Chapter 35 : Evolution of Shigella and Enteroinvasive Escherichia coli

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in

Evolution of Shigella and Enteroinvasive Escherichia coli, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555815639/9781555814144_Chap35-1.gif /docserver/preview/fulltext/10.1128/9781555815639/9781555814144_Chap35-2.gif


Shigellosis in humans is characterized by the destruction of the colonic epithelium provoked by the inflammatory response that is induced upon invasion of the mucosa by bacteria of Shigella spp. and enteroinvasive Escherichia coli (EIEC). Numerous phylogenetic analyses based on multilocus enzyme electrophoresis, ribotyping, and sequence comparison established that all members of the genus Shigella and EIEC strains belong to the species E. coli. Sequence analysis of chromosomal genes indicates that Shigella and EIEC strains belong to at least six phylogenetic groups, designated S1, S2, S3, SD1, SS, and EIEC. Informative sites used for the phylogenetic analysis of the virulence plasmid were clustered mostly in two genes (ipaD and ipgD), and a more complete view might come from the analysis of sequences of whole virulence plasmids. For the time being, there are two possible scenarios for the origin of Shigella and EIEC groups: (i) the arrival (or construction) of the virulence plasmid in an ancestral E. coli strain from which all Shigella and EIEC groups descend or (ii) multiple arrivals of the virulence plasmid(s) in different E. coli strains. The genomic sequence of five Shigella strains, including strains of S. flexneri 2a (Sf301 and 2457T), S. dysenteriae 1 (Sd197), S. boydii 4 (Sb227), and S. sonnei (Ss046), has been determined. The large number of genes deleted in Shigella and EIEC genomes, compared to the E. coli K-12 genome, is confirmed by comparative genomic hybridization analyses.

Citation: Parsot C, Sansonetti P. 2008. Evolution of Shigella and Enteroinvasive Escherichia coli, p 421-431. In Baquero F, Nombela C, Cassell G, Gutiérrez-Fuentes J (ed), Evolutionary Biology of Bacterial and Fungal Pathogens. ASM Press, Washington, DC. doi: 10.1128/9781555815639.ch35
Highlighted Text: Show | Hide
Loading full text...

Full text loading...


Image of Figure 1.
Figure 1.

Model of pathogenesis induced by Shigella spp. Bacteria cross the epithelium barrier by entering into M cells (1). They are delivered to resident macrophages, in which they induce apoptosis (2), and reach the basolateral pole of epithelial cells (3), in which they induce their entry (4). Movement of intracellular bacteria (5) leads to the formation of protrusions and dissemination of bacteria within the epithelium (6). Release of cytokines and chemokines, including IL-1 by apoptotic macrophages (A) and IL-8 by infected enterocytes (B), promotes recruitment of monocytes that migrate through the epithelial barrier (C), facilitating entry of luminal bacteria into epithelial cells (D) and increasing invasion of the epithelium (E). (Adapted from Parsot, 2005).

Citation: Parsot C, Sansonetti P. 2008. Evolution of Shigella and Enteroinvasive Escherichia coli, p 421-431. In Baquero F, Nombela C, Cassell G, Gutiérrez-Fuentes J (ed), Evolutionary Biology of Bacterial and Fungal Pathogens. ASM Press, Washington, DC. doi: 10.1128/9781555815639.ch35
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2.
Figure 2.

Phylogenetic trees of E. coli and Shigella strains. Trees were constructed from the comparison of the DNA sequence of 11 chromosomal genes in numerous E. coli and Shigella strains and a strain of Escherichia fergusonii as an outgroup, using neighbor joining (A) and 50% bootstrap majority-rule consensus (B) procedures. (Adapted from Escobar-Paramo et al., 2003; Le Gall et al., 2005a).

Citation: Parsot C, Sansonetti P. 2008. Evolution of Shigella and Enteroinvasive Escherichia coli, p 421-431. In Baquero F, Nombela C, Cassell G, Gutiérrez-Fuentes J (ed), Evolutionary Biology of Bacterial and Fungal Pathogens. ASM Press, Washington, DC. doi: 10.1128/9781555815639.ch35
Permissions and Reprints Request Permissions
Download as Powerpoint


1. Al-Hasani, K.,, I. R. Henderson,, H. Sakellaris,, K. Rajakumar,, T. Grant,, J. P. Nataro,, R. Robins-Browne, and, B. Adler. 2000. The sigA gene which is borne on the she pathogenicity island of Shigella flexneri 2a encodes an exported cytopathic protease involved in intestinal fluid accumulation. Infect. Immun. 68:24572463.
2. Beloin, C., and, C. J. Dorman. 2003. An extended role for the nucleoid structuring protein H-NS in the virulence gene regulatory cascade of Shigella flexneri. Mol. Microbiol. 47:825838.
3. Benjelloun-Touimi, Z.,, P. J. Sansonetti, and, C. Parsot. 1995. SepA, the major extracellular protein of Shigella flexneri: autonomous secretion and involvement in tissue invasion. Mol. Microbiol. 17:123135.
4. Bourdet-Sicard, R.,, M. Rudiger,, B. M. Jockusch,, P. Gounon,, P. J. Sansonetti, and, G. T. Van Nhieu. 1999. Binding of the Shigella protein IpaA to vinculin induces F-actin depolymerization. EMBO J. 18:58535862.
5. Buchrieser, C.,, P. Glaser,, C. Rusniok,, H. Nedjari,, H. d’Hauteville,, F. Kunst,, P. Sansonetti, and, C. Parsot. 2000. The virulence plasmid pWR100 and the repertoire of proteins secreted by the type III secretion apparatus of Shigella flexneri. Mol. Microbiol. 38:760771.
6. Cooper, V. S., and, R. E. Lenski. 2000. The population genetics of ecological specialization in evolving Escherichia coli populations. Nature 407:736739.
7. Day, W. A.,, R. E. Fernandez, and, A. T. Maurelli. 2001. Patho-adaptive mutations that enhance virulence: genetic organization of the cadA regions of Shigella spp. Infect. Immun. 69:74717480.
8. Demers, B.,, P. J. Sansonetti, and, C. Parsot. 1998. Induction of type III secretion in Shigella flexneri is associated with differential control of transcription of genes encoding secreted proteins. EMBO J. 17:28942903.
9. d’Hauteville, H.,, S. Khan,, D. J. Maskell,, A. Kussak,, A. Weintraub,, J. Mathison,, R. J. Ulevitch,, N. Wuscher,, C. Parsot, and, P. J. Sansonetti. 2002. Two msbB genes encoding maximal acylation of lipid A are required for invasive Shigella flexneri to mediate inflammatory rupture and destruction of the intestinal epithelium. J. Immunol. 168:52405251.
10. Dobrindt, U.,, F. Agerer,, K. Michaelis,, A. Janka,, C. Buchrieser,, M. Samuelson,, C. Svanborg,, G. Gottschalk,, H. Karch, and, J. Hacker. 2003. Analysis of genome plasticity in pathogenic and commensal Escherichia coli isolates by use of DNA arrays. J. Bacteriol. 185:18311840.
11. Dorman, C. J.,, S. McKenna, and, C. Beloin. 2001. Regulation of virulence gene expression in Shigella flexneri, a facultative intracellular pathogen. Int. J. Med. Microbiol. 291:8996.
12. Dupont, H. L.,, S. B. Formal,, R. B. Hornick,, M. J. Snyder,, J. P. Libonati,, D. G. Sheahan,, E. H. Labrec, and, J. P. Kalas. 1971. Pathogenesis of Escherichia-coli diarrhea. N. Engl. J. Med. 285:19.
13. Egile, C.,, T. P. Loisel,, V. Laurent,, R. Li,, D. Pantaloni,, P. J. Sansonetti, and, M. F. Carlier. 1999. Activation of the CDC42 effector N-WASP by the Shigella flexneri IcsA protein promotes actin nucleation by Arp2/3 complex and bacterial actin-based motility. J. Cell Biol. 146:13191332.
14. Escobar-Paramo, P.,, O. Clermont,, A. B. Blanc-Potard,, H. Bui,, C. Le Bouguenec, and, E. Denamur. 2004. A specific genetic background is required for acquisition and expression of virulence factors in Escherichia coli. Mol. Biol. Evol. 21:10851094.
15. Escobar-Paramo, P.,, C. Giudicelli,, C. Parsot, and, E. Denamur. The evolutionary history of Shigella and enteroinvasive Escherichia coli revised. J. Mol. Evol. 57:140148.
16. Falconi, M.,, B. Colonna,, G. Prosseda,, G. Micheli, and, C. O. Gualerzi. 1998. Thermoregulation of Shigella and Escherichia coli EIEC pathogenicity: a temperature-dependent structural transition of DNA modulates accessibility of virF promoter to transcriptional repressor H-NS. EMBO J. 17:70337043.
17. Fontaine, A.,, J. Arondel, and, P. J. Sansonetti. 1988. Role of Shiga toxin in the pathogenesis of bacillary dysentery, studied by using a Tox-mutant of Shigella dysenteriae 1. Infect. Immun. 56:30993109.
18. Fukiya, S.,, H. Mizoguchi,, T. Tobe, and, H. Mori. 2004. Extensive genomic diversity in pathogenic Escherichia coli and Shigella strains revealed by comparative genomic hybridization microarray. J. Bacteriol. 186:39113921.
19. Greco, K. M.,, M. A. McDonough, and, J. R. Butterton. 2004. Variation in the Shiga toxin region of 20th-century epidemic and endemic Shigella dysenteriae 1 strains. J. Infect. Dis. 190:330334.
20. Henderson, I. R.,, J. Czeczulin,, C. Eslava,, F. Noriega, and, J. P. Nataro. 1999. Characterization of Pic, a secreted protease of Shigella flexneri and enteroaggregative Escherichia coli. Infect. Immun. 67:55875596.
21. Houng, H. S. H., and, M. M. Venkatesan. 1998. Genetic analysis of Shigella sonnei form I antigen: identification of a novel IS 630 as an essential element for the form I antigen expression. Microb. Pathog. 25:165173.
22. Ingersoll, M. A.,, J. E. Moss,, Y. Weinrauch,, P. E. Fisher,, E. A. Groisman, and, A. Zychlinsky. 2003. The ShiA protein encoded by the Shigella flexneri SHI-2 pathogenicity island attenuates inflammation. Cell Microbiol. 5:797807.
23. Ito, H.,, N. Kido,, Y. Arakawa,, M. Ohta,, T. Sugiyama, and, N. Kato. 1991. Possible mechanisms underlying the slow lactose fermentation phenotype in Shigella spp. Appl. Environ. Microbiol. 57:29122917.
24. Jin, Q.,, Z. H. Yuan,, J. G. Xu,, Y. Wang,, Y. Shen,, W. C. Lu,, J. H. Wang,, H. Liu,, J. Yang,, F. Yang, et al. 2002. Genome sequence of Shigella flexneri 2a: insights into pathogenicity through comparison with genomes of Escherichia coli K-12 and O157. Nucleic Acids Res. 30:44324441.
25. Kane, C. D.,, R. Schuch,, W. A. Day, and, A. T. Maurelli. 2002. MxiE regulates intracellular expression of factors secreted by the Shigella flexneri 2a type III secretion system. J. Bacteriol. 184:44094419.
26. Kim, D. W.,, G. Lenzen,, A. L. Page,, P. Legrain,, P. J. Sansonetti, and, C. Parsot. 2005. The Shigella flexneri effector OspG interferes with innate immune responses by targeting ubiquitinconjugating enzymes. Proc. Natl. Acad. Sci. USA 102:1404614051.
27. Kotloff, K. L.,, J. P. Winickoff,, B. Ivanoff,, J. D. Clemens,, D. L. Swerdlow,, P. J. Sansonetti,, G. K. Adak, and, M. M. Levine. 1999. Global burden of Shigella infections: implications for vaccine development and implementation of control strategies. Bull. WHO 77:651666.
28. Lai, V.,, L. Wang, and, P. R. Reeves. 1998. Escherichia coli clone Sonnei (Shigella sonnei) had a chromosomal O-antigen gene cluster prior to gaining its current plasmid-borne O-antigen genes. J. Bacteriol. 180:29832986.
29. Lan, R.,, M. C. Alles,, K. Donohoe,, M. B. Martinez, and, P. R. Reeves. 2004. Molecular evolutionary relationships of enteroinvasive Escherichia coli and Shigella spp. Infect. Immun. 72:50805088.
30. Lan, R., and, P. R. Reeves. 2001. When does a clone deserve a name? A perspective on bacterial species based on population genetics. Trends Microbiol. 9:419424.
31. Lan, R. T.,, B. Lumb,, D. Ryan, and, P. R. Reeves. 2001. Molecular evolution of large virulence plasmid in Shigella clones and enteroinvasive Escherichia coli. Infect. Immun. 69:63036309.
32. Lan, R. T.,, G. Stevenson, and, P. R. Reeves. 2003. Comparison of two major forms of the Shigella virulence plasmid pINV: positive selection is a major force driving the divergence. Infect. Immun. 71:62986306.
33. Le Gall, T.,, P. Darlu,, P. Escobar-Paramo,, B. Picard, and, E. Denamur. 2005a. Selection-driven transcriptome polymorphism in Escherichia coli/Shigella species. Genome Res. 15:260268.
34. Le Gall, T.,, M. Mavris,, M. C. Martino,, M. L. Bernardini,, E. Denamur, and, C. Parsot. 2005b. Analysis of virulence plasmid gene expression defines three classes of effectors in the type III secretion system of Shigella flexneri. Microbiology 151:951962.
35. Maurelli, A. T.,, R. E. Fernandez,, C. A. Bloch,, C. K. Rode, and, A. Fasano. 1998. “Black holes” and bacterial pathogenicity: a large genomic deletion that enhances the virulence of Shigella spp. and enteroinvasive Escherichia coli. Proc. Natl. Acad. Sci. USA 95:39433948.
36. Mavris, M.,, A. L. Page,, R. Tournebize,, B. Demers,, P. Sansonetti, and, C. Parsot. 2002a. Regulation of transcription by the activity of the Shigella flexneri type III secretion apparatus. Mol. Microbiol. 43:15431553.
37. Mavris, M.,, P. J. Sansonetti, and, C. Parsot. 2002b. Identification of the cis-acting site involved in activation of promoters regulated by activity of the type III secretion apparatus in Shigella flexneri. J. Bacteriol. 184:67516759.
38. Moss, J. E.,, T. J. Cardozo,, A. Zychlinsky, and, E. A. Groisman. 1999. The selC-associated SHI-2 pathogenicity island of Shigella flexneri. Mol. Microbiol. 33:7483.
39. Nakata, N.,, T. Tobe,, I. Fukuda,, T. Suzuki,, K. Komatsu,, M. Yoshikawa, and, C. Sasakawa. 1993. The absence of a surface protease, OmpT, determines the intercellular spreading ability of Shigella—the relationship between the ompT and kcpA loci. Mol. Microbiol. 9:459468.
40. Niebuhr, K.,, S. Giuriato,, T. Pedron,, D. J. Philpott,, F. Gaits,, J. Sable,, M. P. Sheetz,, C. Parsot,, P. J. Sansonetti, and, B. Payrastre. 2002. Conversion of PtdIns(4,5)P-2 into PtdIns(5)P by the S. flexneri effector IpgD reorganizes host cell morphology. EMBO J. 21:50695078.
41. Ochman, H., and, N. A. Moran. 2001. Genes lost and genes found: evolution of bacterial pathogenesis and symbiosis. Science 292:10961098.
42. Ohya, K.,, Y. Handa,, M. Ogawa,, M. Suzuki, and, C. Sasakawa. 2005. IpgB1 is a novel Shigella effector protein involved in bacterial invasion of host cells: its activity promotes membrane ruffing via Rac1 and Cdc42 activation. J. Biol. Chem. 280:2402224034.
43. Parsot, C.,, E. Ageron,, C. Penno,, M. Mavris,, K. Jamoussi,, H. d’Hauteville,, P. Sansonetti, and, B. Demers. 2005. A secreted anti-activator, OspD1, and its chaperone, Spa15, are involved in the control of transcription by the type III secretion apparatus activity in Shigella flexneri. Mol. Microbiol. 56:16271635.
44. Parsot, C. 2005. Shigella spp. and enteroinvasive Escherichia coli pathogenicity factors. FEMS Microbiol. Lett. 252:1118.
45. Pendaries, C.,, H. Tronchere,, L. Arbibe,, J. Mounier,, O. Gozani,, L. Cantley,, M. J. Fry,, F. Gaits-Iacovoni,, P. J. Sansonetti, and, B. Payrastre. 2006. PtdIns(5)P activates the host cell PI3-kinase/Akt pathway during Shigella flexneri infection. EMBOJ. 25:10241034.
46. Penno, C., and, C. Parsot. 2006. Transcriptional slippage in mxiE controls transcription and translation of the downstream mxiD gene which encodes a component of the Shigella flexneri type III secretion apparatus. J. Bacteriol. 188:11961198.
47. Penno, C.,, P. Sansonetti, and, C. Parsot. 2005. Frameshifting by transcriptional slippage is involved in production of MxiE, the transcription activator regulated by the activity of the type III secretion apparatus in Shigella flexneri. Mol. Microbiol. 56:204214.
48. Pupo, G. M.,, R. T. Lan, and, P. R. Reeves. 2000. Multiple independent origins of Shigella clones of Escherichia coli and convergent evolution of many of their characteristics. Proc. Natl. Acad. Sci. USA 97:1056710572.
49. Rajakumar, K.,, C. Sasakawa, and, B. Adler. 1997. Use of a novel approach, termed island probing, identifies the Shigella flexneri she pathogenicity island which encodes a homolog of the immunoglobulin A protease-like family of proteins. Infect. Immun. 65:46064614.
50. Rolland, K.,, N. Lambert-Zechovsky,, B. Picard, and, E. Denamur. 1998. Shigella and enteroinvasive Escherichia coli strains are derived from distinct ancestral strains of E. coli. Microbiology 144:26672672.
51. Runyen-Janecky, L. J.,, S. A. Reeves,, E. G. Gonzales, and, S. M. Payne. 2003. Contribution of the Shigella flexneri Sit, Iuc, and Feo iron acquisition systems to iron acquisition in vitro and in cultured cells. Infect. Immun. 71:19191928.
52. Sansonetti, P. J.,, J. Arondel,, A. Fontaine,, H. Dhauteville, and, M. L. Bernardini. 1991. ompB (osmo-regulation) and icsa (cell-to-cell spread) mutants of Shigella flexneri: vaccine candidates and probes to study the pathogenesis of shigellosis. Vaccine 9:416422.
53. Sansonetti, P. J.,, T. L. Hale,, G. J. Dammin,, C. Kapfer,, H. H. Collins, and, S. B. Formal. 2003. Alterations in the pathogenicity of Escherichia coli K2 after transfer of plasmid and chromosomal genes from Shigella flexneri. Infect. Immun. 39:13921402.
54. Sansonetti, P. J. 2004. War and peace at mucosal surfaces. Nat. Rev. Immunol. 4:953964.
55. Sasakawa, C.,, K. Kamata,, T. Sakai,, S. Y. Murayama,, S. Makino, and, M. Yoshikawa. 1986. Molecular alteration of the 140-megadalton plasmid associated with loss of virulence and Congo red binding activity in Shigella flexneri. Infect. Immun. 51:470475.
56. Shepherd, J. G.,, L. Wang, and, P. R. Reeves. 2000. Comparison of O-antigen gene clusters of Escherichia coli (Shigella) sonnei and Plesiomonas shigelloides O17: Sonnei gained its current plasmid-borne O-antigen genes from P. shigelloides in a recent event. Infect. Immun. 68:60566061.
57. Souza, V., and, L. E. Eguiarte. 1997. Bacteria gone native vs. bacteria gone awry? Plasmidic transfer and bacterial evolution. Proc. Natl. Acad. Sci. USA 94:55015503.
58. Stevenson, G.,, A. Kessler, and, P. R. Reeves. 1995. A plasmid borne O-antigen chain length determinant and its relationship to other chain length determinants. FEMS Microbiol. Lett. 125:2330.
59. Suzuki, T.,, H. Mimuro,, S. Suetsugu,, H. Miki,, T. Takenawa, and, C. Sasakawa. 2002. Neural Wiskott-Aldrich syndrome protein (N-WASP) is the specific ligand for Shigella VirG among the WASP family and determines the host cell type allowing actin-based spreading. Cell. Microbiol. 4:223233.
60. Tran Van Nhieu, G.,, R. Bourdet-Sicard,, G. Dumenil,, A. Blocker, and, P. J. Sansonetti. 2000. Bacterial signals and cell responses during Shigella entry into epithelial cells. Cell. Microbiol. 2:187193.
61. Venkatesan, M. M.,, M. B. Goldberg,, D. J. Rose,, E. J. Grotbeck,, V. Burland, and, F. R. Blattner. 2001. Complete DNA sequence and analysis of the large virulence plasmid of Shigella flexneri. Infect. Immun. 69:32713285.
62. Wei, J.,, M. B. Goldberg,, V. Burland,, M. M. Venkatesan,, W. Deng,, G. Fournier,, G. F. Mayhew,, G. Plunkett,, D. J. Rose,, A. Darling, et al. 2003. Complete genome sequence and comparative genomics of Shigella flexneri serotype 2a strain 2457T. Infect. Immun. 71:42234223.
63. West, N. P.,, P. Sansonetti,, J. Mounier,, R. M. Exley,, C. Parsot,, S. Guadagnini,, M. C. Prevost,, A. Prochnicka-Chalufour,, M. Delepierre,, M. Tanguy, et al. 2005. Optimization of virulence functions through glucosylation of Shigella LPS. Science 307:13131317.
64. Yang, F.,, J. Yang,, X. B. Zhang,, L. H. Chen,, Y. Jiang,, Y. L. Yan,, X. D. Tang,, J. Wang,, Z. H. Xiong,, J. Dong, et al. 2005. Genome dynamics and diversity of Shigella species: the etiologic agents of bacillary dysentery. Nucleic Acids Res. 33:64456458.
65. Yoshida, S.,, E. Katayama,, A. Kuwae,, H. Mimuro,, T. Suzuki, and, C. Sasakawa. 2002. Shigella deliver an effector protein to trigger host microtubule destabilization, which promotes Rac1 activity and efficient bacterial internalization. EMBO J. 21:29232935.


Generic image for table
Table 1.

Examples of the heterogeneity in Shigella genome contents a

Citation: Parsot C, Sansonetti P. 2008. Evolution of Shigella and Enteroinvasive Escherichia coli, p 421-431. In Baquero F, Nombela C, Cassell G, Gutiérrez-Fuentes J (ed), Evolutionary Biology of Bacterial and Fungal Pathogens. ASM Press, Washington, DC. doi: 10.1128/9781555815639.ch35

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error