1887

Chapter 33 : Evolution of Bordetella pertussis and Bordetella parapertussis as Deduced from Comparative Genome Analyses

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in
Zoomout

Evolution of Bordetella pertussis and Bordetella parapertussis as Deduced from Comparative Genome Analyses, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555815639/9781555814144_Chap33-1.gif /docserver/preview/fulltext/10.1128/9781555815639/9781555814144_Chap33-2.gif

Abstract:

The genus Bordetella contains three widely studied species: Bordetella pertussis, B. parapertussis, and B. bronchiseptica. These gram-negative coccobacilli cause respiratory disease in humans and other mammals. The significance of insertion sequence (IS) elements to the evolution of B. pertussis and B. parapertussis is discussed. The bordetellae provide an opportunity to propose hypotheses to answer questions about speciation, host restriction, and differences in genotype that could account for virulence phenotypes. This was the rationale behind the Bordetella genome sequence project in which the genome sequences of representative strains of B. bronchiseptica, B. pertussis, and B. parapertussis were generated and analyzed. The evolution of any bacterium is shaped by the selection pressures faced by the organism. The evolution of species toward causing highly contagious infections, but with a low infectivity period, from a progenitor that is much less contagious but with a very prolonged infectious period is a recurrent theme in the evolution of human pathogens. A number of putative mutations are predicted to increase the level of expression of the pertussis toxin (PT) genes in B. pertussis compared to B. bronchiseptica or B. parapertussis, and this might have contributed to the change from chronic to acute infections during B. pertussis evolution. Analysis of B. parapertussis reveals that it appears to have evolved in the face of selection pressure against the expression of factors that might be recognized by existing host immunity, but in this case directed against B. pertussis.

Citation: Preston A, Maskell D. 2008. Evolution of Bordetella pertussis and Bordetella parapertussis as Deduced from Comparative Genome Analyses, p 397-405. In Baquero F, Nombela C, Cassell G, Gutiérrez-Fuentes J (ed), Evolutionary Biology of Bacterial and Fungal Pathogens. ASM Press, Washington, DC. doi: 10.1128/9781555815639.ch33
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of Figure 1.
Figure 1.

Linear genomic comparison of B. pertussis, B. bronchiseptica, and B. parapertussis. The gray bars represent the forward and reverse strands. (Top) B. pertussis. Black triangles represent IS elements. (Center) B. bronchiseptica. Boxes represent prophage. (Bottom) B. parapertussis. Black triangles represent IS elements. The lines between the genomes represent DNA:DNA similarities (BLASTN matches) between the two sequences. Reprinted by permission from MacMillan Publishers Ltd., Nature Genetics (Parkhill et al., 2003). © 2003.

Citation: Preston A, Maskell D. 2008. Evolution of Bordetella pertussis and Bordetella parapertussis as Deduced from Comparative Genome Analyses, p 397-405. In Baquero F, Nombela C, Cassell G, Gutiérrez-Fuentes J (ed), Evolutionary Biology of Bacterial and Fungal Pathogens. ASM Press, Washington, DC. doi: 10.1128/9781555815639.ch33
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555815639.ch33
1. Akerley, B. J., and, J. F. Miller. 1993. Flagellin gene transcription in Bordetella bronchiseptica is regulated by the BvgAS virulence control system. J. Bacteriol. 175:34683479.
2. Allen, A. G.,, R. M. Thomas,, J. T. Cadisch, and, D. J. Maskell. 1998. Molecular and functional analysis of the lipopolysaccharide biosynthesis locus wlb from Bordetella pertussis, Bordetella parapertussis and Bordetella bronchiseptica. Mol. Microbiol. 29:2738.
3. Anderton, T. L.,, D. J. Maskell, and, A. Preston. 2004. Ciliostasis is a key early event during colonisation of canine tracheal tissue by Bordetella bronchiseptica. Microbiology 150:28432855.
4. Arico, B., and, R. Rappuoli. 1987. Bordetella parapertussis and Bordetella bronchiseptica contain transcriptionally silent pertussis toxin genes. J. Bacteriol. 169:28472853.
5. Bemis, D. A.,, H. A. Greisen, and, M. J. G. Appel. 1977. Pathogenesis of canine bordetellosis. J. Infect. Dis. 135:753762.
6. Bergstrom, C. T.,, P. McElhany, and, L. A. Real. 1999. Transmission bottlenecks as determinants of virulence in rapidly evolving pathogens. Proc. Natl. Acad. Sci. USA 96:50955100.
7. Bjornstad, O. N., and, E. T. Harvill. 2005. Evolution and emergence of Bordetella in humans. Trends Microbiol. 13:355359.
8. Burns, V. C.,, E. J. Pishko,, A. Preston,, D. J. Maskell, and, E. T. Harvill. 2003. Role of Bordetella O antigen in respiratory tract infection. Infect. Immun. 71:8694.
9. Cone, T. C., Jr. 1970. Whooping cough is first described as a disease sui generis by Baillou in 1640. Pediatrics 46:522.
10. Cotter, P. A., and, J. F. Miller. 2001. Bordetella, pp. 619674. In E. Groisman, (ed.). Principles of Bacterial Pathogenesis. Academic Press, San Diego, CA.
11. Cummings, C. A.,, M. M. Brinig,, P. W. Lepp,, S. van de Pas, and, D. A. Relman. 2004. Bordetella species are distinguished by patterns of substantial gene loss and host adaptation. J. Bacteriol. 186:14841492.
12. Diavatopoulos, D. A.,, C. A. Cummings,, L. M. Schouls,, M. M. Brinig,, D. A. Relman, and, F. R. Mooi. 2005. Bordetella pertussis, the causative agent of whooping cough, evolved from a distinct, human-associated lineage of B. bronchiseptica. PLoS Pathog. 1:45.
13. Fernandez, R. C., and, A. A. Weiss. 1994. Cloning and sequencing of a Bordetella pertussis serum resistance locus. Infect. Immun. 62:47274738.
14. Fry, N. K.,, J. Duncan,, H. Malnick,, M. Warner,, A. J. Smith,, M. S. Jackson, and, A. Ayoub. 2005. Bordetella petrii clinical isolate. Emerg. Infect. Dis. 11:11311133.
15. Grenfell, B. T. 2001. Dynamics and epidemiological impact of microparasites, pp. 3352. In G. L. Smith (ed.), New Challenges to Health: The Threat of Virus Infection. Cambridge University Press, Cambridge, United Kingdom.
16. Harvill, E. T.,, A. Preston,, P. A. Cotter,, A. G. Allen,, D. J. Maskell, and, J. F. Miller. 2000. Multiple roles for Bordetella lipopolysaccharide molecules during respiratory tract infection. Infect. Immun. 68:67206728.
17. Heininger, U.,, K. Stehr,, S. Schmittgrohe,, C. Lorenz,, R. Rost,, P. D. Christenson,, M. Uberall, and, J. D. Cherry. 1994. Clinical characteristics of illness caused by Bordetella parapertussis compared with illness caused by Bordetella pertussis. Pediatr. Infect. Dis. J. 13:306309.
18. Hot, D.,, R. Antoine,, G. Renauld-Mongenie,, V. Caro,, B. Hennuy,, E. Levillain,, L. Huot,, G. Wittmann,, D. Poncet,, F. Jacob-Dubuisson,, C. Guyard,, F. Rimlinger,, L. Aujame,, E. Godfroid,, N. Guiso,, M. J. Quentin-Millet,, Y. Lemoine, and, C. Locht. 2003. Differential modulation of Bordetella pertussis virulence genes as evidenced by DNA microarray analysis. Mol. Genet. Genomics. 269:475486.
19. Kirimanjeswara, G. S.,, L. M. Agosto,, M. J. Kennett,, O. N. Bjornstad, and, E. T. Harvill. 2005. Pertussis toxin inhibits neutrophil recruitment to delay antibody-mediated clearance of Bordetella pertussis. J. Clin. Invest. 115:35943601.
20. Mattoo, S.,, M. H. Yuk,, L. L. Huang, and, J. F. Miller. 2004. Regulation of type III secretion in Bordetella. Mol. Microbiol. 52:12011214.
21. Musser, J. M.,, E. L. Hewlett,, M. S. Peppler, and, R. K. Selander. 1986. Genetic diversity and relationships in populations of Bordetella spp. J. Bacteriol. 166:230237.
22. Nicosia, A.,, M. Perugini,, C. Franzini,, M. C. Casagli,, M. G. Borri,, G. Antoni,, M. Almoni,, P. Neri,, G. Ratti, and, R. Rappuoli. 1986. Cloning and sequencing of the pertussis toxin genes: operon structure and gene duplication. Proc. Natl. Acad. Sci.USA 83:46314635.
23. Parkhill, J.,, M. Sebaihia,, A. Preston,, L. D. Murphy,, N. Thomson,, D. E. Harris,, M. T. Holden,, C. M. Churcher,, S. D. Bentley,, K. L. Mungall,, A. M. Cerdeno-Tarraga,, L. Temple,, K. James,, B. Harris,, M. A. Quail,, M. Achtman,, R. Atkin,, S. Baker,, D. Basham,, N. Bason,, I. Cherevach,, T. Chillingworth,, M. Collins,, A. Cronin,, P. Davis,, J. Doggett,, T. Feltwell,, A. Goble,, N. Hamlin,, H. Hauser,, S. Holroyd,, K. Jagels,, S. Leather,, S. Moule,, H. Norberczak,, S. O’Neil,, D. Ormond,, C. Price,, E. Rabbinowitsch,, S. Rutter,, M. Sanders,, D. Saunders,, K. Seeger,, S. Sharp,, M. Simmonds,, J. Skelton,, R. Squares,, S. Squares,, K. Stevens,, L. Unwin,, S. Whitehead,, B. G. Barrell, and, D. J. Maskell. 2003. Comparative analysis of the genome sequences of Bordetella pertussis, Bordetella parapertussis and Bordetella bronchiseptica. Nat. Genet. 35:3240.
24. Porter, J. F.,, K. Connor, and, W. Donachie. 1996. Differentiation between human and ovine isolates of Bordetella parapertussis using pulsed-field gel electrophoresis. FEMS Microbiol. Letts. 135:131135.
25. Preston, A.,, A. G. Allen,, J. Cadisch,, R. Thomas,, K. Stevens,, C. M. Churcher,, K. L. Badcock,, J. Parkhill,, B. Barrell, and, D. J. Maskell. 1999. Genetic basis for lipopolysaccharide O-antigen biosynthesis in bordetellae. Infect. Immun. 67:37633767.
26. Preston, A.,, B. O. Petersen,, J. Ø. Duus,, J. Kubler-Kielb,, G. Ben-Menachem,, J. Li, and, E. Vinogradov. 2006. The structure of Bordetella bronchiseptica and Bordetella parapertussis lipopolysaccharides. J. Biol. Chem. 281:1813518144.
27. Preston, A.,, E. Maxim,, E. Toland,, E. J. Pishko,, E. T. Harvill,, M. Caroff, and, D. J. Maskell. 2003. Bordetella bronchiseptica PagP is a Bvg-regulated lipid A palmitoyl transferase that is required for persistent colonization of the mouse respiratory tract. Mol. Microbiol. 48:725736.
28. Preston, A.,, J. Parkhill, and, D. J. Maskell. 2004. The Bordetellae: lessons from genomics. Nat. Rev. Microbiol. 2:379390.
29. Sebaihia, S.,, A. Preston,, D. J. Maskell,, H. Kuzmiak,, T. D. Connell,, N. D. King,, P. E. Orndorff,, D. M. Miyamoto,, N. R. Thomson,, D. Harris,, A. Goble,, A. Lord,, L. Murphy,, M. A. Quail,, S. Rutter,, R. Squares,, S. Squares,, J. Woodward,, J. Parkhill, and, L. M. Temple. 2006. Biology and bioinformatics emerging from the genome sequence of the poultry pathogen Bordetella avium, compared with its mammalian counterparts. J. Bacteriol. 188:60026015.
30. Shahin, R. D.,, J. Hamel,, M. F. Leef, and, B. R. Brodeur. 1994. Analysis of protective and nonprotective monoclonal antibodies specific for Bordetella pertussis lipooligosaccharide. Infect. Immun. 62:722725.
31. Stibitz, S., and, M. S. Yang. 1999. Genomic plasticity in natural populations of Bordetella pertussis. J. Bacteriol. 181:55125515.
32. van der Zee, A.,, F. Mooi,, J. van Embden, and, J. Musser. 1997. Molecular evolution and host adaptation of Bordetella spp.: phylogenetic analysis using multilocus enzyme electrophoresis and typing with three insertion sequences. J. Bacteriol. 179:66096617.
33. von Konig, C. H.,, S. Halperin,, M. Riffelmann, and, N. Guiso. 2002. Pertussis of adults and infants. Lancet Infect. Dis. 2:744750.
34. von Wintzingerode, F.,, A. Schattke,, R. A. Siddiqui,, U. Rosick,, U. B. Gobel, and, R. Gross. 2001. Bordetella petrii sp. nov., isolated from an anaerobic bioreactor, and emended description of the genus Bordetella. Int. J. Syst. Evol. Microbiol. 51:12571265.
35. Weiss, A. A.,, F. D. Johnson, and, D. L. Burns. 1993. Molecular characterization of an operon required for pertussis toxin secretion. Proc. Natl. Acad. Sci. USA 90:29702974.
36. Wren, B. W. 2003. The yersiniae—a model genus to study the rapid evolution of bacterial pathogens. Nat. Rev. Microbiol. 1:5564.

Tables

Generic image for table
Table 1.

General features of the genomes of B. pertussis, B. parapertussis, and B. bronchisepticaa

Citation: Preston A, Maskell D. 2008. Evolution of Bordetella pertussis and Bordetella parapertussis as Deduced from Comparative Genome Analyses, p 397-405. In Baquero F, Nombela C, Cassell G, Gutiérrez-Fuentes J (ed), Evolutionary Biology of Bacterial and Fungal Pathogens. ASM Press, Washington, DC. doi: 10.1128/9781555815639.ch33
Generic image for table
Table 2.

Select examples of Bordetella loci that are present in all three genome sequences but appear to be functional in only one or two species

Citation: Preston A, Maskell D. 2008. Evolution of Bordetella pertussis and Bordetella parapertussis as Deduced from Comparative Genome Analyses, p 397-405. In Baquero F, Nombela C, Cassell G, Gutiérrez-Fuentes J (ed), Evolutionary Biology of Bacterial and Fungal Pathogens. ASM Press, Washington, DC. doi: 10.1128/9781555815639.ch33

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error