1887

Chapter 38 : Evolution of Legionella pneumophila Icm/Dot Pathogenesis System

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in
Zoomout

Evolution of Legionella pneumophila Icm/Dot Pathogenesis System, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555815639/9781555814144_Chap38-1.gif /docserver/preview/fulltext/10.1128/9781555815639/9781555814144_Chap38-2.gif

Abstract:

Legionella pneumophila, the causative agent of Legionnaires’ disease and related respiratory ailments, is a facultative intracellular pathogen. Many bacterial pathogens use secretion systems as part of their pathogenesis machinery. Bacteria such as Agrobacterium tumefaciens, Helicobacter pylori, Bordetella pertussis, Brucella sp., L. pneumophila, Coxiella burnetii, and others utilize a type IV secretion system for pathogenesis. The icm/dot type IVB secretion system was initially identified in L. pneumophila by the use of several genetic screens aimed at identifying genes required for intracellular growth and host cell killing, as well as other screens including complementation of salt-resistant mutants. Most of the icm/dot genes were found to be completely required for intracellular growth in amoebae hosts, and most of these genes are also completely required for intracellular growth in macrophage cell lines. The DotA protein was shown to be secreted in an Icm/Dot dependent manner into culture supernatants. IcmS and IcmW are unique proteins in the icm/dot system mainly because of several classical icm/dot phenotypes to which they were found to be dispensable. The current knowledge of the Legionella type IV secretion system probably indicates that components from at least three different evolutionary origins were put together to result in a functional pathogenesis system. The majority of the components of the translocation apparatus probably originate from a conjugative plasmid such as R64, and the IcmR and IcmQ proteins are probably involved in the initial step of host recognition, which might explain the high diversity of the FIR protein family.

Citation: Segal G. 2008. Evolution of Legionella pneumophila Icm/Dot Pathogenesis System, p 455-464. In Baquero F, Nombela C, Cassell G, Gutiérrez-Fuentes J (ed), Evolutionary Biology of Bacterial and Fungal Pathogens. ASM Press, Washington, DC. doi: 10.1128/9781555815639.ch38
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

References

/content/book/10.1128/9781555815639.ch38
1. Abu Kwaik, Y. 1996. The phagosome containing Legionella pneumophila within the protozoan Hartmannella vermiformis is surrounded by the rough endoplasmic reticulum. Appl. Environ. Microbiol. 62:20222028.
2. Andrews, H. L.,, J. P. Vogel, and, R. R. Isberg. 1998. Identification of linked Legionella pneumophila genes essential for intracellular growth and evasion of the endocytic pathway. Infect. Immun. 66:950958.
3. Bardill, J. P.,, J. L. Miller, and, J. P. Vogel. 2005. IcmS-dependent translocation of SdeA into macrophages by the Legionella pneumophila type IV secretion system. Mol. Microbiol. 56:90103.
4. Berger, K. H.,, J. J. Merriam, and, R. R. Isberg. 1994. Altered intracellular targeting properties associated with mutations in the Legionella dotA gene. Mol. Microbiol. 14:809822.
5. Bollin, G. E.,, J. F. Plouffe,, M. F. Para, and, B. Hackman. 1985. Aerosols containing Legionella pneumophila generated by shower heads and hot-water faucets. Appl. Environ. Microbiol. 50:11281131.
6. Bornstein, N.,, D. Marmet,, M. Surgot,, M. Nowicki,, A. Arslan,, J. Esteve, et al. 1989. Exposure to Legionellaceae at a hot spring spa: a prospective clinical and serological study. Epidemiol. Infect. 102:3136.
7. Bozue, J. A., and, W. Johnson. 1996. Interaction of Legionella pneumophila with Acanthamoeba castellanii: uptake by coiling phagocytosis and inhibition of phagosome-lysosome fusion. Infect. Immun. 64:668673.
8. Brand, B. C.,, A. B. Sadosky, and, H. A. Shuman. 1994. The Legionella pneumophila icm locus: a set of genes required for intracellular multiplication in human macrophages. Mol. Microbiol. 14:797808.
9. Bruggemann, H.,, C. Cazalet, and, C. Buchrieser. 2006. Adaptation of Legionella pneumophila to the host environment: role of protein secretion, effectors and eukaryotic-like proteins. Curr. Opin. Microbiol. 9:8694.
10. Cabezon, E.,, J. I. Sastre, and, F. de la Cruz. 1997. Genetic evidence of a coupling role for the TraG protein family in bacterial conjugation. Mol. Gen. Genet. 254:400406.
11. Campodonico, E. M.,, L. Chesnel, and, C. R. Roy. 2005. A yeast genetic system for the identification and characterization of substrate proteins transferred into host cells by the Legionella pneumophila Dot/Icm system. Mol. Microbiol. 56:918933.
12. Cazalet, C.,, C. Rusniok,, H. Bruggemann,, N. Zidane,, A. Magnier,, L. Ma, et al. 2004. Evidence in the Legionella pneumophila genome for exploitation of host cell functions and high genome plasticity. Nat. Genet. 36:11651173.
13. Chen, J.,, K. S. de Felipe,, M. Clarke,, H. Lu,, O. R. Anderson,, G. Segal, et al. 2004. Legionella effectors that promote nonlytic release from protozoa. Science 303:13581361.
14. Chien, M.,, I. Morozova,, S. Shi,, H. Sheng,, J. Chen,, S. M. Gomez, et al. 2004. The genomic sequence of Legionella pneumophila. Science 305:19661968.
15. Christie, P. J., and, J. P. Vogel. 2000. Bacterial type IV secretion: conjugation systems adapted to deliver effector molecules to host cells. Trends Microbiol. 8:354360.
16. Coers, J.,, Kagan, J. C.,, M. Matthews,, H. Nagai,, D. M. Zuckman, and, C. R. Roy. 2000. Identification of Icm protein complexes that play distinct roles in the biogenesis of an organelle permissive for Legionella pneumophila intracellular growth. Mol. Microbiol. 38:719736.
17. Conover, G. M.,, I. Derre,, J. P. Vogel, and, R. R. Isberg. 2003. The Legionella pneumophila LidA protein: a translocated substrate of the Dot/Icm system associated with maintenance of bacterial integrity. Mol. Microbiol. 48:305321.
18. Das, S., and, K. Chaudhuri. 2003. Identification of a unique IAHP (IcmF associated homologous proteins) cluster in Vibrio cholerae and other proteobacteria through in silico analysis. In Silico Biol. 3:0025.
19. de Felipe, K. S.,, S. Pampou,, O. S. Jovanovic,, C. D. Pericone,, S. F. Ye,, S. Kalachikov, et al. 2005. Evidence for acquisition of Legionella type IV secretion substrates via interdomain horizontal gene transfer. J. Bacteriol. 187:77167726.
20. Dumenil, G., and, R. R. Isberg. 2001. The Legionella pneumophila IcmR protein exhibits chaperone activity for IcmQ by preventing its participation in high-molecular-weight complexes. Mol. Microbiol. 40:11131127.
21. Dumenil, G.,, T. P. Montminy,, M. Tang, and, R. R. Isberg. 2004. IcmR-regulated membrane insertion and efflux by the Legionella pneumophila IcmQ protein. J. Biol. Chem. 279:46864695.
22. Feldman, M., and, G. Segal. 2004. A specific genomic location within the icm/dot pathogenesis region of different Legionella species encodes functionally similar but nonhomologous virulence proteins. Infect. Immun. 72:45034511.
23. Feldman, M.,, T. Zusman,, S. Hagag, and, G. Segal. 2005. Coevolution between nonhomologous but functionally similar proteins and their conserved partners in the Legionella pathogenesis system. Proc. Natl. Acad. Sci. USA 102:1220612211.
24. Fields, B. S.,, S. R. Fields,, J. N. Loy,, E. H. White,, W. L. Steffens, and, E. B. Shotts. 1993. Attachment and entry of Legionella pneumophila in Hartmannella vermiformis. J. Infect. Dis. 167:11461150.
25. Fields, B. S.,, T. A. Nerad,, T. K. Sawyer,, C. H. King,, J. M. Barbaree,, W. T. Martin, et al. 1990. Characterization of an axenic strain of Hartmannella vermiformis obtained from an investigation of nosocomial legionellosis. J. Protozool. 37:581583.
26. Fields, B. S.,, E. B. Shotts, Jr.,, J. C. Feeley,, G. W. Gorman, and, W. T. Martin. 1984. Proliferation of Legionella pneumophila as an intracellular parasite of the ciliated protozoan Tetrahymena pyriformis. Appl. Environ. Microbiol. 47:467471.
27. Fields, B. S. 1996. The molecular ecology of Legionellae. Trends Microbiol. 4:286290.
28. Folkesson, A.,, S. Lofdahl, and, S. Normark. 2002. The Salmonella enterica subspecies I specific centisome 7 genomic island encodes novel protein families present in bacteria living in close contact with eukaryotic cells. Res. Microbiol. 153:537545.
29. Hagele, S.,, R. Kohler,, H. Merkert,, M. Schleicher,, J. Hacker, and, M. Steinert. 2000. Dictyostelium discoideum: a new host model system for intracellular pathogens of the genus Legionella. Cell. Microbiol. 2:165171.
30. Hilbi, H.,, G. Segal, and, H. A. Shuman. 2001. icm/dot-dependent upregulation of phagocytosis by Legionella pneumophila. Mol. Microbiol. 42:603617.
31. Holden, E. P.,, H. H. Winkler,, D. O. Wood, and, E. D. Leinbach. 1984. Intracellular growth of Legionella pneumophila within Acanthamoeba castellanii Neff. Infect. Immun. 45:1824.
32. Horwitz, M. A., and, F. R. Maxfield. 1984. Legionella pneumophila inhibits acidification of its phagosome in human monocytes. J. Cell. Biol. 99:19361943.
33. Horwitz, M. A., and, S. C. Silverstein. 1980. Legionnaires’ disease bacterium (Legionella pneumophila) multiplies intracellularly in human monocytes. J. Clin. Invest. 60:441450.
34. Horwitz, M. A. 1983a. Formation of a novel phagosome by the Legionnaires’ disease bacterium (Legionella pneumophila) in human monocytes. J. Exp. Med. 158:13191331.
35. Horwitz, M. A. 1983b. The Legionnaires’ disease bacterium (Legionella pneumophila) inhibits phagosome-lysosome fusion in human monocytes. J. Exp. Med. 158:21082126.
36. Isberg, R. R., and, M. Machner. 2006. Identification of translocated substrates of the Legionella pneumophila Dot/Icm system without the use of eukaryotic host cells, p. 169176. In N. P. Cianciotto et al. (ed.), Legionella: State of the Art 30 Years after Its Recognition. ASM Press, Washington, DC.
37. Kagan, J. C., and, C. R. Roy. 2002. Legionella phagosomes intercept vesicular traffic from endoplasmic reticulum exit sites. Nat. Cell. Biol. 4:945954.
38. Kirby, J. E.,, J. P. Vogel,, H. L. Andrews, and, R. R. Isberg. 1998. Evidence for pore-forming ability by Legionella pneumophila. Mol. Microbiol. 27:323336.
39. Komano, T.,, T. Yoshida,, K. Narahara, and, N. Furuya. 2000. The transfer region of IncI1 plasmid R64: similarities between R64 tra and Legionella icm/dot genes. Mol. Microbiol. 35:13481359.
40. Luo, Z. Q., and, R. R. Isberg. 2004. Multiple substrates of the Legionella pneumophila Dot/Icm system identified by interbacterial protein transfer. Proc. Natl. Acad. Sci. USA 101:841846.
41. Marra, A.,, S. J. Blander,, M. A. Horwitz, and, H. A. Shuman. 1992. Identification of a Legionella pneumophila locus required for intracellular multiplication in human macrophages. Proc.Natl. Acad. Sci. USA 89:96079611.
42. Molmeret, M.,, S. C. Zink,, L. Han,, A. Abu-Zant,, R. Asari,, D. M. Bitar, et al. 2004. Activation of caspase-3 by the Dot/Icm virulence system is essential for arrested biogenesis of the Legionella-containing phagosome. Cell. Microbiol. 6:3348.
43. Murata, T.,, A. Delprato,, A. Ingmundson,, D. K. Toomre,, D. G. Lambright, and, C. R. Roy. 2006. The Legionella pneumophila effector protein DrrA is a Rab1 guanine nucleoside-exchange factor. Nat. Cell. Biol. 9:971977.
44. Nagai, H.,, J. C. Kagan,, X. Zhu,, R. A. Kahn, and, C. R. Roy. 2002. A bacterial guanine nucleotide exchange factor activates ARF on Legionella phagosomes. Science 295:679682.
45. Nagai, H., and, C. R. Roy. 2001. The DotA protein from Legionella pneumophila is secreted by a novel process that requires the Dot/Icm transporter. EMBO J. 20:59625970.
46. Newsome, A. L.,, R. L. Baker,, R. D. Miller, and, R. R. Arnold. 1985. Interactions between Naegleria fowleri and Legionella pneumophila. Infect. Immun. 50:449452.
47. Ninio, S.,, D. M. Zuckman-Cholon,, E. D. Cambronne, and, C. R. Roy. 2005. The Legionella IcmS-IcmW protein complex is important for Dot/Icm-mediated protein translocation. Mol. Microbiol. 55:912926.
48. Purcell, M. W., and, H. A. Shuman. 1998. The Legionella pneumophila icmGCDJBF genes are required for killing of human macrophages. Infect. Immun. 66:22452255.
49. Roy, C. R.,, K. H. Berger, and, R. R. Isberg. 1998. Legionella pneumophila DotA protein is required for early phagosome trafficking decisions that occur within minutes of bacterial uptake. Mol. Microbiol. 28:663674.
50. Roy, C. R., and, R. R. Isberg. 1997. Topology of Legionella pneumophila DotA: an inner membrane protein required for replication in macrophages. Infect. Immun. 65:571578.
51. Roy, C. R., and, L. G. Tilney. 2002. The road less traveled: transport of Legionella to the endoplasmic reticulum. J. Cell Biol. 158:415419.
52. Sadosky, A. B.,, L. A. Wiater, and, H. A. Shuman. 1993. Identification of Legionella pneumophila genes required for growth within and killing of human macrophages. Infect. Immun. 61:53615373.
53. Segal, G.,, M. Purcell, and, H. A. Shuman. 1998. Host cell killing and bacterial conjugation require overlapping sets of genes within a 22-kb region of the Legionella pneumophila genome. Proc. Natl. Acad. Sci. USA 95:16691674.
54. Segal, G., and, H. A. Shuman. 1997. Characterization of a new region required for macrophage killing by Legionella pneumophila. Infect. Immun. 65:50575066.
55. Segal, G., and, H. A. Shuman. 1998. Intracellular multiplication and human macrophage killing by Legionella pneumophila are inhibited by conjugal components on IncQ plasmid RSF1010. Mol. Microbiol. 30:197208.
56. Segal, G., and, H. A. Shuman. 1999a. Legionella pneumophila utilize the same genes to multiply within Acanthamoeba castellanii and human macrophages. Infect. Immun. 67:21172124.
57. Segal, G., and, H. A. Shuman. 1999b. Possible origin of the Legionella pneumophila virulence genes and their relation to Coxiella burnetii. Mol. Microbiol. 33:669670.
58. Sexton, J. A.,, J. L. Miller,, A. Yoneda,, T. E. Kehl-Fie, and, J. P. Vogel. 2004a. Legionella pneumophila DotU and IcmF are required for stability of the Dot/Icm complex. Infect. Immun. 72:59835992.
59. Sexton, J. A.,, J. S. Pinkner,, R. Roth,, J. E. Heuser,, S. J. Hultgren, and, J. P. Vogel. 2004b. The Legionella pneumophila PilT homologue DotB exhibits ATPase activity that is critical for intracellular growth. J. Bacteriol. 186:16581666.
60. Shohdy, N.,, J. A. Efe,, S. D. Emr, and, H. A. Shuman. 2005. Pathogen effector protein screening in yeast identifies Legionella factors that interfere with membrane trafficking. Proc. Natl. Acad. Sci. USA 102:48664871.
61. Solomon, J. M.,, A. Rupper,, J. A. Cardelli, and, R. R. Isberg. 2000. Intracellular growth of Legionella pneumophila in Dictyostelium discoideum, a system for genetic analysis of host-pathogen interactions. Infect. Immun. 68:29392947.
62. Sturgill-Koszycki, S., and, M. S. Swanson. 2000. Legionella pneumophila replication vacuoles mature into acidic, endocytic organelles. J. Exp. Med. 192:12611272.
63. Swanson, M. S., and, R. R. Isberg. 1995. Association of Legionella pneumophila with the macrophage endoplasmic reticulum. Infect. Immun. 64:36093620.
64. Swanson, M. S., and, R. R. Isberg. 1996. Identification of Legionella pneumophila mutants that have aberrant intracellular fates. Infect. Immun. 64:25852594.
65. Tilney, L. G.,, O. S. Harb,, P. S. Connelly,, C. G. Robinson, and, C. R. Roy. 2001. How the parasitic bacterium Legionella pneumophila modifies its phagosome and transforms it into rough ER: implications for conversion of plasma membrane to the ER membrane. J. Cell Sci. 114:46374650.
66. VanRheenen, S. M.,, G. Dumenil, and, R. R. Isberg. 2004. IcmF and DotU are required for optimal effector translocation and trafficking of the Legionella pneumophila vacuole. Infect. Immun. 72:59725982.
67. Vogel, J. P.,, H. L. Andrews,, S. K. Wong, and, R. R. Isberg. 1998. Conjugative transfer by the virulence system of Legionella pneumophila. Science 279:873876.
68. Wadowsky, R. M.,, T. M. Wilson,, N. J. Kapp,, A. J. West,, J. M. Kuchta,, S. J. States, et al. 1991. Multiplication of Legionella spp. in tap water containing Hartmannella vermiformis. Appl. Environ. Microbiol. 57:19501955.
69. Watarai, M.,, H. L. Andrews, and, R. R. Isberg. 2001a. Formation of a fibrous structure on the surface of Legionella pneumophila associated with exposure of DotH and DotO proteins after intracellular growth. Mol. Microbiol. 39:313329.
70. Watarai, M.,, I. Derre,, J. Kirby,, J. D. Growney,, W. F. Dietrich, and, R. R. Isberg. 2001b. Legionella pneumophila is internalized by a macropinocytotic uptake pathway controlled by the Dot/Icm system and the mouse Lgn1 locus. J. Exp. Med. 194:10811096.
71. Wiater, L. A.,, K. Dunn,, F. R. Maxfield, and, H. A. Shuman. 1998. Early events in phagosome establishment are required for intracellular survival of Legionella pneumophila. Infect. Immun. 66:44504460.
72. Zamboni, D. S.,, S. McGrath,, M. Rabinovitch, and, C. R. Roy. 2003. Coxiella burnetii express type IV secretion system proteins that function similarly to components of the Legionella pneumophila Dot/Icm system. Mol. Microbiol. 49:965976.
73. Zink, S. D.,, L. Pedersen,, N. P. Cianciotto, and, Y. Abu-Kwaik. 2002. The Dot/Icm type IV secretion system of Legionella pneumophila is essential for the induction of apoptosis in human macrophages. Infect. Immun. 70:16571663.
74. Zuckman, D. M.,, J. B. Hung, and, C. R. Roy. 1999. Pore-forming activity is not sufficient for Legionella pneumophila phagosome trafficking and intracellular growth. Mol. Microbiol. 32:9901001.
75. Zusman, T.,, M. Feldman,, E. Halperin, and, G. Segal. 2004. Characterization of the icmH and icmF genes required for Legionella pneumophila intracellular growth, genes that are present in many bacteria associated with eukaryotic cells. Infect. Immun. 72:33983409.
76. Zusman, T.,, G. Yerushalmi, and, G. Segal. 2003. Functional similarities between the icm/dot pathogenesis systems of Coxiella burnetii and Legionella pneumophila. Infect. Immun. 71:37143723.

Tables

Generic image for table
Table 1.

Components of the L. pneumophila Icm/Dot secretion apparatus

Citation: Segal G. 2008. Evolution of Legionella pneumophila Icm/Dot Pathogenesis System, p 455-464. In Baquero F, Nombela C, Cassell G, Gutiérrez-Fuentes J (ed), Evolutionary Biology of Bacterial and Fungal Pathogens. ASM Press, Washington, DC. doi: 10.1128/9781555815639.ch38
Generic image for table
Table 2.

Substrates of the L. pneumophila Icm/Dot secretion system

Citation: Segal G. 2008. Evolution of Legionella pneumophila Icm/Dot Pathogenesis System, p 455-464. In Baquero F, Nombela C, Cassell G, Gutiérrez-Fuentes J (ed), Evolutionary Biology of Bacterial and Fungal Pathogens. ASM Press, Washington, DC. doi: 10.1128/9781555815639.ch38

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error