1887

Chapter 41 : Evolution of Listeria monocytogenes

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in
Zoomout

Evolution of Listeria monocytogenes, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555815639/9781555814144_Chap41-1.gif /docserver/preview/fulltext/10.1128/9781555815639/9781555814144_Chap41-2.gif

Abstract:

In the mid-1980s, molecular biology coupled with bacterial genetics and cell biology approaches allowed detailed investigations of the genetic basis of Listeria monocytogenes virulence. L. monocytogenes infects humans and animals, although its presence has been reported in an impressive number of animal species, which are probably healthy carriers. Southern blot hybridization highlighted that the virulence gene cluster and the internalin locus were absent in L. innocua. The most abundant class of surface proteins are lipoproteins, a class of bacterial surface proteins that may be implicated in adherence to different substrates, host tissues, or other bacteria, as well as in conjugation, signalling, or metabolic functions. The origin of the known virulence genes is still unclear, but comparative sequence analysis gives insight into the possible evolution of pathogenesis in Listeria. Further analysis of the gene content of these strains with respect to virulence genes revealed that all known virulence factors (inlAB, prfA, plcA, hly, mpl, actA, plcB, uhpT, and bsh) are present in all L. monocytogenes strains tested. Interestingly, the distribution of surface proteins among the L. monocytogenes strains mirrored the three lineages, as each lineage and each subgroup within a lineage is characterized by a specific surface protein combination. The many fascinating strategies used by Listeria to invade cells, escape from the internalization vacuole, spread from cell to cell, and escape the host as early defense mechanisms are providing unexpected clues to how microbes can establish an infection.

Citation: Cossart P, Buchrieser C, Kreft J. 2008. Evolution of Listeria monocytogenes, p 491-499. In Baquero F, Nombela C, Cassell G, Gutiérrez-Fuentes J (ed), Evolutionary Biology of Bacterial and Fungal Pathogens. ASM Press, Washington, DC. doi: 10.1128/9781555815639.ch41
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of Figure 1.
Figure 1.

Phylogenetic tree of the genus Listeria. This tree is based on the concatenated nucleic acid sequences of 16S and 23S rRNA, iap, prs, vclB, and ldh. The bar indicates 10% estimated sequence divergence. (Reproduced with permission from Schmid et al., 2005.)

Citation: Cossart P, Buchrieser C, Kreft J. 2008. Evolution of Listeria monocytogenes, p 491-499. In Baquero F, Nombela C, Cassell G, Gutiérrez-Fuentes J (ed), Evolutionary Biology of Bacterial and Fungal Pathogens. ASM Press, Washington, DC. doi: 10.1128/9781555815639.ch41
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2.
Figure 2.

Schematic representation of the infection cycle of L. monocytogenes. The successive steps are entry (1), lysis of the vacuole (2), intracellular replication (3), intracellular movement (4), cell to cell spread (5), and formation and lysis (6) of two-membrane vacuole. Virulence factors involved at the different steps are indicated in the text.

Citation: Cossart P, Buchrieser C, Kreft J. 2008. Evolution of Listeria monocytogenes, p 491-499. In Baquero F, Nombela C, Cassell G, Gutiérrez-Fuentes J (ed), Evolutionary Biology of Bacterial and Fungal Pathogens. ASM Press, Washington, DC. doi: 10.1128/9781555815639.ch41
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555815639.ch41
1. Barabote, R. D., and, M. H. Saier. 2005. Comparative genomic analyses of the bacterial phosphotransferase system. Microbiol. Mol. Biol. Rev. 69:608634.
2. Bibb, W. F.,, B. Schwartz,, B. G. Gellin,, B. D. Plikaytis, and, R. E. Weaver. 1989. Analysis of Listeria monocytogenes by multilocus enzyme electrophoresis and application of the method to epidemiologic investigations. Int. J. Food Microbiol. 8:233239.
3. Brosch, R.,, J. Chen, and, J. B. Luchansky. 1994. Pulsed-field fingerprinting of listeriae: identification of genomic divisions for Listeria monocytogenes and their correlation with serovar. Appl. Environ. Microbiol. 60:25842592.
4. Buchrieser, C.,, C. Rusniok,, F. Kunst,, P. Cossart, and, P. Glaser. 2003. Comparison of the genome sequences of Listeria monocytogenes and Listeria innocua: clues for evolution and pathogenicity. FEMS Immunol. Med. Microbiol. 35:207213.
5. Cabanes, D.,, P. Dehoux,, O. Dussurget,, L. Frangeul, and, P. Cossart. 2002. Surface proteins and the pathogenic potential of Listeria monocytogenes. Trends Microbiol. 5:238245.
6. Cabanes, D.,, O. Dussurget,, P. Dehoux, and, P. Cossart. 2004. Auto, a surface associated autolysin of Listeria monocytogenes required for entry in eukaryotic cells and virulence. Mol. Microbiol. 51:16011614.
7. Cabanes, D.,, S. Sousa,, A. Cebria,, M. Lecuit,, F. Garcia-del Portillo, and, P. Cossart. 2005. Gp96 is a receptor for a novel Listeria monocytogenes virulence factor, Vip, a surface protein. EMBO J. 24:28272838.
8. Chakraborty, T.,, T. Hain, and, Domann. 2000. Genome organization and the evolution of the virulence gene locus in Listeria species. Int. J. Med. Microbiol. 2:167174.
9. Chico-Calero, I.,, M. Suarez,, Gonzalez-Zorn, B.,, M. Scortti,, J. Slaghuis,, W. Goebel, et al. 2002. Hpt, a bacterial homolog of the microsomal glucose-6-phosphate translocase, mediates rapid intracellular proliferation in Listeria. Proc. Natl. Acad. Sci. USA 99:431436.
10. Cossart, P., and, M. Lecuit. 1998. Interactions of Listeria monocytogenes with mammalian cells during entry and actin-based movement: bacterial factors, cellular ligands and signaling. EMBO J. 17:37973806.
11. Cossart, P. 2000. Actin-based motility of pathogens: the Arp2/3 complex is a central player. Cell. Microbiol. 2:195205.
12. Domann, E.,, S. Zechel,, A. Lingnau,, R. Hain,, A. Darji,, T. Nichterlein, et al. 1997. Identification and characterization of a novel PrfA-regulated gene in Listeria monocytogenes whose product, IrpA, is highly homologous to internalin proteins, which contain leucine-rich repeats. Infect. Immun. 65:101109.
13. Doumith, M.,, C. Cazalet,, N. Simoes,, L. Frangeul,, C. Jaquet,, F. Kunst, et al. 2004. New aspects regarding evolution and virulence of Listeria monocytogenes revealed by comparative genomics. Infect. Immun. 72:10721083.
14. Dussurget, O.,, D. Cabanes,, P. Dehoux,, M. Lecuit,, C. Buchrieser,, P. Glaser, et al. 2002. Listeria monocytogenes bile salt hydro-lase is a PrfA-regulated virulence factor involved in the intestinal and hepatic phases of listeriosis. Mol. Microbiol. 45:10951106.
15. Engelbrecht, F.,, S.-K. Chun,, C. Ochs,, J. Hess,, F. Lottspeich,, W. Goebel, et al. 1996. A new PrfA-regulated gene of Listeria monocytogenes encoding a small, secreted protein which belongs to the family of internalins. Mol. Microbiol. 21:823837.
16. Feretti, J.,, W. M. McShan,, D. Ajdic,, D. J. Savic,, G. Savic,, K. Lyon,, C. Primeaux,, S. Sezate,, A. N. Suvorov,, S. Kenton,, H. S. Lai,, S. P. Lin,, Y. Qian,, H. G. Jia,, F. Z. Najar,, Q. Ren,, H. Zhu,, L. Song,, J. White,, X. Yuan,, S. W. Clifton,, B. A. Roe, and, R. McLaughlin. 2001. Complete genome sequence of an M1 strain of Streptococcus pyogenes. Proc. Natl. Acad. Sci. USA 98:46585663.
17. Gaillard, J.-L.,, P. Berche,, C. Frehel,, E. Gouin, and, P. Cossart. 1991. Entry of Listeria monocytogenes into cells is mediated by internalin, a repeat protein reminiscent of surface antigens from gram-positive cocci. Cell 65:11271141.
18. Glaser, P.,, L. Frangeul,, C. Buchrieser,, C. Rusniok,, A. Amend,, F. Baquero, et al. 2001. Comparative genomics of Listeria species. Science 294:849852.
19. Graves, L.,, B. Swaminathan,, M. Reeves, and, S. B. Hunter,, R. E. Weaver,, B. D. Plikaytis, et al. 1994. Comparison of ribotyping and multilocus enzyme electrophoresis for subtyping of Listeria monocytogenes isolates. J. Clin. Microbiol. 32:29362943.
20. Hain, T.,, C. Steinweg,, C. Kuenne,, A. Billion,, R. Ghai,, S. Chatterjee, et al. 2006. Whole genome sequence of Listeria welshimeri reveals common steps in genome reduction with Listeria innocua as compared to Listeria monocytogenes. J. Bacteriol. doi:10.1128/JB.00758-06.
21. Hamon, M.,, H. Bierne, and, P. Cossart. 2006. Listeria monocyto-genes: a multifaceted model. Nature Rev. Microbiol. 4:423434.
22. Jacquet, C.,, E. Gouin,, D. Jeannel,, P. Cossart, and, J. Rocourt. 2002. Expression of ActA, Ami, InlB, and listeriolysin O in Listeria monocytogenes of human and food origin. Appl. Environ. Microbiol. 68:616622.
23. Jeffers, G. T.,, J. L. Bruce,, P. L. McDonough,, J. Scarlett,, K. J. Boor, and, M. Wiedmann. 2001. Comparative genetic characterization of Listeria monocytogenes isolates from human and animal listeriosis cases. Microbiology 147:10951104.
24. Kocks, C.,, E. Gouin,, M. Tabouret,, P. Berche,, H. Ohayon, and, P. Cossart. 1992. Listeria monocytogenes-induced actin assembly requires the actA gene product, a surface protein. Cell 68:521531.
25. Kocks, C.,, J. B. Marchand,, E. Gouin,, H. d’Hauteville,, P. J. Sansonetti,, M. F. Carlier, et al. 1995. The unrelated surface proteins ActA of Listeria monocytogenes and IcsA of Shigella flexneri are sufficient to confer actin-based motility on Listeria innocua and Escherichia coli respectively. Mol. Microbiol. 18:413423.
26. Kotrba, P.,, M. Inui, and, H. Yukawa. 2001. Bacterial phosphotransferase system (PTS) in carbohydrate uptake and control of carbon metabolism. J. Biosci. Bioeng. 92:502517.
27. Kreft, J.,, J.-A. Vazquez-Boland,, S. Altrock,, G. Dominguez-Bernal, and, W. Goebel. 2002. Pathogenicity islands and other virulence elements in Listeria. Curr. Top. Microbiol. Immunol. 264:109125.
28. Kuhn, M., and, W. Goebel. 1989. Identification of an extracellular protein of Listeria monocytogenes possibly involved in intracellular uptake by mammalian cells. Infect. Immun. 57:5561.
29. Kuroda, M.,, T. Ohta,, I. Uchiyama,, T. Baba,, H. Yuzawa,, I. Kobayashi, et al. 2001. Whole genome sequencing of methicillin-resistant Staphylococcus aureus. Lancet 357:12251240.
30. Lecuit, M.,, S. Dramsi,, C. Gottardi,, M. Fredor-Chaiken,, B. Gumbiner, and, P. Cossart. 1999. A single amino acid in E-cadherin responsible for host specificity toward the human pathogen Listeria monocytogenes. EMBO J. 18:39563963.
31. Leimeister-Wächter, M.,, C. Haffner,, E. Domann,, W. Goebel, and, T. Chakraborty. 1990. Identification of a gene that positively regulates expression of listeriolysin, the major virulence factor of Listeria monocytogenes. Proc. Natl. Acad. Sci. USA 87:83368340.
32. Mackaness, G. B. 1962. Cellular resistance to infection. J. Exp. Med. 116:381406.
33. Mackaness, G. B. 1964. The immunological basis of acquired cellular resistance. J. Exp. Med. 120:105120.
34. Mackaness, G. B. 1969. The influence of immunologically committed lymphoid cells on macrophage activity in vivo. J. Exp. Med. 129:973996.
35. Mengaud, J.,, J. Chenevert,, C. Geoffroy,, J. L. Gaillard, and, P. Cossart. 1987. Identification of the structural gene encoding the SH-activated hemolysin of Listeria monocytogenes: listeriolysin O is homologous to streptolysin O and pneumolysin. Infect. Immun. 55:32253227.
36. Mengaud, J.,, S. Dramsi,, E. Gouin,, B. J. Vazquez,, G. Milon, and, P. Cossart. 1991. Pleiotropic control of Listeria monocyto-genes virulence factors by a gene that is autoregulated. Mol. Microbiol. 5:22732283.
37. Milohanic, E.,, R. Jonquieres,, P. Cossart,, P. Berche, and, J. L. Gaillard. 2001. The autolysin Ami contributes to the adhesion of Listeria monocytogenes to eukaryotic cells via its cell wall anchor. Mol. Microbiol. 39:12121234.
38. Murray, E. G. D.,, R. E. Webb, and, M. B. R. Swann. 1926. A disease of rabbits characterized by a large mononuclear leucocytosis, caused by a hitherto undescribed bacillus Bacterium monocytogenes (n. sp.). J. Pathol. Bacteriol. 29:407439.
39. Nelson, K. E.,, D. E. Fouts,, E. F. Mongodin,, J. Ravel,, R. T. DeBoy,, J. F. Kolonay, et al. 2004. Whole genome comparisons of serotype 4b and 1/2a strains of the food-borne pathogen Listeria monocytogenes reveal new insights into the core genome components of this species. Nucleic Acids Res. 32:23862395.
40. Nightingale, K. K.,, K. Windham, and, M. Wiedmann. 2005. Evolution and molecular phylogeny of Listeria monocytogenes isolated from human and animal listeriosis cases and foods. J. Bacteriol. 187:55375551.
41. Piffaretti, J. C.,, H. Kressebuch,, M. Aeschbacher,, J. Bille,, E. Bannerman,, J. M. Musser, et al. 1989. Genetic characterization of clones of the bacterium Listeria monocytogenes causing epidemic disease. Proc. Natl. Acad. Sci. USA 86:38183822.
42. Racz, P.,, E. Kaiserling,, K. Tenner, and, H. H. Wuthe. 1973. Experimental Listeria cystitis. II. Further evidence of the epithelial phase in experimental Listeria infection. An electron microscopic study. Virchows Arch. B Cell Pathol. 13:2437.
43. Racz, P.,, K. Tenner, and, E. Mérö. 1972. Experimental Listeria enteritis. I. An electron microscopic study of the epithelial phase in experimental Listeria infection. Lab. Invest. 26:694700.
44. Racz, P.,, K. Tenner, and, K. Szivessy. 1970. Electron microscopic studies in experimental keratoconjunctivitis listeriosa. I. Penetration of Listeria monocytogenes into corneal epithelial cells. Acta Microbiol. Acad. Sci. Hung. 17:221236.
45. Sabet, C.,, M. Lecuit,, D. Cabanes,, P. Cossart, and, H. Bierne. 2005. LPXTG protein InlJ, a newly identified internalin involved in Listeria monocytogenes virulence. Infect. Immun. 73:69126922.
46. Schmid, M. W.,, E. Y. Ng,, R. Lampidis,, M. Emmerth,, M. Walcher,, J. Kreft, et al. 2005. Evolutionary history of the genus Listeria and its virulence genes. Syst. Appl. Microbiol. 28:118.
47. Seeliger, H. P. R., and, K. Höhne. 1979. Serotyping of Listeria monocytogenes and related species. In T. Bergan and, J. R. Norris (ed.), Methods in Microbiology. Academic Press, London.
48. Stover, C. K.,, X. Q. Pham,, A. L. Erwin,, S. D. Mizoguchi,, P. Warrener,, M. J. Hickey, et al. 2000. Complete genome sequence of Pseudomonas aeruginosa PA01, an opportunistic pathogen. Nature 406:959964.
49. Tsai, Y. H.,, R. H. Orsi,, K. K. Nightingale, and, M. Wiedmann. 2006. Listeria monocytogenes internalins are highly diverse and evolved by recombination and positive selection. Infect. Genet. Evol. 9:9.
50. Vazquez-Boland, J.-A.,, M. Kuhn,, P. Berche,, T. Chakraborty,, G. Dominguez-Bernal,, W. Goebel, et al. 2001. Listeria pathogenesis and molecular virulence determinants. Clin. Microbiol. Rev. 14:157.
51. Wiedmann, M.,, J. L. Bruce,, C. Keating,, A. E. Johnson,, P. L. McDonough, and, C. A. Batt. 1997. Ribotypes and virulence gene polymorphisms suggest three distinct Listeria monocytogenes lineages with differences in pathogenic potential. Infect. Immun. 65:27072716.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error