000 years old. Infect. Genet. Evol. 2:3945.
38. Kingsley, R. A., and, A. J. Baumler. 2000. Host adaptation and the emergence of infectious disease: the Salmonella paradigm. Mol. Microbiol. 36:10061014.
39. Lawson, A. J.,, M. Desai,, S. J. O’Brien,, R. H. Davies,, L. R. Ward, and, E. J. Threlfall. 2004. Molecular characterisation of an outbreak strain of multiresistant Salmonella enterica serovar Typhimurium DT104 in the UK. Clin. Microbiol. Infect. 10:143147.
40. Levine, M. M.,, C. O. Tacket, and, M. B. Sztein. 2001. Host-Salmonella interaction: human trials. Microbes. Infect. 3:12711279.
41. Lin, S. L.,, T. X. Le, and, D. S. Cowen. 2003. SptP, a Salmonella typhimurium type III-secreted protein, inhibits the mitogen-activated protein kinase pathway by inhibiting Raf activation. Cell. Microbiol. 5:267275.
42. Llanes, C.,, V. Kirchgesner, and, P. Plesiat. 1999. Propagation of TEM- and PSE-type beta-lactamases among amoxicillin-resistant Salmonella spp. isolated in France. Antimicrob. Agents Chemother. 43:24302436.
43. Lyczak, J. B., and, G. B. Pier. 2002. Salmonella enterica serovar Typhi modulates cell surface expression of its receptor, the cystic fibrosis transmembrane conductance regulator, on the intestinal epithelium. Infect. Immun. 70:64166423.
44. Marcus, S. L.,, L. A. Knodler, and, B. B. Finlay. 2002. Salmonella enterica serovar Typhimurium effector SigD/SopB is membrane-associated and ubiquitinated inside host cells. Cell. Microbiol. 4:435446.
45. Marimon, J. M.,, M. Gomariz,, C. Zigorraga,, G. Cilla, and, E. Perez-Trallero. 2004. Increasing prevalence of quinolone resistance in human nontyphoid Salmonella enterica isolates obtained in Spain from 1981 to 2003. Antimicrob. Agents Chemother. 48:37893793.
46. McClelland, M.,, K. E. Sanderson,, S. W. Clifton,, P. Latreille,, S. Porwollik,, A. Sabo, et al. 2004. Comparison of genome degradation in Paratyphi A and Typhi, human-restricted serovars of Salmonella enterica that cause typhoid. Nat. Genet. 36:12681274.
47. McClelland, M.,, K. E. Sanderson,, J. Spieth,, S. W. Clifton,, P. Latreille,, L. Courtney, et al. 2001. Complete genome sequence of Salmonella enterica serovar Typhimurium LT2. Nature 413:852856.
48. Miao, E. A.,, M. Brittnacher,, A. Haraga,, R. L. Jeng,, M. D. Welch, and, S. L. Miller. 2003. Salmonella effectors translocated across the vacuolar membrane interact with the actin cytoskeleton. Mol. Microbiol. 48:401415.
49. Mirold, S.,, K. Ehrbar,, A. Weissmuller,, R. Prager,, H. Tschape,, H. Russmann, et al. 2001. Salmonella host cell invasion emerged by acquisition of a mosaic of separate genetic elements, including Salmonella pathogenicity island 1 (SPI1), SPI5, and sopE2. J. Bacteriol. 183:23482358.
50. Monsieurs, P.,, S. De Keersmaecker,, W. W. Navarre,, M. W. Bader,, F. De Smet,, M. McClelland, et al. 2005. Comparison of the PhoPQ regulon in Escherichia coli and Salmonella typhimurium. J. Mol. Evol. 60:462474.
51. Morosini, M. I.,, J. A. Ayala,, F. Baquero,, J. L. Martinez, and, J. Blazquez. 2000. Biological cost of AmpC production for Salmonella enterica serotype Typhimurium. Antimicrob. Agents Chemother. 44:31373143.
52. Ochman, H., and, E. A. Groisman. 1996. Distribution of pathogenicity islands in Salmonella spp. Infect. Immun. 64:54105412.
53. Poirel, L.,, M. Guibert,, S. Bellais,, T. Naas, and, P. Nordmann. 1999. Integron- and carbenicillinase-mediated reduced susceptibility to amoxicillin-clavulanic acid in isolates of multidrug-resistant Salmonella enterica serotype typhimurium DT104 from French patients. Antimicrob. Agents Chemother. 43:10981104.
54. Porwollik, S.,, R. M. Wong, and, M. McClelland. 2002. Evolutionary genomics of Salmonella: gene acquisitions revealed by microarray analysis. Proc. Natl. Acad. Sci. USA 99:89568961.
55. Rabsch, W.,, B. M. Hargis,, R. M. Tsolis,, R. A. Kingsley,, K. H. Hinz,, H. Tschäpe, et al. 2000. Competitive exclusion of Salmonella Enteritidis by Salmonella Gallinarum in poultry. Emerg. Infect. Dis. 6:443448.
56. Raffatellu, M.,, R. P. Wilson,, D. Chessa,, H. Andrews-Polymenis,, Q. T. Tran,, S. Lawhon, et al. 2005. SipA, SopA, SopB, SopD, and SopE2 contribute to Salmonella enterica serotype Typhimurium invasion of epithelial cells. Infect. Immun. 73:146154.
57. Reche, M. P.,, J. E. Garcia de los Rios,, P. A. Jimenez,, A. M. Rojas, and, R. Rotger. 2002. gyrA mutations associated with nalidixic acid-resistant salmonellae from wild birds. Antimicrob. Agents Chemother. 46:31083109.
58. Ribot, E. M.,, R. K. Wierzba,, F. J. Angulo, and, T. J. Barrett. 2002. Salmonella enterica serotype Typhimurium DT104 isolated from humans, United States, 1985, 1990, and 1995. Emerg. Infect. Dis. 8:387391.
59. Rodríguez-Peña, J., M. I. Álvarez,, M. Ibáñez, and, R. Rotger. 1997a. Homologous regions of the Salmonella enteritidis virulence plasmid and the chromosome of Salmonella typhi encode thiol:disulphide oxidoreductases belonging to the DsbA thioredoxin family. Microbiology 143:14051413.
60. Rodríguez-Peña, J. M.,, M. Buisán,, M. Ibáñez, and, R. Rotger. 1997b. Genetic map of the virulence plasmid of Salmonella enteritidis and nucleotide sequence of its replicons. Gene 188:5361.
61. Rotger, R., and, J. Casadesus. 1999. The virulence plasmids of Salmonella. Int. Microbiol. 2:177184.
62. Ruiz-Albert, J.,, X. J. Yu,, C. R. Beuzon,, A. N. Blakey,, E. E. Galyov, and, D. W. Holden. 2002. Complementary activities of SseJ and SifA regulate dynamics of the Salmonella typhimurium vacuolar membrane. Mol. Microbiol. 44:645661.
63. Santos, R. L., and, A. J. Baumler. 2004. Cell tropism of Salmonella enterica. Int. J. Med. Microbiol. 294:225233.
64. Santos, R. L.,, R. M. Tsolis,, A. J. Baumler,, R. Smith, III, and, L. G. Adams. 2001. Salmonella enterica serovar Typhimurium induces cell death in bovine monocyte-derived macrophages by early sipB-dependent and delayed sipB-independent mechanisms. Infect. Immun. 69:22932301.
65. Schlumberger, M. C.,, A. Friebel,, G. Buchwald,, K. Scheffzek,, A. Wittinghofer, and, W. D. Hardt. 2003. Amino acids of the bacterial toxin SopE involved in G nucleotide exchange on Cdc42. J. Biol. Chem. 278:2714927159.
66. Stecher, B.,, S. Hapfelmeier,, C. Muller,, M. Kremer,, T. Stallmach, and, W. D. Hardt. 2004. Flagella and chemotaxis are required for efficient induction of Salmonella enterica serovar Typhimurium colitis in streptomycin-pretreated mice. Infect. Immun. 72:41384150.
67. Stein, M. A.,, K. Y. Leung,, M. Zwick,, F. Garcia-Del Portillo, and, B. B. Finlay. 1996. Identification of a Salmonella virulence gene required for formation of filamentous structures containing lysosomal membrane glycoproteins within epithelial cells. Mol. Microbiol. 20:151164.
68. Stender, S.,, A. Friebel,, S. Linder,, M. Rohde,, S. Mirold, and, W. D. Hardt. 2000. Identification of SopE2 from Salmonella typhimurium, a conserved guanine nucleotide exchange factor for Cdc42 of the host cell. Mol. Microbiol. 36:12061221.
69. Sturenburg, E., and, D. Mack. 2003. Extended-spectrum beta-lactamases: implications for the clinical microbiology laboratory, therapy, and infection control. J. Infect. 47:273295.
70. Terebiznik, M. R.,, O. V. Vieira,, S. L. Marcus,, A. Slade,, C. M. Yip,, W. S. Trimble, et al. 2002. Elimination of host cell PtdIns(4,5)P2 by bacterial SigD promotes membrane fission during invasion by Salmonella. Nat. Cell. Biol. 4:766773.
71. Threlfall, E. J. 2002. Antimicrobial drug resistance in Salmonella: problems and perspectives in food- and water-borne infections. FEMS Microbiol. Rev. 26:141148.
72. Townsend, S. M.,, N. E. Kramer,, R. Edwards,, S. Baker,, N. Hamlin,, M. Simmonds, et al. 2001. Salmonella enterica serovar Typhi possesses a unique repertoire of fimbrial gene sequences. Infect. Immun. 69:28942901.
73. Tsui, I. S. M.,, C. M. C. Yip,, J. Hackett, and, C. Morris. 2003. The type IVB pili of Salmonella enterica serovar Typhi bind to the cystic fibrosis transmembrane conductance regulator. Infect. Immun. 71:60496050.
74. van Asten, A. J. A. M.,, J. F. J. G. Koninkx, and, J. E. van Dijk. 2005. Salmonella entry: M cells versus absorptive enterocytes. Vet. Microbiol. 108:149152.
75. van Duijkeren, E.,, W. J. B. Wannet,, D. J. Houwers, and, W. van Pelt. 2003. Antimicrobial susceptibilities of Salmonella strains isolated from humans, cattle, pigs, and chickens in The Netherlands from 1984 to 2001. J. Clin. Microbiol. 41:35743578.
76. Wain, J., and, C. Kidgell. 2004. The emergence of multidrug resistance to antimicrobial agents for the treatment of typhoid fever. Trans. R. Soc. Trop. Med. Hyg. 98:423430.
77. Weening, E. H.,, J. D. Barker,, M. C. Laarakker,, A. D. Humphries,, R. M. Tsolis, and, A. J. Baumler. 2005. The Salmonella enterica serotype Typhimurium lpf, bcf, stb, stc, std, and sth fimbrial operons are required for intestinal persistence in mice. Infect. Immun. 73:33583366.
78. Winfield, M. D., and, E. A. Groisman. 2003. Role of nonhost environments in the lifestyles of Salmonella and Escherichia coli. Appl. Environ. Microbiol. 69:36873694.
79. Yang, H. H.,, C. G. Wu,, G. Z. Xie,, Q. W. Gu,, B. R. Wang,, L. Y. Wang et al. 2001. Efficacy trial of Vi polysaccharide vaccine against typhoid fever in south-western China. Bull. WHO, 79:625631.
80. Zhang, S.,, R. L. Santos,, R. M. Tsolis,, S. Stender,, W. D. Hardt,, A. J. Baumler, et al. 2002. The Salmonella enterica serotype Typhimurium effector proteins SipA, SopA, SopB, SopD, and SopE2 act in concert to induce diarrhea in calves. Infect. Immun. 70:38433855.
81. Zhang, X. L.,, I. S. M. Tsui,, C. M. C. Yip,, A. W. Y. Fung,, D. K. H. Wong,, X. Dai, et al. 2000. Salmonella enterica serovar Typhi uses type IVB pili to enter human intestinal epithelial cells. Infect. Immun. 68:30673073.
82. Zhou, D.,, L. M. Chen,, L. Hernandez,, S. B. Shears, and, J. E. Galán. 2001. A Salmonella inositol polyphosphatase acts in conjunction with other bacterial effectors to promote host cell actin cytoskeleton rearrangements and bacterial internalization. Mol. Microbiol. 39:248259.


Generic image for table
Table 1.

Diseases caused by some Salmonella subspecies and I serotypes in humans and higher vertebrates a

Citation: Rotger R. 2008. Evolution of Salmonella and Salmonella Infections, p 349-359. In Baquero F, Nombela C, Cassell G, Gutiérrez-Fuentes J (ed), Evolutionary Biology of Bacterial and Fungal Pathogens. ASM Press, Washington, DC. doi: 10.1128/9781555815639.ch29

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error